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Abstract—The quasilinear heat equation with thermal con-
ductivity and heat capacity depending on the temperature field
in three spatial dimensions is studied in application to the
phase transition problem in permafrost soils. The conditions
under which the alternating directions Douglas – Rachford
finite difference scheme retains numerical stability are explicitly
formulated. The comparison with the known analytical similar-
ity solution to the Stefan problem in one spatial dimension is
performed.

Index Terms—quasilinear heat equation, Stefan problem,
finite differences, alternating directions scheme, numerical sta-
bility.

I. INTRODUCTION

S INCE the early formulations of the alternating directions
implicit methods (ADI methods) [1], [2], they have

been tremendously developed and found a vast number of
applications [3], [4]. Nevertheless, serious difficulties are
encountered with the use of these methods in application
to problems with complex geometries [5] and/or nonlinear
equations of mathematical physics [6].

Although the schemes of the ADI methods are proved to
be efficient and economic with respect to time consumption
and, in most cases, unconditionally stable, they exhibit some
disadvantages:

1) Their finite-difference formulations permit to consider
only rectangular spatial domains (due to commutativ-
ity requirements imposed on the factorized and split
operators) [7];

2) The application of the ADI schemes to the problems
with Neumann and Robin boundary conditions that are
varying in time encounters serious problems due to
the necessity of evaluation or approximation of these
boundary conditions at the intermediate steps of the
scheme [8];

3) When applied to the solution of nonlinear heat equa-
tions, the operators constituting an ADI scheme do
not commute, thus leading to the loss of unconditional
stability of the scheme [6].

The first of the above disadvantages can be overcome
either by the use of finite elements methods in conjunction
with operator splitting techniques, or by domain decompo-
sition techniques. The second and the third disadvantages
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present an important problem for the successful application
of the ADI scheme. To the best of our knowledge, no
complete stability analysis for an ADI scheme applied to the
nonlinear heat equation in a three-dimensional spatial domain
is available in the literature, thus motivating this work.

Another motivation for the present work is the application
of ADI scheme to the modeling of heat transfer in large
scale environmental systems (e.g., large areas of permafrost
soils) which, in the case of purely explicit finite-differences
schemes, imposes stiff constraints on the time-step in order
to guarantee the numerical stability. At the same time, imple-
mentation of implicit schemes can often lead to much greater
computing expenses than that of explicit schemes, especially
for the problems with rapidly changing coefficients in com-
plex geometries and substantially nonhomogeneous meshes.
Thus, in modeling of heat transfer in large scale systems the
necessity of making an optimal choice between explicit and
implicit schemes arises. In case of finite-elements method,
applied to modeling of processes in permafrost soils, the
analysis of numerical stability appears to be so complex, that
the stability criterion is often established empirically [9].

In the present paper we discuss the application of the
ADI Douglas – Rachford scheme to the solution of Stefan
problem in porous permafrost soils. The paper is organized
as follows: next section contains the problem formulation and
some assumptions that will be used in the proof of numerical
stability of the ADI scheme while section 3 exposes the
proof itself. Section 4 presents some numerical results and
is followed by Conclusions.

II. PROBLEM SETUP AND FORMALISM

A. Quasilinear heat equation

The equation describing heat transfer in a system with
phase transition has the following form:

C(u)
∂u

∂t
= ∇(k(u)∇(u)), (1)

where u = u(x, y, z, t) is the unknown function (temper-
ature: u(tf) ∈ C2

+(Ω̄) at every fixed tf , C2
+(Ω̄) being a

real linear space of positive valued functions), C(u) is the
heat capacity, k(u) is thermal conductivity. By Ω we denote
a bounded, open subset of an Euclidian space E3 with
boundary Ω̇, the closure of Ω being denoted by Ω̄. Following
the classification given in [10], we call Eq.(1) a quasilinear
heat equation. The initial and boundary conditions are taken
to be:
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u(x, y, z, t = 0) = f0(x, y, z)|(x, y, z) ∈ Ω, (2)

u(x, y, z, t) = f(x, y, z, t)|(x, y, z) ∈ Ω̇, t ∈ R+. (3)

We consider the cases when C(u) ≥ µ > 0 and k(u) ≥
ν > 0, thus Eq. (1) is uniformly parabolic and has a unique
solution to the initial-boundary-value problem Eq. (3)–(2).
[11].

B. Stefan problem in permafrost soils

Basing on results of [12], we formulate the model for the
Stefan problem without explicitly invoking the front-tracking
condition. This approach is justified by the observations that
in case of explicit front-tracking models applied to Stefan
problem in salted permafrost soils, there appears an over-
cooled region (frozen fringe zone) [13] (the analysis of this
zone and related frost heave and cryogenic suction processes
[9] are beyond the scope of the present work). Thus, we take
into account the phase transition by introducing effective heat
capacity Ceff(u) which incorporates the latent heat per unit
mass L0:

{
Ceff(u) = C0(u)− (1− w(u)) · ρw · L0 · dw(u−0)

du ,
C0(u) = Cth + (Cf − Cth) · w(u)

(4)

w(u) =

{
1− 1

1+S·(Tph−u) , u ≤ Tph;

0, u > Tph,
(5)

where Cth and Cf are the values of volumetric heat capacities
of the soil in thawed and frozen phases respectively, w(u) is
the fraction of frozen water, S is the smoothing parameter,
Tph is the phase transition temperature, ρw is the density of
water. The thermal conductivity is taken to be

k(u) = kth + (kf − kth) · w(u), (6)

where kth and kf are the values of thermal conductivities in
thawed and frozen phases respectively.

C. The linear space C(Ωh)

For the formulation of finite difference scheme we in-
troduce the following discretization procedure. Let the
vector h = (hx, hy, hz) ∈ E3 have positive coor-
dinates and Gh be the set of all points (i · hx, j ·
hy, k · hz) ∈ E3, the indices i, j, k being integers. Two
points x1 = (i1 · hx, j1 · hy, k1 · hz) and x2 = (i2 ·
hx, j2 · hy, k2 · hz) belonging to Gh are called neighbors
if

√
(i1 − i2)2 · h2

x + (j1 − j2)2 · h2
y + (k1 − k2)2 · h2

z =

hx,y,z . The points x ∈ Gh

∩
Ω all of whose neighbor belong

to Ω̄ are denoted by Ωh. Following [14], we denote the
points x ∈ Gh\Ωh with the property that at least one
neighbor belongs to Ωh by Ω̇h. Thus, the full spatial mesh
is Ω̄h = Ωh

∪
Ω̇h, Ω̇h being the set of boundary points

(outside of Ωh). For the following we assume that Ω̄h is
a homogeneous (i.e., hx, hy, hz are constants) cubic domain.

Let T = [0,∞) and T 0 = T\{0}. Then the time mesh is
defined as follows:

Tτ = {t ∈ T |t = m · τ, n = 0, 1...}. (7)

The approximate solutions of Eq.(1), U(t), are defined
on Tτ and take their values in a real finite-dimensional
linear space C(Ωh), the dimension of which is equal to the
number of points in Ωh. A function U(t) ∈ C(Ω̄h) is called
admissible if U(t = 0) = f0(x, y, z) and U = u(x, y, z, t)
on Ω̇h × T 0

τ . As was pointed out in [14], u(x, y, z, t) is,
in general, not known in Ω̇h × T 0

τ and thus the following
assumption should be made: there exists a null sequence
(that converges to zero) {hβ

x,y,z} of mesh spacings such
that Ω̇hβ ⊂ Ω̇ and hx,y,z always belongs to the sequence
{hβ

x,y,z}. This assumption guarantees that an admissible
function is uniquely specified in (Gh × T 0

τ )\(Ωh × T 0
τ ) in

terms of the initial and boundary values of u(x, y, z, t).
For every U(t) ∈ C(Ω̄h) we define the first-order forward

and backward difference operators:{
hα ·D+

αU(t) = Uiα+1(t)− Uiα(t),
hα ·D−

αU(t) = Uiα−1(t)− Uiα(t).
(8)

where α = {x, y, z}, 2 ≤ iα ≤ (dimα(Ω̄h)− 1), dimα(Ω̄h)
being the number of points in Ω̄h along α-direction in
the Cartesian coordinates. For any suitably defined function
U(t) ∈ C(Ω̄h) we set

kiα±1/2,n = k(
Uiα±1 + Uiα

2
). (9)

Thus, kiα±1/2,n are the values of k(U(t)) at the fictitious
intermediate nodes of the mesh Ωh at t = τ ·n ∈ Tτ , U(t) ∈
C(Ω̄h).

From the Eqs. (8)–(9) one obtains:

−D+
iα
(kn(U) ·D−

iα
U) =

1

hiα

(Λ+
iα,n + Λ−

iα,n)U, (10)

where {
Λ−
iα,nU = kiα−1/2,n · Uiα−1−Uiα

hiα
,

Λ+
iα,nU = kiα+1/2,n · Uiα+1−Uiα

hiα
,

(11)

and kn(U) corresponds the value of k(U(t)) at t = τ · n ∈
Tτ , U(t) ∈ C(Ω̄h), iα and α being defined as α = {x, y, z};
1 ≤ iα ≤ dimα(Ω̄h). We also provide C(Ω̄h) with the l2-
inner product (U, V ) and induced norm ∥U∥ = (U,U)1/2 on
Ω̄h:

(U, V ) = hx · hy · hz

∑
p∈Gh

U(p)V (p). (12)

The maximum norm is defined as following:

∥U∥∞ = max(U). (13)

We define on Ω̄h a modified A-inner product (U, V )n,A
and induced norm ∥U∥n,A = (U,U)

1/2
n,A by

(U, V )n,A = hx · hy · hz

∑
α=x,y,z

∑
p∈Gh

U(p)An,αV (p), (14)

An,α(V (p)) = −C−1
n (V (p)) ·D+

α (kn(V (p))D−
α V (p)),

(15)
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where C−1
n (V (p)) and kn(V (p)) correspond the values of

C−1(v(x, y, z, t)) and k(v(x, y, z, t)) at p = (x, y, z) ∈
Gh, t = τ · n ∈ Tτ , v(t) ∈ C(Ω̄)) respectively. Note, that
the so defined operator An,α implies that it is generally not
true that An,α : C(Ω̄h) → C(Ω̄h) (see a discussion in the
next subsection).

D. Alternating direction finite difference scheme

Let us now put in correspondence to Eq. (1) the following
finite differences scheme:

(1+τ ·An,x)(1+τ ·An,y)(1+τ ·An,z)U
n
τ =

∑
α

An,α(U
n),

(16)
where An,α are given by Eq. (15), α = {x, y, z}, Un

τ =
(Un+1 − Un)/τ , Un = U(t) and Un+1 = U(t + τ) at
t = n · τ ∈ Tτ , U(t) ∈ C(Ω̄h). Taking into account Eq.
(8)–(11) and (15), Eq. (16) can be rewritten in the following
form:


C(Un)U

∗−Un

τ = 1
hx

Λix,nU
∗ + 1

hy
Λiy,nU

n + 1
hz

Λiz,nU
n,

C(Un)U
∗∗−U∗

τ = 1
hy

Λiy,n(U
∗∗ − Un),

C(Un)U
n+1−U∗∗

τ = 1
hz

Λiz,n(U
n+1 − Un),

(17)
where Λix,n = Λ+

ix,n
+ Λ−

ix,n
(same for iy, iz), U∗ and

U∗∗ are the auxiliary functions that are used at the inter-
mediate steps. Note that the indices ix, iy, iz in the first
equation of system (17) change in the following ranges
2 ≤ ix ≤ (dimx(Ω̄h) − 1), 2 ≤ iy ≤ (dimy(Ω̄h) − 1),
2 ≤ iz ≤ (dimz(Ω̄h) − 1), while for the last two equations
in (17) 1 ≤ ix ≤ dimx(Ω̄h), 2 ≤ iy ≤ (dimy(Ω̄h) − 1),
1 ≤ iz ≤ dimz(Ω̄h) and 1 ≤ ix ≤ dimx(Ω̄h), 1 ≤
iy ≤ dimy(Ω̄h), 2 ≤ iz ≤ (dimz(Ω̄h) − 1) respectively.
The scheme (17) has been described in [1] and is called
the Douglas-Rachford scheme. It has been pointed out by
Douglas in [1] that the scheme (17) with Λix,n defined
by Eq. (11) is locally second-order correct in space, unless
the boundary conditions lower the accuracy. From Eq. (16)
one can see that Eq. (1) is approximated with the accuracy
O(τ + h2

x + h2
y + h2

z) in Ωh.
The boundary and initial conditions (3)–(2) are formulated

on the mesh Ω̄h in the following way:

{
U(p, t) = fh(p, t)|p ∈ Ω̇h, t = n · τ ∈ Tτ ,

U(p) = f0
h(p)|p ∈ Ωh, t = 0 ∈ Tτ .

(18)

where fh, f
0
h ∈ Ω̄h.

It is well known that the scheme (16) is unconditionally
stable when C−1

n and kn in Eq. (15) are constants (i.e.,
C−1

n = C−1 and kn = k) and An,α are the finite-difference
forms of the Laplace operators. This is readily seen from
Eq.(16) and Eq. (14) if noticed that An,α = Aα are self-
adjoint positive definite operators, Aα = A∗

α > 0. In this
case one can use the following Theorem proved in [15]:

Theorem 1: If operators [(1+τ ·Ax)(1+τ ·Ay)(1+τ ·Az)]
and

∑
α Aα in Eq.(16) are self-adjoint, do not change in

time, and
∑

α Aα is positive definite, then the condition

(1 + τ ·Ax)(1 + τ ·Ay)(1 + τ ·Az) ≥
τ

2

∑
α

Aα, (19)

is necessary and sufficient for the following estimate to hold:

∥Un∥A ≤ ∥Un=0∥A, (20)

where ∥Un∥A is the norm induced by the A-inner product
(14) in the case of constant C−1

n and kn, Un=0 is the initial
condition, and Un is the numerical solution obtained at the
n-th iteration.

Indeed, if C−1
n = C−1 and kn = k are constants, the op-

erators Aα defined by Eq. (15) are pairwise commutative and
thus operator relation (19) holds for any small hx, hy, hz, τ .
Relation (20) means that the scheme (16) is numerically
stable when C−1

n and kn are constants.
The introduction of C−1

n and kn that depend on Un

makes the operators An,α defined by (15) nonlinear, i.e.
it is generally not true that An,α : C(Ω̄h) → C(Ω̄h). This
fact makes it impossible to prove numerical stability in a
single norm, as it is done in Eq.(20). In order to proceed,
we slightly modify the definition of operator An,α and make
the following assumptions:
Assumption 1: In the ADI scheme (16) the operators An,α

are acting on the vectors Un+1 in the following way:

An,α(U
n+1) = −C−1(Un) ·D+

α (k(U
n)D−

αU
n+1). (21)

This assumption leads to consideration of a linear finite-
difference scheme of type (16) for the heat equation with
variable coefficients Cn and kn, the forms of which depend
on the temperature field Un calculated at the previous time
level. This kind of assumption is commonly used when
considering nonlinear time dependent problems (e.g., [16]).

Let us rewrite (21) in the following equivalent form:

An,α(V (p)) = Ān,α(V (p)) + δn,α(V (p)), (22)

where  Ān,α(V (p)) =
−K+

iα,n
D+

α (D−
α V (p))

Cn
,

δn,α(V (p)) =
K−

iα,n
(D+

α−D−
α )V (p)

Cn
.

(23)

{
K+

iα,n = (kiα+1/2,n + kiα−1/2,n)/2,

K−
iα,n = (kiα+1/2,n − kiα−1/2,n)/(2 · hα).

(24)

Assumption 2: The functions C−1 : C(Ω̄h) → ℓ∞(Ω̄h),
K+ : C(Ω̄h) → ℓ∞(Ω̄h) and K− : C(Ω̄h) → ℓ∞(Ω̄h)
(defined by (4)–(6), (9) and (24)) are mapping the elements
Un(p) ∈ C(Ω̄h) into a sequence space ℓ∞(Ω̄h), the elements
of which (K+

n (p),K−
n (p), C−1

n (p) ∈ ℓ∞(Ω̄h)) satisfy the
following relations: C−1(Un(p)) ≡ C−1

n (p),
|D+

α (C
−1
n (p))| ≤ c1 · C−1

n (p),
|D−

α (C
−1
n (p))| ≤ c1 · C−1

n (p),
(25)

 K+(Un(p)) ≡ K+
n (p) =

kiα+1/2,n(p)+kiα−1/2,n(p)

2 ,
|D+

α (K
+
n (p))| ≤ c2 ·K+

n (p),
|D−

α (K
+
n (p))| ≤ c2 ·K+

n (p),
(26)
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 K−(Un(p)) ≡ K−
n (p) =

kiα+1/2,n(p)−kiα−1/2,n(p)

2·hα
,

|D+
α (K

−
n (p))| ≤ c3 ·K−

n (p),
|D−

α (K
−
n (p))| ≤ c3 ·K−

n (p),
(27)

where the operators D+
α , D

−
α are defined similarly to (8);

c1, c2, c3 are real positive constants. ℓ∞(Ω̄h) is the Banach
space with the maximum norm.

III. NUMERICAL STABILITY OF ADI SCHEME APPLIED
TO THE NONLINEAR HEAT EQUATION

In this section we make use of Assumptions 1 and 2 and
obtain conditions under which the scheme (16) with Eq.(21)
can be successfully applied to the solution of nonlinear heat
equation (1).

The main problem one has to consider is the following:
obtain some relation between energy norms of operators
An,x, An,y, An,z that could guarantee numerical stability
of (16). In order to proceed, let us accept the following
definition of numerical stability given in [15]:

Definition 1: Let D : H → H be a positive definite
self-adjoint operator acting in a (real) Hilbert space H . Let
ρ > 0 be a constant, such that ρn ≤ M1 for any n from (7),
M1 > 0 being a constant that does not depend on hα, n, τ .
The scheme (16) is said to be stable in a Hilbert space HA

(with scalar product and norm defined by (14)) if for any
Un ∈ H and for any sufficiently small |hα| and τ , for the
solution of equation Un+1 = (E+ τ · ((1+ τ ·An,x)(1+ τ ·
An,y)(1 + τ · An,z))

−1
∑

α An,α)U
n the following relation

holds:

(AUn+1, Un+1) ≤ ρ2 · (AUn, Un), (28)

where E is the identity operator.
In order to prove the that the scheme (16) is stable in the

above sense, we will need some auxiliary results proved in
[15]:

Lemma 1: Let H be a Hilbert space (real or complex).
Let L : H → H be a linear operator on H , such that L0 =
0.5 · (L+ L∗) > 0. Then the relation

(L0)
−1 = Re(L−1) ≥ τ

1 + ρ
E, (29)

(with ρ ≥ 1) is sufficient for

∥E + τ · L∥ ≤ ρ, (30)

to hold.
Lemma 2: Let Ln : H → H be a time-dependent (for n

from (7)), positive definite and self-adjoint operator. Then,
relation

Ln ≤ (1 + c4 · τ)Ln−1, (31)

is equivalent to relation

∥L1/2
n L

−1/2
n−1 ∥ ≤

√
1 + c4 · τ , (32)

where c4 > 0 is a constant that does not depend on τ, hα, n.
Now, based on the results of [15], we can formulate the

main theorem:

Theorem 2: Let the operators An,α (defined by (21))
satisfy the following condition for any n ∈ Tτ

(1−c4·ϵn)
∑
α

An−1,α ≤
∑
α

An,α ≤ (1+c4·ϵn)
∑
α

An−1,α,

(33)
where ϵn = ∥(Un − Un−1)∥∞, c4 > 0 is a constant. Then
the relation

(1+ τ ·An,x)(1+ τ ·An,y)(1+ τ ·An,z) ≥
τ

1 + ρ

∑
α

An,α.

(34)
(with n from (7), ρ ≥ 1) is sufficient for the following
estimate to hold:

(
∑
α

An,αU
n+1, Un+1) ≤ ρ2(1+c4·ϵn)(

∑
α

An−1,αU
n, Un),

(35)
where Un, Un+1 ∈ C(Ω̄h) are the solutions of Eq.(16).

Proof: Operators An,α (defined by (21)) are posi-
tive definite and self-adjoint, thus permitting to define
(
∑

α An,α)
±1/2 and (1+ τ ·An,α)

−1. Let us rewrite Eq.(16)
in the following form:

Ūn+1 = (E + τ · Ln)Û
n, (36)

where

{
Ln = (

∑
α An,α)

1/2(Bn)
−1(

∑
α An,α)

1/2,
Bn = (1 + τ ·An,x)(1 + τ ·An,y)(1 + τ ·An,z),

(37)

Ūn+1 = (
∑
α

An,α)
1/2Un+1; Ûn = (

∑
α

An,α)
1/2Un.

(38)
Now, using Lemma 1 and (34) we obtain:

∥(E + τ · Ln)∥ ≤ ρ. (39)

Thus, for Ūn+1 and Ûn one has:

∥Ūn+1∥ ≤ ∥(E + τ · Ln)∥ · ∥Ûn∥ ≤ ρ · ∥Ûn∥. (40)

Taking into account Lemma 2 and the first equation of
(38), we obtain:

∥Ûn∥ = ∥(
∑
α

An,α)
1/2(

∑
α

An−1,α)
−1/2Ūn∥, (41)

∥(
∑
α

An,α)
1/2(

∑
α

An−1,α)
−1/2Ūn∥ ≤

√
1 + c4 · ϵn∥Ūn∥.

(42)
Hence,

∥Ūn+1∥ ≤ ρ∥Ûn∥ ≤ ρ ·
√
1 + c4 · ϵn∥Ūn∥. (43)

And, finally, returning to the scalar products, one obtains
(35).

Let us now examine the conditions under which rela-
tion (34) holds. One can see that the l.h.s of (34) con-
tains the terms τ2 · (An,xAn,y + An,xAn,z + An,yAn,z)
and τ3An,xAn,yAn,z (in addition to τ

∑
α An,α) which are

required for the inequality to hold. Taking into account
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Assumption 2, a straightforward calculation of a quantity
τ2 ·An,αAn,β gives us:

τ2 ·An,αAn,β ≤ τ2

h4
α

· ((max(K+
n )

min(Cn)
)2 ·N1 +

max(hα ·K−
n ) ·max(K+

n )

(min(Cn))2
·N2 +

(
max(hα ·K−

n )

min(Cn)
)2 ·N3), (44)

where

N1 = (c21 + 2 · c1c2 + c22) · P1 +

(c1 + c2) · (P2 + P3) + P4, (45)
N2 = (c21 + 2 · c1c3 + c32) · P5 +

(c1 + c3) · (P6 + P7) + P8 + P9 − P10, (46)
N3 = P11 + P12, (47)

P 2
1 = max(|(U, h2

α ·D+
β D

−
β U)|),

P 2
2 = max(|(U, h3

α ·D+
αD

+
β D

−
β U)|),

P 2
3 = max(|(U, h3

α ·D−
αD

+
β D

−
β U)|),

P 2
4 = max(|(U, h4

α ·D+
αD

−
αD

+
β D

−
β U)|),

P 2
5 = max(|(U, hα · (D+

β −D−
β )U)|),

P 2
6 = max(|(U, h2

α ·D+
α (D

+
β −D−

β )U)|),
P 2
7 = max(|(U, h2

α ·D−
α (D

+
β −D−

β )U)|),
P 2
8 = max(|(U, h3

α ·D+
αD

−
α (D

+
β −D−

β )U)|),
P 2
9 = max(|(U, h3

αD
+
αD

+
β D

−
β U)|),

P 2
10 = max(|(U, h3

αD
−
αD

+
β D

−
β U)|),

P 2
11 = max(|(U, h2

αD
+
α (D

+
β −D−

β )U)|),
P 2
12 = max(|(U, h2

αD
−
α (D

+
β −D−

β )U)|), (48)

the max() and min() being taken over all p ∈ Ω̄h.
From (44)–(48) it follows that for the inequality (34) to

hold, the sufficient condition is:

ρ · τ
1 + ρ

∑
α

An,α ≥ 3 · τ
2

h4
α

· ((max(K+
n )

min(Cn)
)2 · (N1 − P4) +

max(hα ·K−
n ) ·max(K+

n )

(min(Cn))2
·N2 +

(
max(hα ·K−

n )

min(Cn)
)2 ·N3), (49)

or, more rigorously:

ρ · τ
(1 + ρ)h2

α

min(K+
n )

max(Cn)

∑
α

min(|(U, h2
αD

+
αD

−
αU)|) ≥

3 · τ
2

h4
α

· ((max(K+
n )

min(Cn)
)2 · (N1 − P4) +

max(hα ·K−
n ) ·max(K+

n )

(min(Cn))2
·N2 +

(
max(hα ·K−

n )

min(Cn)
)2 ·N3). (50)

From (50), the sufficient stability criterion (that relates
τ, hα, ρ, Cn,K

+
n and K−

n and guarantees that (34) holds on
every time level n ∈ Tτ ) can be directly expressed as follows:

τ

h2
α

≤ ρ

1 + ρ

min(K+
n )

max(Cn)
(
min(Cn)

max(K+
n )

)2 · c0, (51)

where c0 is a constant that can be deduced from (50).
Note that (51) resembles the textbook expression for the
stability criterion of a finite-differences scheme for a one-
dimensional heat equation with variable coefficients: τ/h2

α ≤
min(Cn)/(2 ·max(Kn)).

IV. NUMERICAL EXPERIMENTS

In this section we demonstrate the results of application
of the ADI scheme (16) to the solution of a Stefan problem
in a rectangular parallelepiped. We compare the obtained
numerical results with the known analytical expressions of
the similarity solutions for infinite domains [17].

Consider the following problem: a one-dimensional semi-
infinite domain Ω = [0,∞) contains the material in its liquid
state in Ωliq(t) = [0, s(t)) and in its solid state in Ωsol(t) =
Ω\Ω̄liq(t) = (s(t),∞), s(t) being the point that separates
the liquid and the solid phases. The temperature at the point
z ∈ Ω at time moment t is denoted by u(z, t). The phase
transition temperature is assumed to be u(s(t), t) ≡ Tph = 0
degrees Celsius. We also assume zero heat fluxes at the ends
of Ω and a piecewise constant initial condition:

u(z, 0) =

 uliq = 10◦C, 0 ≤ z ≤ s(t = 0);
Tph = 0◦C, z = s(t = 0);
usol = −1◦C, s(t = 0) ≤ z ≤ ∞.

(52)

The formulated problem is known to have the following
solution [17]:

u(z, t) =


−uliq·erfc(α/

√
Kliq)

2−erfc(α/
√

Kliq)
+

uliq·erfc(z−s(0))/(2
√

Kliqt)

2−erfc(α/
√

Kliq)
, z < s(t);

usol − usol·erfc((z−s(0))/(2
√
Ksolt))

erfc(α/
√
Ksol)

, z ≥ s(t).

(53)
where s(t) = s(0) + 2 · α

√
t and the constant α is obtained

by solving the equation:

α =

√
Ksol√
πL

usol

erfc(α/
√
Ksol)

exp(− α2

Ksol
) +√

Kliq√
πL

uliq

2− erfc(α/
√
Kliq)

exp(− α2

Kliq
), (54)

where erfc() is the complementary error function, L is the
latent heat of phase transition, Ksol and Kliq are the thermal
diffusivities in the solid and the liquid phases respectively
which are assumed to be constant in time and position.

In our numerical experiment we have considered the
spatial domain with dimensions: 0 ≤ x ≤ 15, 0 ≤ y ≤ 15,
2.9 ≤ z ≤ 20 meters. The spatial mesh Ω̄h has the following
nodes numbers: 4 × 4 × 172 nodes. On all the faces of the
parallelepiped the Neumann boundary conditions with zero
heat fluxes have been imposed. The initial condition was
taken to be (52) with s(t = 0) = 10 meters. Thermal
conductivities and heat capacities of thawed and frozen
phases that appear in (4)–(6) are taken to be: Cth = 2240000
J/(m3K), Cf = 2160000 J/(m3K), kth = 1.8 W/(m ·K),

Proceedings of the World Congress on Engineering 2013 Vol I, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



0 8 16 24
-2

0

2

4

6

8

10

y
x

triangles: S = 10

stars: S = 100

T,
 d

eg
re

es
 C

Z [m]

phase transition point

Time moment: 28 days
Red circles - 1D analytical solution

triangles: S = 10 stars: S = 100

z

 

 

8 12 16 20

-1.0

-0.5

0.0

T,
 d

eg
re

es
 C

Z [m]

Fig. 1. The dependence of temperature on the Z-coordinate: comparison of
numerical results (blue stars and green triangles), obtained with the scheme
(16), and analytical expression of the similarity solution (53) (red circles).
Time moment 28 days. Inset shows the same curves at temperatures below
Tph = 0 Celsius. Red vertical line inside the parallelepiped indicates the
set of points, for which the results are presented.

kf = 2 W/(m ·K), L0 = 334 kJ/(kg), ρw = 1000 kg/m3,
S = 100 K−1. Numerical stability for the problem with
these parameters has been achieved when the time step τ and
spacial step h ≡ min(hx,y,z) were subject to the following
condition: τ/h2 ≤ min(Ceff(u))/(20·max(k(u))). This gave
us the number of iterations: 6486.

Fig. 1 shows the numerical results along the line (x =
5; y = 5; 2.9 ≤ z ≤ 20) meters (i.e., along the central line of
the parallelepiped) together with the corresponding analytical
result obtained with (53). One can see both a qualitative
and quantitative agreement between numerical and analytical
results, the accuracy being within 0.5 degree Celsius. As
expected, a better agreement is achieved at greater values of
the smoothing parameter S in (5), which is responsible for
the account of sharpness of the phase transition.

A good agreement between numerical and analytical re-
sults is also observed for the time evolution of temperature
at a given point. Thus, Fig. 2 shows the time dependence of
temperature at the point with coordinates (x = 5, y = 5, z =
10.4) meters.

V. CONCLUSIONS

We have shown that under the Assumptions 1 and 2, the
uniform numerical stability (Definition 1) can be established
for the Douglas – Rachford scheme (17) (which approxi-
mates the equation (1)), the general form of the sufficient
stability criterion being (51). The used approach consists
in reduction of a quasilinear equation to an equation with
variable coefficients (subject to the constraints (25)–(27)), the
forms of which change after each iteration. The comparison
of obtained numerical results and an analytical solution (Fig.
(1) - (2)) suggests that the ADI method can be successfully
applied to the solution of Stefan problems in permafrost soils.
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