
Exact Motion Planning with Rotations:
the Case of a Rotating Polyhedron

Przemysław Dobrowolski

Abstract—Let R be a rotating, not translating, generic
polyhedron in a polyhedral scene. In this paper, we consider
a problem of finding an exact continuous path between two
rotations of R. In a scene of complexity n with a rotating
polyhedron of complexity m, a near-optimal O(n3m3log(nm))
algorithm is proposed. The algorithm is capable of constructing
a complete graph describing the geometry of a configuration
space. All generated features are mathematically exact. These
include an exact parametrization of edges and an exact vertex
locations. This is a first implementation of an algorithm solving
an exact motion planning problem involving rotations. This
result can be viewed as a generalization of a some existing
algorithms of this kind. Among others, there is a related work
concerning a simpler rigid objects: a line segment and cigar-like
object in R3 and a general rigid body movement on a plane.

Index Terms—motion planning, exact algorithm, space of
rotations, rotating polyhedron

I. INTRODUCTION

MOTION planning and its combinatorial version, is
one of the standard problems in robotics. The first

few algorithms for solving this problem appeared in the
80s. Since then, more and more general algorithms have
been implemented. The completeness of the result is their
irrefutable feature. In contrast to all approximate motion
planning algorithms, the combinatorial algorithms always
give a correct answer - even if, a correct answer is that
no motion path exist. For a survey on motion planning
algorithms, including combinatorial ones, the reader can refer
[1] or [2]. In this paper author presents a research on a
insufficiently investigated cases of determining a free space
of motion planning problem, where 3-dimensional rotations
are involved. The simplest case is a motion planning in a
purely rotational space SO(3). We consider that scenario.
A near-optimal algorithm was developed. Given an arbitrary
rotating polyhedron in a polyhedral scene, it determines the
exact configuration space of the rotating polyhedron. Having
whole configuration space preprocessed, it is possible to
execute motion planning queries for arbitrary begin and end
rotations. The new algorithm is expected to be useful in some
areas. Firstly, it increases the number of different topologies
in which we can do exact motion planning. Secondly, it can
be used to create a hybrid motion planning algorithms of
new class. Hybrid algorithms, mix different motion planning
algorithms in order to achieve better practical performance
and output quality. There exist hybrid algorithms like [3],
[4], [5], [6] or [7], but none of them use exact description
of rotational part. All referred hybrid algorithms use some
kind of rotational space approximation, like slicing in [7]
or ACD tree in [4], which is only resolution-complete. In

Manuscript received March 4, 2012; revised March 30, 2012.
P. Dobrowolski is with the Faculty of Mathematics and Informa-

tion Science, Warsaw University of Technology, Warsaw, Poland, e-mail:
dobrowolskip@mini.pw.edu.pl

[5] different PRM methods are mixed, while in [6] authors
combine a PRM planner and a ACD tree together. The
algorithm, proposed in [3] differers from all above. It is based
on a Voronoi roadmap and utilizes a concept of a bridge.
Author’s research on complete motion planning algorithms
showed that it is possible to create a rigid body planner in
R3, assuming that there exist an method of creating an exact
description of SO(3) configuration space. There exist a few
exact motion planners with rotations. In case of a planar
movements, these include: needle movement [8], convex
polygon movement [9] and arbitrary polygon movement [10].
In 3-space an algorithm for planning movement of a needle
and a cigar-like object was proposed by Koltun [11].

II. THREE DIMENSIONAL SPACE OF ROTATIONS

The space of rotations SO(3) of a three dimensional Carte-
sian space is three dimensional, but it is not homeomorphic
to R3. In fact, it is homeomorphic to a 3-sphere where each
pair of antipodal points are identified. Due to non-Cartesian
nature of the space of rotations, algorithms are usually more
involved that those operating in a Cartesian space.

A. SO(3) configuration space

During the research, a new result was obtained - a com-
plete description of the configuration space of rotations of
a polyhedron in a polyhedral scene. We now introduce,
definitions that are used in the new algorithm.

In case of the SO(3), a configuration (placement, orien-
tation) is simply a rotation. Configuration space is defined
as the set of all configurations. By convention, we mark it
with C. A subset of C that cause the rotating polyhedron to
collide with any of the obstacles, is called a forbidden subset
of rotations. A complementary subset of rotations is called
an allowed (or free)subset of rotations.

A configuration in a configuration space is represented
by a spinor s ∈ Spin(3). A spinor (or a rotor) rotation
representation is quite new in computational geometry, but in
mechanics it has already been used for few decades. A spinor
is an element of a geometric algebra. It has already been
proven practically that the geometric algebra can be quite
useful [12]. This is because of its generality and great insight
in all operations. For an introduction into the geometric
algebra one can refer to [13] or [12]. A spinor is a number of
the form: s = s0 + s12e12 + s23e23 + s31e31. The numbers
s0, s12, s23, s31 ∈ R are called coefficients and satisfy the
identity:

s20 + s212 + s223 + s231 = 1

The three base elements: e12, e23, e31 satisfy a number of
identities, similar to quaternion algebra:

e12e12 = e23e23 = e31e31 = −1

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



e12e23 = −e31, e23e31 = −e12, e31e12 = −e23

e12 = −e21, e23 = −e32, e31 = −e13

e12e23e31 = 1

Basically, it can be assumed that spinors are closely related
to unit quaternions via a simple isomorphism:

i = −e23, j = −e31, k = −e12

In geometric algebra, it is a Clifford multiplication that
rotates a vector. Let s be a spinor, and v = vxe1+vye2+vze3
vector being rotated. The explicit rotation formula is:

Rs(v) =

= s−1vs

= (s0 − s12e12 − s23e23 − s31e31)

(vxe1 + vye2 + vze3)

(s0 + s12e12 + s23e23 + s31e31)

= ((s0s0 − s12s12 + s23s23 − s31s31)vx +

2(vy(s0s12 + s23s31) + vz(s12s23 − s0s31)))e1 +

((s0s0 − s12s12 − s23s23 + s31s31)vy +

2(vx(s23s31 − s0s12) + vz(s12s31 + s0s23)))e2 +

((s0s0 + s12s12 − s23s23 − s31s31)vz +

2(vx(s12s23 + s0s31) + vy(s12s31 − s0s23)))e3

With a spinor representation one gets a common toolbox
for handling rotations on a plane and in the space. This is
because spinors are defined for an arbitrary dimension and
obey the same transformation rules.

Our new algorithm is an exact algorithm. In particular, it
means that all results are mathematically correct. To achieve
this, we use arbitrary precision rational numbers from GMP
[14] library. The required interface is provided by CGAL’s
[15] arithmetic module.

III. THE NEW SO(3) CONFIGURATION SPACE BUILDING
ALGORITHM

The algorithm is presented in pseudo-code 1.

Algorithm 1 Compute graph of SO(3) configuration space
Require: R - rotating polyhedron, O - polyhedral obstacles

P ← TriTriPredicateListFromScene(R,O)
Q← SpinQuadricListFromPredicateList(P )
Q← RemoveDuplicateSpinQuadrics(Q)
QSIC ← ∅
for pair(q1, q2) ∈ Q do
QSIC ← IntersectSpinQuadrics(q1, q2)

end for
QSIP ← ∅
for pair(q, qsic) ∈ (Q,QSIC) do
QSIP ← IntersectSpinQuadricSpinQSIC(q, qsic)

end for
G← ComposeGraph(QSIC,QSIP )

Each step will be discussed separately in the following
sections.

Fig. 1. A predicate of type H

A. Collision predicates and spin-quadrics

A collision predicate or shortly a predicate can be inter-
preted as a formula which yields different values for collision
and no-collision arguments. A predicate induce an oriented
surface in a configuration space. Configurations that cause a
collision, are on one side of the surface. On the other side,
there are configurations that do not cause a collision. The
surface is a set of configurations that ”touch” an obstacle,
but not penetrate it. Combinatorial method involves consid-
eration of a set of predicates, which are created from a scene.
One of the first to use a term collision predicate was Canny
[16]. A concept of a predicate is also known under different
names, such as a ”contact” in [10] or a ”basic contact”, as
in [17].

The following two basic predicates definitions are intro-
duced:

Definition 1 (A half-space predicate H): Assume that U
is a normal vector and d is a plane distance of a half-space
H. Let V be a non-zero vector. The formula:

Hs(H,V ) = Hs((U, d), V ) = U ·Rs(V ) + d

is called a half-space predicate.
The above formula evaluates a positive or negative value

depending on whether the rotated vector v has it end on
positive or negative side of half-plane. We assume that v’s
begin lies at 0. A schematic view of H predicate is shown
in figure 1.

Definition 2 (A screw predicate S): Assume that K and L
are ends of a stationary segment and A and B are ends of a
rotating segment. The formula:

Ss(K,L,A,B) =

(K × L) ·Rs(A−B) + (K − L) ·Rs(A×B)

is called a screw predicate.
The above formula evaluates a positive or negative value

depending on whether rotating vector is oriented clockwise
or counter-clockwise in respect to the stationary vector. A
schematic view of S predicate is shown in figure 2.

It can be shown that H and S are both special cases of
a new predicate G. In result, only a G predicate needs to be
considered.

Definition 3 (A general predicate G): Assume that K and
L are ends of a stationary segment and A and B are ends
of a rotating segment and c is a scalar. The formula:

Gs(K,L,A,B, c) =

(K × L) ·Rs(A−B) + (K − L) ·Rs(A×B) + c

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



Fig. 2. A predicate of type S

is called a general predicate.
The equivalence of H to G and S to G predicates is due

to the following two remarks:
Remark 1 (H to G predicate correspondence): A predi-

cate H(U, d, V ) is a special case of a predicate
G(K,L,A,B, c) with the following parameters:

K = V ×R

L = V × (V ×R)

A = U

B = −U
c = 2d‖V ×R‖2

where R is an arbitrary non-zero vector that is not parallel
to V .

During our research we tried different methods for choos-
ing a R vector. We selected few practical ones.

Remark 2 (S to G predicate correspondence):
Predicate S(K,L,A,B) is a special case of a predicate
G(K,L,A,B, c) with the following setting:

c = 0

A generic G predicate sets an oriented quadric (a quadratic
surface) in configuration space. Moreover, the quadric is a
quadratic form in spin-space, thus it will be henceforth called
spin-quadric. In case of Spin(3) configuration space we have:

Theorem 1: A spin-quadric for a given general predicate
G is a quadratic form in Spin(3) and can be expressed by:

Gs = sTMGs

where s = [s12, s23, s31, s0]T and MG’s elements are linear
expressions of G’s parameters K, L, A, B and c.

We assume that collision algorithm should detect a col-
lision of polyhedra borders. Without any loss, it can be
assumed that all faces are triangles. Two polyhedra collide
if and only if their borders intersect. This is realized by
checking a collision between all pairs of triangles: one from
the rotating polyhedron and other one from scene obstacles.
By using some ideas from [18], we defined a predicate
detecting a triangle-triangle collision.

Theorem 2 (A triangle-triangle predicate T T ): A
generic collision test between a stationary triangle KLM
and a rotating triangle ABC can be expressed with 9
predicates of type S only. The characteristic matrix MT T
is:

MT T =

S(K,L,A,B) S(K,L,B,C) S(K,L,C,A)
S(L,M,A,B) S(L,M,B,C) S(L,M,C,A)
S(M,K,A,B) S(M,K,B,C) S(M,K,C,A)



The predicate evaluates collision if and only if there exist
a row or a column in MT T that all it’s elements are of
the same sign. Triangle-triangle predicate is denoted by
T T (K,L,M,A,B,C).

Assume that T T i
s, i = 1...nm are T T predicates of all

triangle pairs for a given scene. The following formula is a
predicate sentence for a scene:

Sentences :=
⋃
i

T T i
s

As a result of the this step, a list of quadrics is given. These
quadrics introduce an arrangement in Spin(3). A predicate
sentence, created from the scene, is also stored in order to
be used later.

B. Spin-quadric intersection as graph edges

Computing an intersection of two spin-quadrics is not an
easy task. It is not easy, even in a case of intersection of
two quadratic surfaces in R3. There exist algorithms that
partially solve this problem. In particular, [19], [20] and [21]
are known methods. Only recently, first complete implemen-
tations of quadric intersection in R3 were developed: [22] and
[23]. The case of an intersection, where the resulting curve
is not singular, was solved first. A standard procedure is to
follow a method proposed by Levin [24]. The problematic
cases are those, involving singular intersections. Much work
is needed to handle all specific cases, one by one. Currently,
two implementations are available: QI library [23] (available
online [25]) and Berberich’s implementation [22]. The first
of these, return parametrization of resulting intersections.
The latter does not. Both implementations present a similar
performance. Although the dimensionality of Spin(3) and R3

is the same, both spaces posses a very different topology. One
of the main results of this paper is to show that, a quadric
intersection library for R3 can also be used to perform
intersections in Spin(3).

Theorem 3: LetA be an algorithm for quadric intersection
in P3 (projective space). By using A it is possible to easily
construct an algorithm B which intersects a pair of spin-
quadrics in Spin(3). The asymptotic complexity of B is the
same as the asymptotic complexity of A.

The above theorem strictly depends on a fact, that library
internally uses homogeneous coordinates, and that the result-
ing intersection curve is near-optimally parametrized.

In spin configuration space, quadric intersection generates
a curve which will be called as a spin-QSIC (spin quadric
surface intersection curve) in contrast to QSIC (quadric
surface intersection curve), as used in literature [26] and [27].

In the figure 3 we show an example projection of spin-
QSIC curves onto R3. The projection is realized by dropping
one of four spinor coefficients.

C. Spin-quadric and spin-QSIC intersection as a graph
vertex

An important part of new algorithm is vertex construction.
The number of possible vertices is O(n3), thus an efficient
method for vertex construction is valuable. According to an
idea from [28] - we do not intersect pairs of 1-dimensional
edges, but instead 1-dimensional edges with 2-dimensional
quadrics. We prove, that after some transformations, this

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



Fig. 3. An example set of spin-QSICs in Spin(3)

TABLE I
MOTION PLANNING AND HEMMER ALGORITHM COMPARISION

Property Motion planning in SO(3) Hemmer
Topology Spin(3) R3

Dimension 4 3
Constraints 1 0

Objects quadrics in Spin(3) quadrics in R3

Running time O(n3log(n)) O(n3log(n))

method can be also applied to the case of spin-QSIC and
spin-quadric intersections. As a result of intersection we
get at most 8 vertices, given by parameter values on a
parametrized spin-QSIC. Equations of degree at most 8,
have to be solved. The result cannot be obtained in generic
case, so the solutions are represented by non-overlapping
intervals with a single polynomial root within. Hemmer
used a classical real root isolation algorithm that subdivides
consecutive intervals in search of zeroes (Vincent’s method).
In our implementation a new recently implemented algorithm
is used. It is an Akritas’ algorithm, which implementation
comes from MATHEMAGIX [29] library (the ”realroot”
module). Tests show that the latter implementation is about
over a dozen times faster.

D. Graph optimization and final setup

As a result of construction of graph edges and vertices,
some of these features can be doubled. These redundant
features must be removed. This is achieved in the similar
manner as described in [28]. Hemmer’s method utilized a
floating interval arithmetic to avoid costly computations on
exact numbers (provided by MPFI library [30]). We follow
that method in our new algorithm. One of the improvements
is our new method of fast determination of polynomial sign
for a given point.

E. New algorithm in contrast to Hemmer’s algorithm

Hemmer [28] proposed a complete algorithm for comput-
ing an intersection graph of quadrics in R3. The algorithm
also uses QI library for quadric intersection. There are few
similarities and differences between these two algorithms,
presented in table I. Note: n is a number of quadrics in an
arrangement.

Some procedures, described in Hemmer algorithm exist
in the new algorithm. Some of these were reimplemented

with new algorithm to improve overall performance. These
include: an improved algorithm for polynomial root isolation
and a method of determining a polynomial sign at given
point.

F. Construction of a motion path

Given a preprocessed configuration space, it is possible to
construct any number of motion paths. There are many ways
to choose a motion path. A common solution is to choose any
path, which is later ”optimized”. In out algorithm we choose
a path along the edges of configuration space graph. This
approach has an advantage that there is a parametrization
given for each edge in the graph, which can also be a
parametrization of the motion. Typically, a motion path can
be optimized by shortening the path in the domain of free
configuration space.

G. Adaptive computations in a space of rotations

One of the disadvantages of complete algorithms is a fact
that many constructions could be avoided. The problem is
even more serious because the complexity of generated con-
figuration space is high. The proposed new algorithm relies
on a adaptive computation method. The method is based
on a generation of a random and approximate description
of configuration space geometry. In most of cases such a
description allows one to not compute the exact geometry of
the whole configuration space.

An arrangement of quadrics in SO(3) induces a set of
cells in that space. Each cell contains only points that are
on the same side of all oriented quadrics. A sequence of
signs is called a cell coordinate. The length of a coordinate
is usually denoted by l and it is equal to the number of
quadrics. Both start and end configuration are contained in
some cells (possibly different). If cells are considered as a
vertices of a graph, their neighbourhood can be viewed as
edges of the graph. Such graph will be called a cell graph.
An edge path in a cell graph is an approximate solution to a
motion planning problem. A complete algorithm does utilize
this information and constructs only the geometry that is
related to all cells along the solution path in a cell graph. The
difference between the approximate cell graph and complete
cell graph is that in the first case the graph is only used as a
localization method, not a target structure of the algorithm.
The geometric part is a separate part of the whole algorithm,
which in fact can work separately. It is also exact, while a
cell graph is constructed in floating point arthimetic. Because
of that, we would like that a cell graph is constructed quickly
and to be a good quality. A cell graph of a good quality is
a graph which is has the same topological properties as the
whole configuration space. The number of graph components
should be as close as the number of topological components
in the complete configuration space.

Different methods were tested to choose the best quality
cell graph generator. A naive solution is to choose samples
randomly. One way to do it, is Shoemake’s method described
in [31]. Unfortunately, a cell arrangement in SO(3) does not
behave well. Usually, there are many thin cells which are
difficult to hit with a sample point. Such a situation can
result in many cells with undetected neighbourhood.

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



Fig. 4. An example intersection of a circle of rotations with spin-quadrics

TABLE II
RUNNING TIMES OF CELL GRAPH CONSTRUCTION

no. samples no. different cells time
5000 2554 0.08 s
10000 5022 0.14 s
50000 24882 0.7 s
100000 48849 1.8 s
200000 93676 3.9 s
500000 218127 10.2 s

We introduced a new method. The idea is to pick a
random 1-dimensional set of rotations (which forms a circle
of rotations) and intersect it with all the quadrics. As a result
we get a list of intersections given by an angle parameter on
the intersecting circle. We sort the list and choose samples to
be the middle points between consecutive parameter values.
By using this method, no cells can be missed along the
intersecting circle. An example is presented on 4. Intersecting
circle is distinguished with a dotted line. The two black
boxes are samples which would be chosen by our method.
The method has many advantages. Firstly, it is very efficient
- most of generated samples hit unique cells. Secondly, it
guarantees that the generated set of cells is always connected.
In fact, the method generates a complete loop in cell graph.

It is not a trivial task to find out which cell pairs are
neighbours. The number of cells in a typical situation is about
few millions, while the coordinate length is few hundred bits.
With some minor assumptions, it can be shown that two cells
are neighbours if and only if their coordinates differ in only
one bit at the same position. A naive Θ(n2l) algorithm to
compute cell neighbours is unacceptable. It is only usable
for very small scenes.

A new algorithm for computing cell pairs was developed.
It is optimal in asymptotic complexity, which is Θ(nl).
The new algorithm allows one to achieve good quality cell
graphs in acceptable times. A typical arrangement contains
few hundreds of quadrics. Example running times for 175
quadrics are presented in table II. It can be observed that
the running times are linear to the number of samples. For
a given n samples, the algorithm is able to locate about
35− 50% of n different cells.

The implementation was tested on a Linux 3.2.0-1-amd64
SMP on a 2.40 GHz processor with 4 GB RAM.

H. Implementation

All presented results were implemented in author’s library
libcs. The library is designed in a generic fashion, so the most
of underlying algorithms are universal. The bottom layer of
the library is CGAL [15] on top of which a spin kernel is
introduced. Visualization application is also available, which
can display configuration spaces with their contents.

Fig. 5. An example projection of Spin(3) configuration space contents

I. Polyhedra with interior included

The presented algorithm detects only collisions based on
border collisions. If required, it is possible to extend the
algorithm to handle interior collisions as well. This can be
achieved by adding a number of predicates of type H to the
predicate sentence. The idea of detecting a collision of two
filled polyhedra comes from [17].

J. Localization

It is an open problem how to localize geometric computa-
tions in non-Cartesian spaces. Especially interesting is how
to avoid computation of the whole configuration space at
once, and only compute its features on demand or incremen-
tally. This subject and further generalizations are subject for
author’s future research.

IV. CONCLUSION AND FUTURE WORK

We have shown that, by using some latest algorithms
related to 3D arrangement of quadrics, we are able to
implement an exact motion algorithm involving 3D rotations.
Such an algorithm allows one to construct hybrid algorithms
of a new class. It can also be a part of more complex
algorithm for a motion planning with more than three degrees
of freedom. It must be noted, that it is possible to extend the
structure of the configuration space by introducing cells in
the arrangement. There has already been some work done
for arrangements of quadrics in R3. Examples include [32]
and [33]. An interesting and important problem, still under
active research, is localization in the space of 3D rotations.
These tasks are subject of author’s future work.

REFERENCES

[1] S. LaValle, Planning algorithms. Cambridge Univ Pr, 2006.
[2] J.-C. Latombe, Robot motion planning. Springer Verlag, 1990.
[3] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A voronoi-based

hybrid motion planner,” in Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on, vol. 1.
IEEE, 2001, pp. 55–60.

[4] S. Hirsch and D. Halperin, “Hybrid motion planning: Coordinating two
discs moving among polygonal obstacles in the plane,” Algorithmic
Foundations of Robotics V, pp. 239–256, 2004.

[5] D. Hsu, G. Sánchez-Ante, and Z. Sun, “Hybrid prm sampling with
a cost-sensitive adaptive strategy,” in Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference
on. IEEE, 2005, pp. 3874–3880.

[6] L. Zhang, Y. Kim, and D. Manocha, “A hybrid approach for complete
motion planning,” in Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on. IEEE, 2007, pp. 7–14.

[7] J. Lien, “Hybrid motion planning using minkowski sums,” Proceedings
of Robotics: Science and Systems IV, 2008.

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



[8] G. Vegter, “The visibility diagram: a data structure for visibility
problems and motion planning,” SWAT 90, pp. 97–110, 1990.

[9] P. Agarwal, B. Aronov, and M. Sharir, “Motion planning for a convex
polygon in a polygonal environment,” Discrete & Computational
Geometry, vol. 22, no. 2, pp. 201–221, 1999.

[10] F. Avnaim, J. Boissonnat, and B. Faverjon, “A practical exact motion
planning algorithm for polygonal objects amidst polygonal obstacles,”
in Robotics and Automation, 1988. Proceedings., 1988 IEEE Interna-
tional Conference on. IEEE, 1988, pp. 1656–1661.

[11] V. Koltun, “Pianos are not flat: Rigid motion planning in three
dimensions,” in Proceedings of the sixteenth annual ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2005, pp. 505–514.

[12] L. Dorst and D. Fontijne, Geometric algebra for computer science: an
object-oriented approach to geometry. Morgan Kaufmann, 2007.

[13] P. Lounesto, Clifford algebras and spinors. Cambridge Univ Pr, 2001,
vol. 286.

[14] GMP - The GNU Multiple Precision Arithmetic Library. [Online].
Available: http://gmplib.org

[15] CGAL - Computational Geometry Algorithms Library. [Online].
Available: http://www.cgal.org

[16] J. Canny, The complexity of robot motion planning. The MIT Press,
1988.

[17] F. Thomas and C. Torras, “Interference detection between non-convex
polyhedra revisited with a practical aim,” in Robotics and Automation,
1994. Proceedings., 1994 IEEE International Conference on. IEEE,
1994, pp. 587–594.

[18] O. Devillers, P. Guigue et al., “Faster triangle-triangle intersection
tests,” 2002.

[19] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean, “A new algorithm
for the robust intersection of two general quadrics,” in Proc. 19th Annu.
ACM Sympos. Comput. Geom, 2003, pp. 246–255.

[20] Z. Xu, X. Wang, X. Chen, and J. Sun, “A robust algorithm for
finding the real intersections of three quadric surfaces,” Computer
aided geometric design, vol. 22, no. 6, pp. 515–530, 2005.

[21] B. Mourrain, J. Técourt, and M. Teillaud, “On the computation of
an arrangement of quadrics in 3d,” Computational Geometry, vol. 30,
no. 2, pp. 145–164, 2005.

[22] E. Berberich, M. Hemmer, L. Kettner, E. Schömer, and N. Wolpert,
“An exact, complete and efficient implementation for computing planar
maps of quadric intersection curves,” in Proceedings of the twenty-first
annual symposium on Computational geometry. ACM, 2005, pp. 99–
106.

[23] S. Lazard, L. Peñaranda, and S. Petitjean, “Intersecting quadrics: An
efficient and exact implementation,” Computational Geometry, vol. 35,
no. 1-2, pp. 74–99, 2006.

[24] J. Levin, “A parametric algorithm for drawing pictures of
solid objects composed of quadric surfaces.” Commun. ACM,
vol. 19, no. 10, pp. 555–563, 1976. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/cacm/cacm19.html#Levin76

[25] QI - Quadric intersection. [Online]. Available: http://vegas.loria.fr/qi
[26] C. Tu, W. Wang, and J. Wang, “Classifying the nonsingular intersection

curve of two quadric surfaces,” in Geometric Modeling and Processing,
2002. Proceedings. IEEE, 2002, pp. 23–32.

[27] W. Wang, B. Joe, and R. Goldman, “Computing quadric surface
intersections based on an analysis of plane cubic curves,” Graphical
Models, vol. 64, no. 6, pp. 335–367, 2002.

[28] M. Hemmer, L. Dupont, S. Petitjean, and E. Schömer, “A
complete, exact and efficient implementation for computing the
edge-adjacency graph of an arrangement of quadrics.” J. Symb.
Comput., vol. 46, no. 4, pp. 467–494, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jsc/jsc46.html#HemmerDPS11

[29] Mathemagix - A free computer algebra system. [Online]. Available:
http://mathemagix.org

[30] MPFI - Multiple Precision Floating-point Interval library. [Online].
Available: http://mpfi.gforge.inria.fr

[31] K. Shoemake, “Uniform random rotations,” in Graphics Gems III.
Academic Press Professional, Inc., 1992, pp. 124–132.

[32] N. Geismann, M. Hemmer, and E. Schömer, “Computing a 3-
dimensional cell in an arrangement of quadrics: Exactly and actually!”
in Proceedings of the seventeenth annual symposium on Computational
geometry. ACM, 2001, pp. 264–273.

[33] E. Schömer and N. Wolpert, “An exact and efficient approach
for computing a cell in an arrangement of quadrics.” Comput.
Geom., vol. 33, no. 1-2, pp. 65–97, 2006. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/comgeo/comgeo33.html#SchomerW06

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012




