
DVO:Model for Make a Handler for a Tiled
Display

Laura Ramı́rez, Member, CINVESTAV, Sergio Chapa, Senior Member, CINVESTAV,
and Amilcar Meneses, Senior Member, CINVESTAV

Abstract—The DVO is a model, for the success of developing
software for a tiled display, software development model plays a
crucial role in order to complete the task of developing software,
distribution of display and to get high quality visualization
software. We can derive from this model object-oriented a
middleware to provide flexible and transparent management for
the tiled display. The DVO allows object visual based application
to utilize massively scalable visualization clusters such as high-
resolution tiled display environments.

Index Terms—tiled display, distributed object, visual object,
middleware.

I. INTRODUCTION

IN order to get a success graphic representation, the sci-
entific visualization has been researched from a different

perspective. These are some:
• Goddard space flight center, Scientific Visualization

Studio
• The Advanced Computing Center for the Arts and

Design, Scientific Visualization
• NC State University College of Education Graphic

Communications Program NC State Department of Pub-
lic Instruction, Scientific Visualization

• ITL MCSD Scientific Applications and Visualization
Group, Scientific Visualization

• Institute for Astro and Particle Physics, University
of Innsbruck, Technikerstrasse, Austria., Visualization
needs and techniques for astrophysical simulations

• Consorzio id 40 Universitá italiane, Centro di supercal-
colo

Numerical simulations have evolved continuously towards
being an important field in astrophysics, equivalent to theory
and observation. Due to the enormous developments in
computer sciences, both hardware- and software-architecture,
state-of-the-art simulations produce huge amounts of raw
data with increasing complexity. Scientific visualization of
data can provide understanding of the phenomenon or data
that are beginning to be studied. Once the computer sim-
ulation and analysis has been performed, the result should
be interpreted by the researcher. Find the numerical results
provides an overview, but exaggerated the amount they can
make this task impractical. An alternative is to convert the
numbers into images and animations, as for humans is easier
to understand information that way.

For example, a researcher who used finite difference
methods on a supercomputer for the Thermal Convection

Manuscript received December 30, 2010; revised January 22, 2011. This
work was supported in part by the Department of Computer Science,
Cinvestav.

Laura Ramı́rez is with the Department of Computer Science, Cinvestav,
DF, 07360 Mex. e-mail: (lramirez@computacion.cs.cinvestav.mx).

in the Earth’s tablecloth, uses a computer graphic on a
workstation, to display the result of temperatures consistently
in the millions or billions of values. By an application on a
workstation, each data can be represented as a grid of pixels,
where each pixel can represent a specific color temperature.

Since it is clear the importance of scientific visualization
in the development of various areas of research, it is worth
noting that one of the best scientific visualization tools with
which account is the tiled display. Below are appointed some
existing applications on tiled displays.

The tiled display is a technology that begins to expand
its use. This is the reason that we need search how can do
better its handler. There exists many research that propose
solutions, using a visualization cluster. In this case we pro-
pose a new model that help in the handler of the visualization
cluster, using the concept of a distributed object, and adding
the visual object concept. For this we need make a state
diagram, and a characterization of the handler system, for
searching a basic structure of the manipulation.

The paper introduces a model of distributed object visual,
for implementing a cluster graphics library for large-scale,
through a middleware aimed at providing a simple and
intuitive layer to develop visual applications over a tiled
display.

DVO provides built-in system characteristics and features
such as:

• An easy-to-use grid configuration tool
• Scalability
• Event handling
• Flexible coordinate system
• Integrated display to screen
• Remote interaction
• Distribution transparency

A. Background and Related Work
The design and development of software solution for

clusters-based, multiscreen rendering such as described in [4]
[6] [5] have not yet produced a standard solution. Despite all
of these efforts, the most common approach to visualizing
OpenGL content on multiple displays is to use Distributed
Multihead X (DMX) [2] or Chromium (the successor of
WireGL [3]). Users often rely on these two approaches
because they offer an easy way to generate a visual on
a tiled display system. Only later, when high-performance
applications are to be executed and the performance deficit
becomes an issue, are other solutions explored.

Users often rely on these two approaches because they
offer an easy way to generate a visual on a tiled display
system. Only later, when high-performance applications are
to be executed and the performance deficit becomes an issue,
are other solutions explored.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

DMX operates on the assumption that a single front-end
X server will act as a proxy to a set of back-end X servers.
Rendering requests will be accepted by the front-end server,
broken down as needed and sent to the appropriate back-end
server(s) via X11 library calls for actual rendering.

This architecture requires that the front-end server man-
ages/ renders the visual content of all nodes in a visualization
grid. DMX is therefore limited to a small display array and
not scalable without performance penalties. DMX is also
unable to take advantage of the hardware acceleration on
the rendering nodes, which makes this solution impractical
for a high-performance rendering system.

Chromium is an implementation of OpenGL for parallel
and cluster rendering, it can take advantage of hardware
acceleration in the nodes. Chromiums main advantage is that
it can run unchanged OpenGL applications on tiled display
systems.

However, Chromium does come with limitations. It uses
a tile sorting process to determine which node in the cluster
needs to draw a particular part of the OpenGL content, re-
sulting in OpenGL command streams sent to each rendering
mode. Stream Processing Units (SPUs) on the rendering
nodes pass these commands directly to the local graphics
hardware. Fast and substantial visual content changes as
required in dynamic visual simulations can force Chromium
to exchange massive data sets through the network at run-
time, resulting in performance penalties and a non interactive
system response.

The Scalable Adaptive Graphics Environment (SAGE)[8]
operates on the assumption that any type of application will
send a pixel stream to the SAGE server, which in turn
manages the tiles and distributes the incoming pixels to the
correct portion of a tiled wall. This concept has the advantage
that any application can be displayed on tiled display systems
as long as application programmers can derive a pixel-stream
from their application and enough network bandwidth is
available.

SAGE takes exclusive control of the distributed frame
buffer. Thus, to display a high-resolution visual, another
application needs to be running on the same cluster, ren-
dering its content in an off-screen buffer, which then can be
read back and mapped to a SAGE client. Since read-back
operations are expensive, the achievable performance of this
approach is limited. The use of another visualization cluster
to generate the high-resolution context is not an alternative
because of the massive amount of data that would need to
be controlled and streamed.

Middleware approaches such as Chromium and SAGE
rely on high-bandwidth, low-latency, and ideally jitter- free
networks deliver data created by a render node, to a display
node that only requires very limited graphics capabilities.
The downside is that, although current networks can theo-
retically provide throughputs up to 10 Gbits/s, this level of
throughput can usually only be maintained when dedicated,
high-performance local net- works or high speed network
grids such as the OptIPuter [1] are combined with local in-
terconnects such as Myrinet (Myri-10G), Scalable Coherent
Interface (SCI), or Infiniband.

Unfortunately, when budgeting a cluster, the wide price
difference between high-performance and commodity inter-
connects favors in most cases a commodity interconnect

with reasonable performance such as Gigabit Ethernet. This
reduces the achievable performance with both Chromium and
SAGE dramatically. CGLX has an intuitive cluster config-
uration system, giving even novice users full control over
the display configuration. Hardware-accelerated rendering is
natively supported on different operating systems (Linux and
Mac OSX) in both homogeneous and heterogeneous cluster
configurations and is optimized for pixel throughput.

1) A Distributed Object Visual Prototypes: These are
some applications on the tiled display.

• Image viewing application based on the ImageMagick
toolkit. Loads most of the commonly used image for-
mats (jpg, png, gif, tiff...). Images are automatically
converted to DXT format for streaming. A DXT copy is
saved locally for later use. Use the show original option
to stream uncompressed data.

• VLC media player is a highly portable multimedia
player for various audio and video formats (MPEG-
1, MPEG-2, MPEG-4, DivX, mp3, ogg, ...) As well
as DVDs, VCDs, and various streaming protocols. It
can also be used as a server to stream in unicast or
multicast in IPv4 or IPv6 on a high-bandwidth network.
An output plugin for SAGE[8] was written to provide
video streaming. Audio is not streamed, just played
locally. Just add ’–vout sage’ option to use the plugin.

• MPlayer is a movie player which runs on many systems.
It plays most MPEG/VOB, AVI, Ogg/OGM, VIVO,
ASF/WMA/WMV, QT/MOV/MP4, RealMedia, Ma-
troska, NUT, NuppelVideo, FLI, YUV4MPEG, FILM,
RoQ, PVA files, supported by many native, XAnim, and
Win32 DLL codecs. You can watch VideoCD, SVCD,
DVD, 3ivx, DivX 3/4/5, WMV and even H.264 movies.
An output plugin for SAGE was written to provide video
streaming. Audio is not streamed, just played locally.
Just add the ’-vo sage’ option to use the plugin.

• MacOS X libsail based video streamer, provided by
Douglas Kosovic, University of Queensland, Australia.
Originally developed for the Blackmagic Intensity
HDMI capture card, but should work with any other
Quicktime Sequence Grabber video capture device.

• Software to stream high-definition video and audio,
using the SAGE environment. It streams 1080i HD
(1920x1080) using RGB16, RGB24, or YUV422 8bit
pixel formats. For the video, it requires 995Mbps at 30
frames per second, 830Mbps at 25fps, or 665Mbps at
20fps. There is NO data compression in this release.
Audio is streamed uncompressed, 16bit at 44.1Khz
stereo. We use a HDMI capture card from Blackmagic
(Intensity model) on Micorsoft Windows. A Windows
installer is provided in the SAGE distribution.

• JuxtaView is a cluster-based application for viewing
ultra-high-resolution images on scalable tiled displays.
Through SAGE, JuxtaView enables a user to interac-
tively roam across potentially terabytes of distributed,
spatially referenced image data sets, such as those
generated from electron microscopes, satellites, and
aerial photography. Using large amounts of bandwidth,
SAGE enables the domain scientist to bridge distributed
resources, including storage, rendering, and display
clusters.

• VRA provides a volume visualization solution that

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Fig. 1. Display images

allows scientists to render very large volumetric datasets
on scalable high-resolution displays. It uses a method-
ology that employs a multi-resolution octree, an image-
order data distribution method, a distributed shared-
memory data management system, a multi-level cache,
and hardware accelerated rendering techniques to pro-
duce a solution that is scalable in terms of input data
size and output resolution.

• UltraGrid from Laboratory of Advanced Networking
Technologies (ANTLab) is a software for real-time
transmissions of high-defintion video. It is a fork of the
original UltraGrid developed by Colin Perkins, Ladan
Gharai, et al.. Our work is supported by CESNET
research intent ”Optical Network of National Research
and Its New Applications” (MSM 6383917201) and
partially also by Masaryk University research intent
”Parallel and Distributed Systems” (MSM 0021622419).
A SAGE output module (using DXT compression) was
added by the CESNET group.

• Scalable Visualization Consumer (SVC) receives
MPEG2 datathrough IEEE1394, files on disk or net-
work interface anddecompresses it for streaming to
a tiled display using SAGE. Tobe shown on a tiled
display, MPEG2 data has to be decompressed, split
as sub-images and streamed to the appropriate display
nodes.The reason for decompression is that compressed
data cannot be split up easily for streaming to separate
nodes. We used this software foriGrid2005 demonstra-
tion to stream HD video captured by an IEEE1394 HD
Sony camera. It shows a 30fps frame rate and uses
650Mbps ofnetwork bandwidth[10].

We made 3 prototypes that includes the features to get a
generalization of theses applications.

• The first is Display image, shown an image over a tiled
display and open a new image like a presentation is a
very common particular application, as shown in Figure
1.

• The navigation image, lets the user, get a little part of
the big image, and it will move to the complete image,
as shown in Figure 2.

• An application that shown the use of this model is the
Multiformat display, we can show 4 types of visual
objects like video, static images, a model with Open
GL and a browser. The advantage of the model is that
we can move any object without to know what type is
it, as shown in Figure 3.

These are the biggest display that there tiles today.
• HiperSpace: 286, 720, 000 pixeles, Calit2 UC San

Diego
• Hyperwall-2 256,000,000 pixeles, NASA Ames

Fig. 2. Navigation image

Fig. 3. Multiformat display

• HyperWall: 204,800,000 pixeles, Calit2 UC Irvine
• Varrier: 124,800,000 pixeles, Calit2 UC San Diego
• LambdaVision: 105,600,000 pixeles, UIC Electronic

Viz Lab
• OzIPortal: 81,920,000 pixeles, University of Melbourne
The tiled display which is our laboratory has Cinveswall:

27,648, 000 pixels, Cinvestav, Mex.
2) Tileds Managers Display: Majority of the current tiled

display systems are driven by a cluster of computers. In
a typical tiled display architecture, a set of display nodes
(computers) drive individual tiles of the display[9].

HIPerSpace used for operating a middleware called
CGLX, and your OS is Rocks / Linux.

CGLX (Cross-Platform Cluster Graphic Library) is a
flexible, transparent OpenGL-based graphics framework for
distributed high performance visualization =systems in a
master-slave setup. The framework was developed to enable
OpenGL programs to be executed on visualization clus-
ters such as a high resolution tiled display system and to
maximize the achievable performance and resolution for
OpenGL-based applications on such systems. To overcome
performance and configuration related challenges in net-
worked display environments, CGLX launches and manages
instances of an application on all rendering nodes through a
light-weight thread-based network communication layer. A
GLUT-like (Open GL Utility Toolkit) interface is presented
to the user, which allows this framework to intercept and
interpret OpenGL calls and to provide a distributed large
scale OpenGL context on a tiled display.

CGLX provides distributed parallelized rendering of
OpenGL applications with all OpenGL extensions that are
supported through the graphics hardware[7]. The DVO model
takes the advantage of the a view of a window to show
the Open GL context and get to the distributed object the
advantage to the distribution large scale, and furthermore
allows the use of the other visualizations.

B. Characterization of a Instance System
A cluster with high end graphics is considered a single

giant graphics card, and a cluster with parallel file storage

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

is considered like a single giant disk drive, the challenge
is to build software and hardware architecture to realize the
high level model and measure the benefits over a traditional
cluster computing model. But in this case we want to get a
good performance in the display of visualizations.

Some applications need more computing power than a
only computer can provide. An alternative solution is connect
multiple processors together and coordinate their computa-
tional efforts. The results are parallel systems like a cluster, a
cluster consists of a collection of computers interconnected
in a web working for to do a same task. Now the cluster
management toolkit provides an alternative to using special-
ized. There exists a Toolkit called Rocks, Rocks makes a
complete cluster installation on nodes.

Has a collection of packages and their configuration de-
tails, allows end-users to add their own software. Viz Roll
is a Rocks appliance used to build tiled display visualization
clusters. Visualization clusters are built to create larger
displays (thousand by thousand of pixels)[11].

Taking the reference that the visualization cluster is a good
form of to do the handler of the tiled display, we can begin
to think, how we can get advantages of the a model, for use
the visualization cluster. We propose a model of distributed
visual object for make it. We can show the features that
this object has to have, but for to do it we have to make a
characterization of an instance system.

We have 13 process, 12 nodes and a server that has 8
states and needs 7 events.

• g0 State System start.
• geo State Expected object.
• gc State Consumer.
• gd State Display object.
• gr State Receive position.
• gb State Search object.
• gm State Change position.
• gec State Wait for new position
• gc State Consumer.
• e0 Event start
• e1 Event open
• e2 Event deploy
• e3 Event receive
• e4 Event wait
• e5 Event move
• e6 Event search

A standar application over a tiled display has a form that
we can model in a state diagram, first , we have to make a
structure the occurrence of events. Starting from the initial
system, we need an event for change to the next state and
expect an object, the next event lets the consumer get the
object, and display it.

The next state receive a new position when the objects are
moving, and the last state is a cycle for wait a new position.
The first event is start event, the next is open event, and
deploy event. When the object is displayed we can wait for
get other object, or move this object, as shown in Figure
4. This object open, deploy and move is a distributed visual
object, and is for this reason that we need an initial definition
for this.

1) A Definition of Visual Object : First, we need under-
stand what is a visual object, and how is its behavior, when
we want display an image into a screen, we encapsulates

Fig. 4. Model of application over a tiled display

the main features of this object and the use methods for to
make the deploy into the screen, in this case is important the
handler events that lets the deploy and the control for the
things that the image need, like a resize, a new position over
the screen.

Now if we want an object like a video, the object need
too be display into the screen, but also we need these tasks
as play, stop or pause the video, and for this reason we need
the events that allows the control for these tasks. In the case
of a model with OpenGL, the manager allows many tasks
as transformations, or begin an animation, and these are the
events that the visual object has to do.

A transform is a mathematical construct used to manip-
ulate coordinates in two-dimensional space. Transforms are
used extensively in graphics-based computing to simplify the
drawing process. Coordinate values are multiplied through
the transform’s mathematical matrix to obtain a modified
coordinate that reflects the transform’s properties.

We can apply the following effects to the current coordi-
nate system:

• Translation
• Scaling
• Rotation
We can combine the preceding effects in different combi-

nations to achieve interesting results. During drawing, we
can applies the effects to the content of draw, imparting
those characteristics on the shapes and images. Because all
coordinates are multiplied through a transform at some point
during rendering, the addition of these effects has little effect
on performance. In fact, manipulating your shapes using
transforms is often faster than manipulating your source data
directly.

Other case is shown in the prototype multidisplay format
when the web browser was enable, the features were so much
because this visual object has many components and requires
many features for the display.

When we understand the visual object, we can make a
characterization for the main features of this objects.

• This object needs an initial data for their creation.
• This object needs allow the handler event to visual

manager.
A visual manager will be who lets a hierarchy of events,

and allows the control of the handling event for all objects
display into the screen.

The visual object is a container that has a support that
provides performance for the data visualization into the
screen. For this reason we need get the control of the window
manager of the operating system.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

The visual object results like a tiled window, and the win-
dows always display in a single rectangular area. If placing
or enlarging the windows would cause other windows to be
overlapped. The tiled windows manager supports an arbitrary
layout of tiled windows. Windows may be placed anywhere,
they do not necessarily line up in columns. Windows need
not fill the screen (blank space may be visible if it is not
needed by the windows on the screen).

The visual manager may also grow a window to its desired
size when that window becomes the listener (that is, after
a user has pressed a mouse button or typed a key with
the mouse cursor in the window). This closely corresponds
to overlapping window managers that expose an obscured
window when it becomes the listener.

Even when this option is selected, the user may want to
bypass it. For example, imagine that a user is watching a
video in one window (the listener) and an animation of an
Open GL model has just finished in another window. The
user may temporarily want to play the video into the other
window to start the animation another.

However, there is almost certainly no reason to enlarge (
or in an overlapping system, expose) that other window just
to play the video. In our tiled windows manager, when the
user moves the cursor to the header of the other window and
play the video, the input is directed to that window; however,
the window is not enlarged, nor is the old listener shrunk.

Now other main feature of a visual object is the drawing,
drawing is only one step in the process of creating a fully
functional view. Understanding view hierarchies and how
events interact with views are two other critical steps.

Drawing is a fundamental part of most applications. The
drawing environment encompasses the digital canvas and
graphics settings that determine the final look of your con-
tent. The canvas determines where your content is drawn,
while the graphics settings control every aspect of drawing,
including the size, color, quality, and orientation of your
content.

Nearly all drawing is done inside views. Views are objects
that represent a visual portion of a window. Each view
object is responsible for displaying some visual content and
responding to user events in its visible area. A view may
also be responsible for one or more subviews.

A graphic context encapsulates all of the information
needed to draw to an underlying canvas, including the current
drawing attributes and a device-specific representation of the
digital paint on the canvas.

The graphics contexts are used to represent the following
drawing destinations:

• Windows (and their views)
• Images (including bitmaps of all kinds)
• OpenGL surfaces
By far, the most common drawing destination is a window,

and by extension its views. We use a Cartesian coordinate
system as its basic model for specifying coordinates. The
origin of this system is located in the lower-left corner of
the current drawing space, with positive values extending the
axes up and to the right of the origin point. The root origin
for the entire system is located at the lower-left corner of the
screen.

2) A Definition of Distributed Object : Distributed object
models form the basis for distributed applications. Several

aspects are important in order to make the right choice con-
cerning which distributed object model to use. Traditionally
one of the most important criteria is performance.

A distributed system has a complex structure, requires a
particular organization for their good performance. We can
make a division between the logic organization and physic
organization.

The main feature of the distributed objects is the separation
between the interface and the implementation. When the
interface and the implementations of the objects are located
in different places, this object is called distributed object.

There exists many models for made the distribution of the
objects, we will use the fragmented objects and now show a
review of this.

As is common in object-oriented approach, a fragmented
object can be viewed at two different levels of abstraction,
corresponding respectively to a client’s (abstract) view, and
to designer’s (concrete) view.

A fragmented object is a single shared object. It is shared
by several clients objects, localized in different address
spaces, possibly on several sites. It is accessed via a strongly-
typed interface. A fragmented object can offer distinct inter-
faces to different clients.

Concretely (for the designer), a fragmented object encap-
sulates a set of cooperating fragments. Each fragmented is
an elementary object.

We distinguish three fragment interfaces: the private inter-
face, the public interface, and the group interface.

The private interface of a fragment is composed of internal
methods, accessible only from within the fragment.

The public interface contains methods accessible by
clients. The abstract interface of a fragmented objects is
provided to some clients via the public interface of a local
fragment, that can be invoked locally. A client sees no
difference between a fragment implementing the interface
exported by the fragmented object to this client, and the
fragmented objects itself.

The public interface of the fragment offers the trans-
parency of the distribution to a client. A method of the public
interface can be entirely implemented by the fragment itself,
or it can trigger invocations to other fragments.

The group interface comprises those methods which are
internal to the fragmented objects as a whole. The group
interface concept extends type-checking to remote commu-
nications.

The fragments cooperate using connective objects. A con-
nective object is just another fragment object on a lower
level of abstraction. The most primitive connective objects
are the communication objects implemented by the system (
for instance, communication protocols).

The main benefits of the fragment object approach are:

• Separation of interface from implementation. Since, a
fragment object is a distributed object, it is easy to
switch between different policies for the same mech-
anism.

• Strongly type-checked remote communications.
• Reusability of programmer-defined distributed shared

objects.
• Support for different levels of transparency.
• High-level communication abstractions.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

• Support for concept of layered protocols. Mar-
shalling/unmarchalling conversions between these mul-
tiple layers are handled automatically and in a type-safe
manner.

C. A Definition of Distributed Visual Object

We can define the distributed visual object , with the
things that it has to do, and the features that it has to have.
This object provides a structure for drawing and handling
events. This object provides too an interprocess messaging.
This object claims a rectangular region, is responsible for all
drawing within that region, and is eligible to receive mouse
events occurring in it as well.

Among the main characteristics of such objects are the
even handling, because will allow users communication
with the system. The flexible coordinate system lets an use
more natural to the user, like work in the cartesian plane
the positive side. When talk about the integrated display to
screen, we mean to allow the use of the windows manager
of the operating system to obtain complete control of the
deployment. The remote interaction is important because
means how will be the communication between the remote
objects.

The main difficulty in developing the distribution trans-
parency is get a good unit to the distribution in order to get
less delay in the deploy of the display, thus hiding the end
user distribution.

1) Architecture of the System: We made many tests and
for this we used the next hardware:

• 12 Mac mini (the nodes). With the next features:
– 2.0GHz :120GB
– Intel Core 2 duo 2
– 1GB memory
– 120 GB hard drive1
– NVIDIA GeForce 9400M graphics

• 12 Apple LED Cinema Display (flat panel)
– Screen size: 24 inches (diagonal viewable)
– Screen type: TFT active-matrix LCD
– Resolution: 1920 by 1200 pixels
– Colors: 16.7 million
– Viewing angle: 178 horizontal y vertical

• Mac Pro (visualization server)
– 2.66GHz Quad-Core Intel Xeon
– 3GB (3x1GB)
– 640GB 7200-rpm Serial ATA 3 Gb/s
– NVIDIA GeForce GT 120 512MB
– One 18x SuperDrive
– Apple Mighty Mouse

• Switch
– 24 ports
– 1 G 10/100/1000MBPS

D. Model Distributed Visual Object

The concepts of an object model ideally reflect the char-
acteristics of distributed systems, We can use the object-
oriented model to encapsulate behaviors that help us monitor
displays, regardless of type.

An object encapsulates the state and behavior and can
only be accessed via a well defined interface. The interface
hides the details that are specific to the implementation,
thereby helping to encapsulate different technologies. An
object therefore becomes a unit of distribution. [12] Using
this object features for get an unit for making the display,
we can have many advantages for the handling event.

Taking into account the characteristics of visual objects
and distributed objects, we can start thinking in a distributed
visual object that you can use the features of distributed ob-
jects for the deployment of a display on different machines,
ie tiled display. Finding the correct shipping data with the
least possible delay in transmission time.

With respect to existing models of distributed objects can
look fragmented distribution of the object that allows the
parallel deployment of all components, you must also find
the best way to manage events, for this is to generate a
handler views to determine which events should take priority,
that based on the need for some immediate reaction visual
objects. Views handler will be responsible for maintaining
control over the video wall, and the manager to manipulate
the flow of information between nodes and the server. The
visuals have priority of control regarding the type of request
originated, the changes in position on the tiled display are
lower level and do not require visualization handler address.

II. CONCLUSION

This paper introduces a transparent, efficient, and effective
model for the development of massively scalable multitile
visualization environments. The DVO model presents an API
to help the user to realization of their particular applications
over a tiled display, is an API for visualization clusters
and combines this feature with tools that allow users and
researchers from different scientific backgrounds to build,
configure, and utilize high-performance, multitile visualiza-
tion environments.

This API is tailored to support the development of pro-
grams and applications that generate visual analytics infras-
tructures.

REFERENCES

[1] Jason Leigh, Luc Renambot, Thomas A. DeFanti, Maxine Brown, Eric
He, Naveen Krishnaprasad, Javid M Alimohideen Meerasa, Atul Nayak,
Kyoung Park, Rajvikram Singh, Shalini Venkataraman, Chong (Charles)
Zhang, Experimental OptIPuter Architecture for Data-Intensive Col-
laborative Visualization, the 3rd Workshop on Advanced Collaborative
Environments (in conjunction with the High Performance Distributed
Computing Conference), Seattle, Washington, June 22, 2003.

[2] This is the page for Distributed Multihead X Project, at this URL we
can find a short description for it. An introduction, motivation, and
documentation. http://dmx.sourceforge.net/

[3] Greg Humphreys, Matthew Eldridge, Ian Buck, Stanford University,
Gordon Stoll, Matthew Everett, Pat Hanrahan, Intel Corporation,
WireGL: A Scalable Graphics System for Clusters.

[4] G. Humphreys, M. Houston, Y. Ng, R. Frank, S. Ahern, P. Kirchner,
and J. Klosowski, Chromium: A Stream Processing Framework for
Interactive Rendering on Clusters, Proc. ACM SIGGRAPH, vol. 21,
no. 3, 2002.

[5] H. Chen, Y. Chen, A. Finkelstein, T. Funkhouser, K. Li, Z. Liu,
R. Samanta, and G. Wallace, Data Distribution Strategies for High-
Resolution Displays, Computers and Graphics, vol. 25, pp. 811-818,
2001.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

[6] G. Vo, J. Behr, D. Reiners, and M. Roth, A Multi-Thread Safe
Foundation for Scene Graphs and Its Extension to Clusters, Proc. Fourth
Eurographics Workshop Parallel Graphics and Visualization (EGPGV
02), pp. 33-37, 2002.

[7] Doerr KU, Kuester F.,CGLX: A Scalable, High-Performance Visual-
ization Framework for Networked Display Environments, IEEE Trans-
action on visualization and computer graphics, vol. 17, No. X, XXX
2011.

[8] Jeong, B., Renambot, L., Jagodic, R., Singh, R., Aguilera, J., Johnson,
A., Leigh, J., High-Performance Dynamic Graphics Streaming for
Scalable Adaptive Graphics Environment, Proc. Supercomputing, 2006

[9] Sachin Deshpande,Chang Yuan, Scott Daly, Ibrahim Sezan, A Large
Ultra High Resolution Tiled Display System: Architecture, Technolo-
gies, Applications, and Tools, Sharp Laboratories of America, Camas,
WA 98607, USA.

[10] This page compiles a list of applications contributed by the community
of SAGE users. The page contains applications that have been enhanced
to work with SAGE and compiles information on any non-SAGE
applications that can work with SAGE through one or more of SAGE’s
utilities. http://www.evl.uic.edu/cavern/sage/applications.php

[11] Shenni Li, Building a high-resolution scalable visualization wall,
Thesis Master of science, Auburn, Alabama, December 15, 2006.
Introduction, pages: 13-16.

[12] Arno Puder, Kay Romer, Frank Pilhofer, Distributed Systems Archi-
tecture, a middleware approach, Chapter 2, pages:16-23.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

