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Abstract—Chirality of objects is a problem with important
applications in biology, pharmacology, medical cosmetology,
organic chemistry, inorganic chemistry, supramolecular chem-
istry, biochemistry, and other branches of science.

In this paper we provide a solution for quantification problem
of chirality for three-dimensional objects.

Index Terms—Chirality, graph representations, 3D Jordan
property .

I. INTRODUCTION

CHIRALITY in chemistry is a property of molecules
having a non-superimposable mirror image. The con-

cept of chirality was introduced by Louis Pasteur who first
separated left-handed and right-handed tartaric acid crystals
in 1849.

In mathematics, chirality of an object S in the three-
dimensional space R3 means that it cannot produce a perfect
overlap with its mirror image S♦ within R3. Otherwise S is
said to be achiral in the specified space.

For example, a right glove is different from a left glove, the
left hand is a non-superimposable mirror image of the right
hand. The Greek word ”kheir” means ”hand.” So chirality
indeed means ”handedness”.

A chiral object S and its mirror image S♦ are said to be
enantiomorphs (i.e. ”opposite forms” in Greek language) or
enantiomers when referring to molecules.

Usually chemical and physical properties of enantiomers
are the same, but interestingly their biological properties can
be completely different. A well known tragic event was the
Thalidomide disaster in the late 1950-es and early 60-es :

”Thalidomide is a sedative drug that was prescribed to
pregnant women. It was present in at least 46 countries under
different brand names. When taken during the first trimester
of pregnancy, Thalidomide prevented the proper growth of
the foetus, resulting in horrific birth defects in thousands of
children around the world. Why? The Thalidomide molecule
is chiral. There are left and right-handed Thalidomides. The
drug that was marketed was a 50/50 mixture. One of the
molecules, say the left one, was a sedative, whereas the right
one was found later to cause foetal abnormalities.” (see [3])

This event shows why chirality plays a key role in
pharmacology and chemistry.

Considering the study of the relative spatial arrangement
of atoms forming a molecule, the simplest approach is to say
that the above mentioned molecule is chiral or achiral. One
can think that there is no other case. On the other hand a

Submitted on April 09. 2013.
Institute of Mathematics, Budapest University of Technology and Eco-

nomics, Egry J. u. 1., Budapest, Hungary, H-1111,
E-mail addresses: otti@math.bme.hu, belab@math.bme.hu

few scientists recognized that it is possible to measure the
degree of chirality. Several ”measures” of chirality have been
proposed earlier. For example Frank Harary and Paul Mezey
wrote remarkable papers in this field (see [4], [6] and [7]).
Here we must mention Harary and Robinson’s pioneer work
(see [5]) and significant contributions of A.I. Kitaigorodski,
K. Mislow, J. Siegel, G. Gilat,

D. Avnir, R.S. Cahn, C.K. Ingold, A.Y. Meyer and V.
Prelog (see [8-14]) .
We are going to generalize the graph construction introduced
in [7] and our result from [1] about graph representations
of two-dimensional chiral objects giving a theoretical tool
for quantification problem of chirality of three-dimensional
objects.

II. MAIN DEFINITIONS

Two-dimensional chirality problems can be studied by
so called lattice animals (see e.g. [1], [6], [7] and [8]).
Generalizing this idea for 3D problems we consider in the
three-dimensional space R3 a Cartesian grid of the first
octant of size n × n × n consisting of (n − 1)3 small unit
cube cells.

Definition 2.1: Two faces of the grid (belonging to the
same cube or to different cubes) are adjacent if they have
exactly one common (grid) edge.

Definition 2.2: Two cells (solid unit cubes) are adjacent
if they have a common face.

Definition 2.3: A union of (finite number of) adja-
cent cells (considered with their interior) is called three-
dimensional solid animal if it does not contain ”hole”.

Note that the boundary of any 3D solid animal is a
non-self-intersecting continuous simple closed surface that
divides the space into an ”interior” region and an ”exterior”
region. This property is often called 3D Jordan property.

III. GRAPH REPRESENTATION OF 3D SOLID ANIMALS

Let us consider an arbitrary 3D solid animal A with
boundary B and its mirror image A♦ with boundary B♦.
Assume that they are positioned so that the intersection
of their interior Int(B) ∩ Int(B♦) has maximum possible
volume, i.e.

Volume
[
Int(B) ∩ Int(B♦)

]
= maximum

We denote the union of B and B♦ satisfying condition of
maximum intersection by B ⊕ B♦. This object B ⊕ B♦

partitions R3 \
(
B ⊕B♦

)
into k+1 disjoint subsets, namely

P0, P1, . . . , Pk where P0 is the unbounded exterior part of
the space lying outside of both 3D Jordan-property surfaces
B and B♦.

Let us generalize the result of [1] and [7], considering
P1 = Int(B) ∩ Int(B♦) and for i = 2, 3, . . . , k let Pi
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be the maximum connected subset of the partition which
belongs to the interior of precisely one of B or B♦ having
no common points with any of P0, S1, . . . , Pi−1. Observe
that P1 may be the union of more disjoint components, but
P2, P3, . . . , Pk are all connected components.

If B ⊕ B♦ is not unique, one with the smallest k must
be chosen (”minimum k condition”).

Let us consider now A and its mirror image A♦ from
Figure 1 (here the dotted line represents the mirror-plane).

A A♦

Fig. 1. A 3D solid animal A with 13 cells and its mirror image A♦

Figures 2 and 3 show that minimum k condition is
essential. Here we consider two cases that satisfy condition of
maximum intersection. Grid edges from B∩B♦ are denoted
by bold lines. Both figures show an intersection of 9 cells,
but only case a) satisfies the minimum k condition, having
k = 3.

Fig. 2. Case a) Maximum intersection of A and A♦ when k = 3.

Another possibility (case b) to get the maximum intersec-
tion has shown in Figure 3.

Fig. 3. Case b) Maximum intersection of A and A♦ when k = 5.

Notice that case b) cannot be considered because minimum
k condition is not satisfied.

Now we are ready to associate a graph for the partition
P0, P1, . . . , Pk. Let us consider the node set {1, 2, . . . , k}.
By definition nodes i and j are adjacent if the corresponding
subsets Pi and Pj of the partition are separated by a simple
sequence of adjacent faces, i.e. the separating sequence of

faces does not contain ”double” grid faces from B ⊕ B♦.
This means that the graph representation of the 3D solid
animal A from Figure 1 is the graph of Figure 4.

u
u u

@
@

@
@

�
�
�
�

1

2 3

Fig. 4. Cherry graph representation of A

Following the idea of [7], the number k − 1 when k is
the number of nodes of the associated graph is denoted
by gtk(A) and is defined as the geometrical - topological
chirality measure of A.

Evidently, for an achiral solid animal we have a perfect
overlap between A and its mirror image A♦, thus k = 1
and gtk(A) = 0 (i.e. the graph representation is an isolated
node).

We can summarize our generalized results for 3D chiral
solid animals in the following theorem:

Theorem 3.1: For any arbitrary given three-dimensional
solid animal A there exists a graph representation such that
the number of nodes measures the chirality of A.

IV. CONCLUSION

In this paper we discussed and illustrated by examples
graph representations of three-dimensional solid objects, giv-
ing a combined geometrical - topological chirality ”measure”
generalizing the results of two-dimensional case ([1] , [7]).
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