
  

 

 

 

Abstract– This paper presents a neural network modeling 
applied to predict monthly ozone and carbon dioxide 
concentration time series. The performances of neural network 
are critically depending on learning parameters, on its structure 
and control parameters. Even when a suitable setting of 
parameters (weights) can be found, the ability of the resulting 
network to generalize the data after learning may be far from 
optimal. For these reasons it is well suitable and attractive to 
apply an optimization method using genetic algorithms. In this 
paper, we show how Genetic algorithms may provide a powerful 
tool for automating the design of neural networks. This pattern 
presents a better fit of non linearity concerning the air pollution 
data. Simulation results show the effectiveness of the proposed 
optimization method. The results are compared and discussed to 
demonstrate the better quality of the forecasting model. 

Index Terms—Air pollution, Neural network, Genetic 
Algorithm, Prediction, Time Series. 

I. INTRODUCTION 

ZONE and carbon dioxide are a pollutant resulting from 
photochemical reactions of a variety natural and 

anthropogenic precursors. Under favorable meteorological 
conditions, ozone and dioxide carbon may accumulate in the 
atmosphere and reach such a high concentration level that can 
impose adverse effects on human health and ecosystem. 
Therefore, Air pollution can cause the human health, plants 
growth and daily mortality in numerous studies over the past 
decade. Therefore, forecasting and analysis of air quality are 
important topics of research today [1][ 2].  

A time series is a finished suite of data indexed by time 
( )1, ....., nx x . The time indication can be a minute, hour, day, 

week, year… etc. An important class of the stochastic model 
used for the prediction describes the relation between the 
future value of time series and the previous ones. The choice 
of the model depends on the nature of series (stationary, non 
stationary, linear and non linear) [3][ 4].  
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The stationary time series Box and Jenkins (1970) suggested 
using the autocorrelation function and empirical partial 
autocorrelation functions. Their methodology based on the 
theoretical autocorrelation function of model mobile 
averages ( )qMA nullifies from the rank 1+q  and the partial 

autocorrelation function of an autoregressive 
mod ( )pAR nullifies from the rank 1+p . An alternative for the 

selection of model was introduced by Cleveland (1972). Its 
method uses the inverse autocorrelation function 

( ) ( )Zhhi ∈,ρ ,  defined by the inverse of the spectral density. 

Several researches were afterward consecrated to the study of 
the inverse autocorrelation functions and inverse partial 
autocorrelation. In the case of the linear processes, Bhansali 
(1980) was the first one published a complete study 
concerning the asymptotic distribution of the inverse 
autocorrelation function estimated by both methods evoked 
previously. After these works, Bhansali (1983) developed a 
new approach based on the properties of the Hilbert spaces for 
defining the inverse partial autocorrelation function. The series 
not stationary undergo a pretreatment before using the model 
ARIMA which transform them to stationary series by using an 
operator according to the nature of stationeries (average not 
stationary, variance not stationary and seasonality), for non 
linear series; the models ARCH and GARCH and EAR were 
used [5][6]. The problem is forecasts are built based on 
transformed series which can lose their optimal characteristic 
when we express them in the same way as the initial data. 
These models remain very difficult to apply in most of the real 
temporal series.  

In recent years, some methods have been proposed for 
handling forecasting air pollution. Jure & Rahela [7] presented 

a 2Q learning to the analysis and prediction of ozone 

concentration. An Elman Neural Network for hourly 

2SO ground concentration is proposed by Brunelli and Piazza 

[8]. YU and Wenfang [9] employed the multi artificial neural 
network, where a model optimizing the back-propagation 
algorithm by using genetic algorithms to forecast ozone 
concentration and a support vector machine was used to 
accurately classify the data into their corresponding categories. 
Biljana and Mile [10] proposed the prediction of data for 
ozone concentration in ambient air using a modeling technique 
of support machine and radial neural networks.  
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The neural networks have particular’s properties which 
make them a prime target and suitable for solving a wide 
family of problems. However, they also have some limitations 
and disadvantages which limit their individual application in 
some cases [11]. There are a various forms for combining the 
neural network and genetic algorithms. The study of neural 
network and genetic algorithms combination can be summarize 
in three general aspects: learn genetically the neural network, 
genetic optimization of network topology and optimization of 
its parameters [11]. The combination of neural network and 
genetic algorithms allows merging advantages of both 
approaches and having more capacity to surmount difficulties 
and the limitations which characterize each approach [3]. 

The objective of this paper is to use a real genetic 
algorithm to automate de design of a neural network predictor; 
where a multi-layer feedforward neural network is used with 
back-propagation learning algorithm. Its topology and control 
parameters are selected by an optimization process. The 
designed predictor will be employed for predicting the 
monthly ozone and carbon dioxide concentration time series in 
Arosa, Switzerland.  

This paper is organized as follows. In section 2, we present 
briefly a review of the prediction and neural network theory. In 
section 3, the optimization of the neural predictor using the 
real genetic algorithms is explained and discussed. Section 4 
gives the simulation results of application of this method to 
predict the monthly ozone, carbon dioxide concentration time 
series in Arosa Switzerland. A comparison study with other 
models will be presented in section 5. Section 6 Conclude the 
paper. 

II. PREDICTION AND NEURAL NETWORK (NN) 

A neural network (NN) contains a number of relatively 
simple processing units called neurons. The neurons are 
interconnected through synaptic weights, and are grouped in 
layers using synaptic links for connecting neurons in adjacent 
layers. Three different layers types can be distinguished: input 
layer, hidden and output layers [12]. The NN architecture 
considered here is a multilayer perceptron and the training 
phase is employed using Back-propagation algorithm (BP).  

The topology of neural predictor requires the determination 
of various parameters: number of hidden layers( )NHL , 

number of nodes ( )Nhl  for each layer l, activation functions 

( )outl ff ,  for each layer, Presence or absence of the bias( )b , 

learning rate ( )η , Momentum coefficient( )α , input 

number( )N , times that separate two successive input ( )δ . 

The GA has been used to determine the appropriate set of the 
parameter listed above.  

III. OPTIMIZING NEURAL PREDICTOR STRUCTURE 

Neural predictor (NP) is defined by genetic encoding in 
which the chromosome composed of the different 
characteristics of NP. We consider a specific representation of 

the parameters related to the neural predictor structure; the 
chromosome is constituted of 17 genes containing the neural 
model (Number of hidden layers ( )NHL , numbers of neurons 

in each layer l ( )Nhl ), and other genes representing the 

activation function type for the hidden layers and the output 
layer ( )outl ff , , number of neurons in the input layer ( )N , 

presence or absence of bias ( )b , sampling lag ( )δ , learning 

rate ( )η , momentum coefficient( )α , variation interval of the 

synaptic weights for the 2 hidden layer and the output layer.  

A.  Generation of the Initial Population  

   The chromosome in the initial population is produced by a 
stochastic generation as represented in figure 1. Each gene is 
defined in a subset 

i
S , where 7...1=i  reported in the second 

row of the Table 1. 

TABLE.I 
THE SUBSET OF EACH GENE 

 NHL  η    α    b    N   Nh1   Nh2   δ    f1    f2    fout  

set   S1       S2     S2    S3    S4     S5          S5       S6    S7    S7    S7      
 

   high1       low1     high2      low2     high3     low3 

set         S2          S2          S2         S2             S2        S2 

  

Generally, in most applications of NN; it is sufficient that 
the network has few hidden layers. The value of ( )NHL  has 

been allowed to vary from 1 to 2 while the maximum value 
of ( )Nhl is calculates using the following equation: 

( )
ND

N
MAX Nhl ++=

2
1                                              (1) 

Where ND : number of training data. All genes are defined in 
the following subsets: 
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For S7 the value ≡1 the activation function is sigmoid, 
≡2 the activation function is hyperbolic tangent, ≡3  the 

activation function is pure linear. For S3: ≡0 absence of the 
bias, ≡1  presence of the bias. [ ]ii highlow , : present the 

interval variation of the synaptic weights in the two hidden 
layers and output layer.  
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Fig. 1. The chromosome representation. 

The subsets 
iS  where 7:1i = are the same for both ozone 

and dioxide carbon predictions. 
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B. Fitness Function 

    To evaluate the goodness of an individual, the neural 
network is trained with a fixed number of alleles and then will 
be evaluated according to the obtained parameters. The 
parameters which seem better to describe the goodness and the 
effectiveness of the neural configuration that optimize the 
mean square error MSE at the end of training phase. This 
function is calculated by the following equation:   

( )
N

TT
xf

N

i ii∑ =
−

= 1

2ˆ
)(                                              (3) 

iT : Measured value, ̂iT : predicted value and N: the number of 

observations.  

C.  Genetics Operators 

1.  Selection: is the process of selecting a pair of individuals 
from the population. In our work, we used remainder selection 
that assigns parents deterministically from the integer part of 
each individual's scaled value and then uses roulette selection 
on the remaining fractional part [13]. 

2. Crossover: is the reproduction process, in which two 
chromosomes exchanges some of their corresponding genes 
[13]. The crossover used is heuristic crossover that returns a 
child that lies on the line containing the two parents, a small 
distance away from the parent with the better fitness value in 
the direction away from the parent with the worse fitness 
value. We can specify how far the child is from the better 
parent by the parameter Ratio. The default value of Ratio is 1 
or 2. If parent1 and parent2 are the parents, and parent1 has the 
better fitness value, the function returns the child is: 

( )212 parentparentRparentchild −×+=                    (4) 

3. Mutation: The mutation used is adapt feasible Mutation 
which randomly generates directions that are adaptive with 
respect to the last successful or unsuccessful generation. The 
feasible region is bounded by the constraints and inequality 
constraints. A step length is chosen along each direction so 
that linear constraints and bounds are satisfied. 

IV. SIMULATION RESULTS 

In order to test the effectiveness of the proposed method, 
we apply the optimized neural network for the air pollution 
time series. Monthly Ozone and dioxide carbon concentration 
over a period of 10 years ranging from 1965 to 1996 were 
available from Hipel and Mcleod [14]. The objective is to 
optimize the neural network structure, which could predict the 
ozone and dioxide concentration over the next time step of one 
month based on previous values of time series, as explained in 
the following sections. The data have been divided into two 
sets: the first contains a data of 25 years for training the 
network when the data of the last 7 years were reserved for 
testing the resulting predictor. 

  

A. Ozone Forecast 

In this section, the optimization process of the neural 
network is developed for forecasting the monthly ozone 
concentration. The data used is partitioned in two parts, in 
which 365 data are used for the training process and 36 are 
used for the test phase. The inputs of the neural predictor are 
the past values of ozone concentration and the output is the 
ozone concentration corresponding to the next month.  

Table 2 shows the genetic algorithms parameters used to 
build the neural predictor. In table 3, we present the 
parameters values of the resulting neuronal structure generated 
by the genetic algorithms optimization. Fig. 2 shows the mean 
square error (MSE) of the fitness function evolution during the 
genetic optimization. In Fig. 3 and Fig. 5, we can see how the 
neural network predicts rather well the monthly ozone 
concentration time series for the training and test phases. The 
optimized neural predictor can predict effectively this 
concentration. Figures 4 and 6, present the prediction errors 
for the two phases; training and test. The mean square error of 
the neural network training is depicted in Fig. 7.  As seems, the 
error decreases during the time. 

 
TABLE. II 

THE CONTROL PARAMETERS OF THE GA 
 
 

 

 

   

TABLE. III 
OPTIMUM STRUCTURE OF NP (OZONE FORECAST)  

 

 

 

 

 

 

 

No of generation 50 

Size of population 50 
Size of chromosome 17 
Probability of crossover 1 
Probability of Mutation 0.1 

No of hidden layers 1 

learning coefficient 0.34112 

Momentum coefficient 0.53289 
the presence/ absence of t he bias Presence (1) 
Number of the input 20 
Lag time 1 
Number of neurons in the hidden layer 1 8 

Number of neurons in the hidden layer 2 1 
the activation function in the hidden layer1 Pure linear 3 
the activation function in the hidden layer2 hyperbolic 2 
the activation function in the output layer Pure linear 3 

intout [0.16, 0.4559] 

int1 [0.1404, 0.771] 

Int2 [0.1572, 0.7688] 
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Fig. 2. Evolution of fitness function (ozone forecast). 
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Fig. 3. Forecasted and measured ozone concentration (training stage) 
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Fig. 4. Ozone prediction error (training stage) 
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Fig. 5. Forecasted and measured ozone concentration (test stage) 
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Fig. 6. Ozone prediction error (test training stage) 

 

Fig. 7. MSE for the training neural network algorithms (Ozone Forecast) 

B. Dioxide Forecasts 

In this section, we present the Monthly dioxide prediction. 
The data used is partitioned in two parts: 300 data are used 
for the training and 84 for the test phase. The parameters of 
genetic algorithms are the same used in the previous section 
for ozone forecast. The optimal parameters for obtaining the 
minimum prediction error after using the genetic algorithms 
optimization are shown in table 4. 

 
TABLE. IV 

OPTIMUM STRUCTURE OF NP (DIOXIDE FORECAST) 

 
 

 

No of hidden layers 2 

learning coefficient 0.8594 

Momentum coefficient 0.3911 
the presence/ absence of t he bias Presence (1) 
Number of the input 24 
Lag time 4 

Number of neurons in the hidden layer 1 10 

Number of neurons in the hidden layer 2 1 
the activation function in the hidden layer1 Pure linear 3 
the activation function in the hidden layer2 Pure linear 3 

the activation function in the output layer Pure linear 3 

intout [0.2781, 0.4554] 

int1 [0.5467, 0.98] 

Int2 [0.4264, 0.82] 
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Fig. 8. Evolution of the fitness function (dioxide forecast) 
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Fig. 9. Forecasted and measured dioxide concentration (training stage) 
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Fig. 10. Prediction error (training stage) 

 

Fig. 8 shows the evolution of the fitness function during the 
optimization phase using the genetic algorithm. In Fig. 9 and 
Fig. 11, we can see also as monthly dioxide concentration 
forecast how the neural network can predict sufficiently the 
dioxide concentration time series for the training and test 
phases. It is able to predict the dioxide concentration with a 
minimum error. Figures 10 and 12 show the prediction error 
for the training and test phases. In Fig. 13, the MSE for the 
Gradient descent algorithm is decreases during the time 
indicating the goodness of the training process. 
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Fig. 11. Forecasted and measured dioxide concentration (test stage) 
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Fig. 12. Prediction error (test phase) 

 

 Fig. 13. MSE for the training neural network (dioxide forecast) 

C. Comparison study  

In order to compare the performances of the proposed 
method with the existing methods for forecasting the air 
pollution, we use the following criteria's as parameters of 
comparison: the mean square error (MSE), the mean bias error 
(MBE) and the mean absolute (MAE); where: 

( )

( )∑

∑

−

−
=

i
ii

i
ii

ay

ay
MSE 2

2

                                                        (5) 

 ( )∑
=

−=
N

i
ii MeasuredForecasted

N
MBE

1

1                        (6)   
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∑
=

−=
N

i
ii MeasuredForecasted

N
MAE

1

1                     (7) 

Table 5 shows the comparison results of the prediction 
performances between our method and other existing methods. 
The data in last rows in table 5 are taken from [8][9][10]. As 
depicted, the proposed optimization algorithm presents good 
results for air pollution prediction. These parameters of error 
prediction (MSE, MBE, MAE) are smaller using our method 
than the others works. We argue that our proposed design 
technique can produce the smallest amount of performance as 
we augment the number of the training data and choose a best 
initial population. 

TABLE. V 
COMPARISON RESULTS WITH OTHER METHODS 

Method MSE MAE MBE 

Proposed method ozone 
forecast (Training phase) 

156.6772.10-  86.566.10-  103.177.10--  

Proposed method ozone 
forecast (test phase) 

156.9057.10-  96.816.10-  94.30.10--  

Proposed method dioxide 
forecast(Training phase) 

189.3307.10-  92.66.10-  106.59.10-  

Proposed method dioxide 
forecast  (test phase) 

172.0916.10-  93.56.10-  93.003.10--  

Brunelli & Piazza [8] / 0.014424 / 

Yu & Wenfang [9] 

BPNN (test stage) 

5.52 4.2 0.01-  

Yu & Wenfang [9] 

SVM (test stage) 

18.01 13.38 0.09 

Biljana & Mile [10] / 0.001 / 

  

V. CONCLUSION 

In this paper we have shown how Genetic Algorithm can 
be used in a successful way of optimizing the neural network 
in order to deal with the problem of prediction of air pollution; 
predict the ozone and dioxide concentration. The objective of 
the optimization task is to find the optimum structure and 
parameters of the neural predictor that can provide the best 
prediction of the ozone and dioxide concentration time series 
for the next month. The obtained results show the efficiency of 
the proposed method and the capacity of the designed 
predictor to achieve the desired task with a minimum error 
when it is compared with other models. The combination of 
the two techniques (neural and genetic) constitutes an effective 
methodology to exploit the power and the flexibility of each 
approach. The resulting neural network is an intelligent system 
automating by an optimization phase for the prediction task.   
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