
 

 
Abstract- Radial Distribution Systems (RDS) connect a large 

number of renewable generators that are inherently uncertain. 
From being unidirectional power flow systems, RDS now 
enable bi-directional power flow. Depending upon availability 
of power from renewables, they receive or feed power to the 
connected transmission system. RDS optimal power flow 
(OPF), is an important tool in this new era for utilities, to 
minimize losses and operate efficiently.  

With large scale integration of wind generators to 
distribution systems, they must be appropriately represented 
using probabilistic models capturing their intermittent nature 
in these OPF algorithms. This paper proposes characterizing 
the solution of a Probabilistic Optimal Power Flow (P-OPF) for 
RDS using the Cumulant Method. This method makes it 
possible to linearly relate the probabilistic parameters of 
renewables at the optimal solution point to the state of the RDS.  
To assess the accuracy of the proposed P-OPF Cumulant 
Method, wind generators and system probabilistic data are 
incorporated in a 33-bus and 129-bus test system. The results 
are compared with those of Monte Carlo simulations (MCS). It 
is shown that the proposed method possesses high degree of 
accuracy, is significantly faster and more practical than an 
MCS approach. 
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Vector of bus-wise real and reactive power 
loads  
Apparent power loads 
Tap Setting 
Total Apparent Power 
Total Real Power 
Total Reactive Power 
Vector of real power output of WGs 
System Real Power Loss 
System Total Real Power Loss 
Vector of bus voltages magnitudes 
Number of buses in the system 
The difference between generation and load
Reactive power injected into the ith bus 
 
Decision vector in the optimization 
problem 
Dependent vector in the optimization 
problem 
Independent random  input variables 
Output variable created by linear 
combination of “n” independent random 
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input variables 
Complex frequency 
Moment Generating Function 
Cumulant Generating Function 
Vector containing the mth order cumulants 
of the system unknown variables 
Vector containing the mth order cumulants 
of the system known variables 
Optimal Power Flow 
Hessian of the Lagrangian 
Vector of  -order Cumulants for the random 
bus power injections 
Probabilistic Optimal Power Flow 
Probability Density Function 
Radial Distribution Systems 
Wind Generator 
Monte Carlo Simulations 
Cumulant Method 
Logarithmic-Barrier Interior Point Method 
Karush–Kuhn–Tucker Conditions 
 

I.  INTRODUCTION 

O PF (optimal power flow) is a versatile tool used for 

electric transmission systems for a variety of purposes. The 
most common amongst them are: (a) real power OPF where 
real power output of generators are scheduled such that the 
total cost of generation is minimized [1], and, (b) reactive 
power OPF where generators voltages, reactive power 
compensation and settings of transformers taps are set to 
route reactive power optimally such that real power 
transmission losses are the least and all the voltages are 
within prescribed limits [2]. OPF has not been easily 
extended to distribution systems as their system Jacobian is 
ill-conditioned owing to higher R/X ratio of their lines [15]. 
In the recent past, numerous Jacobian based OPF methods 
have been researched and published [3]. Today, with a rush 
to integrate wind generators to electric power systems, 
largely to distributions systems, distribution systems OPF 
must account for wind generators as well.   

 In essence, an OPF for distribution systems must 
contend with the challenge that it must account for wind 
generators that are uncertain in their output and their near 
term forecasts can be best represented by a normal 
distribution with mean and variance values [16]. Further to 
understand the effect of probabilistic nature of loads and 
availability of wind on the OPF solution, such as the optimal 
values of transformer taps and capacitor settings, it is 
necessary to propose an efficient probabilistic OPF method 
that includes the load and generator probabilistic models. 
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The ultimate goal is to determine the probability density 
function of typical variables such as voltage and power flow 
that form a part of OPF solution.  

 Uncertainties of the power systems components have 
been addressed with many researchers by adapting 
probabilistic techniques in the Power Flow solution in 
transmission systems since 1960s [4]. Later, the probabilistic 
methods were applied to the optimal dispatch [5] and for the 
first time the term P-OPF was used in [6]. However, in 
contrast to the transmission system case, distribution 
systems have not been studied to the same extent. In [7] the 
authors proposed a probabilistic optimal capacitor planning 
method using Cumulant technique to find the probabilistic 
information of the size of newly installed capacitor banks in 
the distribution systems with high penetration of wind 
generations.  

This paper uses the idea given in [7] to propose and 
construct a distribution system OPF using a set of 3N 
equations such that the Jacobian is robust [8]. The objective 
of the OPF is to minimize losses in the distribution system 
by optimally scheduling all the reactive power sources and 
ensuring that voltages are within the prescribed limits. Then, 
it proposes to use Cumulant Method (CM) to directly relate 
probabilistic values of the loads and output power of wind 
generators to the optimal settings of the distribution system 
[9]. This approach has been reported for uncertainty without 
specific application to wind generators and in transmission 
system by A. Schellenberg et. al. [10]. 

This paper is outlined as follows. In sections 2 and 3, the 
model of the radial distribution system for OPF solution is 
presented and the Cumulant method is described 
respectively. Section 4 presents the numerical results of the 
method as tested on the 33-bus IEEE test system with three 
wind generators and a 129-bus test system with nine wind 
generators. Section 5 concludes the paper. 

 

II.  SYSTEM MODEL AND PROBABILISTIC OPF 

A.  Problem Formulation 

 
This subsection uses the radial distribution system (RDS) 

model from [8]. Fig. 1 shows a single-line representation of 
a tree-like distribution systems structure.  

 
 

Fig. 1  A tree-like distribution system with wind generator 
 

 
Consider the ith bus in Fig. 1. It has a wind turbine 

connected to it that injects only real power equal to PWi. Its 
bus load is represented by SDi = PDi + j.QDi. The total 
power injected into this bus is SBi = SDi - PWi. It is the 
difference between generation and load at that bus. Consider 
the lth line/transformer between buses i-1 and i. The tap 

setting of this transformer/line is represented by Tl and it has 
an impedance of Zl = Rl + jXl. The total apparent power 
reaching the downstream end of this line equals STl . The 
real power loss on this line equals: 

 
2

i

2
VSTRPL  lll                        (1) 

 
The total real power loss in all feeders of the system 

equals: 
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where Vi is the bus voltage magnitude, nb is the number 
of buses in the system and nl is the number of 
lines/transformers. 

In Fig. 1, the complex power balance at the ith can be 
expressed as: 

   

 

ii

k33,k

k11,kk,
k

2

k

2

ii QSjPWST.VST.ZSDST 







 




l

ll
ll   (3)   

  Where QSi is the reactive power injected into the ith bus. 
Equation (3) is a complex equation and yields a set of 2(NB-
1) equations. Writing the voltage drop equation across line l 
gives: 
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Equations (3) and (4) provide 3(NB-1) equations that 
completely model a RDS.  

 
 

B.  OPF for Radial Distribution System 

The objective of Radial Distribution System OPF is to 
minimize the total real power loss. By referring to the set of 
equations (2) – (4), one may construct an optimal power 
flow formulation for a radial distribution system as below: 

 
Objective Function:   
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UMIN < U < UMAX                      (8) 

VMIN < V < VMAX                      (9) 

 
where the decision vector is U = [QS , T] and dependent 

vector is Y = [V, P, Q].  Equations (6)-(7) are equality 
constraints which correspond to the complex power balance 
equation and the voltage drop equation across line l, 
respectively. Equations (8) and (9) limit the control and 
dependent vectors. The optimization problem described by 
(5)-(9) is solved by using the Logarithmic-Barrier Interior 
Point Method (LBIPM) [11]. 
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C.  Optimal Solution 

The formulation (5)-(9) is solved using the Lower Bound 
Interior Point Method [11]. This yields the optimal solution 
of decision and dependent vectors U and Y. In addition, the 
Hessian of the Lagrangian formed from the optimization 
formulation (5)-(9) is evaluated H (U, Y, λ). It provides a 
linear relation between incremental changes of dependent 
vector in terms of the decision vector. 

III.  CUMULANT TECHNIQUE AND P-OPF 

 
In probability theory, Cumulants and moments are two 

sets of quantities of a random variable which are 
mathematically equivalent. However, in some cases 
preference is to use Cumulants due to their simplicity over 
using moments [12]. In this section some properties of 
Cumulants used to adapt the Cumulant Technique to the 
radial distribution system P-OPF are presented. 

 Consider a linear combination of ‘n’ independent 
random input variables α used to create a new random output 
variable β as follows [10]: 
 = c1 . 1 + c2 . 2 + c3 . 3 + … + cn . n      (10) 

where ci is the ith coefficient in the linear combination. 
The above expansion can be written in terms of the moment 
generation function of random variable , i.e., (s) , as 
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where s is the Laplace operator. Assuming that α1, α2, α3, 
…, αn  are independent, the above relationship can be written 
as  
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The Cumulant generating function )s(x  can be written in 

terms of the moment generating function x  as [12] 
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By taking the natural logarithm at both sides of the (12) 

and using (13), (12) is written in the terms of cumulant 
generating function as below: 
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To obtain the different orders of cumulants, we can set
0s   to compute the different order derivatives of the 

cumulant generating function. A general equation for the mth 
order cumulant of Ψ is 
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where Kβ,m is a vector containing the mth order cumulants 

of the system unknown variables and Kα,m is a vector 
containing the mth order cumulants of the random bus 
generation and loading.  
 

A.  Adaptation to P-OPF 

By applying Newton method to the Lagrangian function  
L (U, Y, λ) for (5)-(9), the following system is obtained: 
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where )Y,L(U,   and H(U,Y, λ) are the gradient and the 
Hessian of the Lagrangian respectively. Rearranging (16) 
and replacing )Y,L(U,  with a vector of change in the bus 
power injections for uncertain wind power, ∆SB, the vector 
of changes can be linearly mapped with ∆SB by using the 
inverse of the Hessian: 
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By replacing ∆SB with a vector containing the nth order 
cumulants of loads and generation, the Cumulants of system 
variables, ∆SB can obtain using the inverse of the Hessian as 
follow: 
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where K(U,Y,λ),n is a vector of nth -order cumulants for the 
optimal settings of the distribution system and KSB,n is a 
vector of nth -order Cumulants for the random bus power 
injections. Consequently, the Hessian contains the constant 
multipliers. Once the cumulants of the random variables of 
the OPF solution are computed from the input random 
variables, PDFs are recreated by using Gram-
Charlier/Edgeworth Expansion theory [13].  

IV.  NUMERICAL RESULTS  

This section provides the results based on applying the 
Cumulant method to the 33-bus and 129-bus test systems. In 
both systems, the loads and the power output of wind 
generators are considered Gaussian random variables with 
the mean values set to the nominal bus loading and mean 
capacity of wind generators respectively. The standard 
deviation is such that the 99% confidence interval is equal to 
±%15 of the nominal loading value. In order to show the 
efficiency and accuracy of the Cumulant method, the results 
have been compared with MCS with 5000 samples. 

A.  33-Bus Test System Case Study  

The method is firstly applied to the 33-bus, 32-branch 
IEEE test system described in [14]. The system, however, is 
modified to accommodate the probabilistic data of the loads 
and wind generators. The modified system and loads data 
can be found in the Appendix. Three wind turbines are 
connected to buses 3, 17 and 32 with a mean capacity equal 
to 500 kW each. The results of both mean and standard 
deviation values obtained by comparing with those of 5000 
sample points MCS, are discussed as follows.  

1) Mean Values: From Table I it can be seen that the 
percentage errors of the voltage mean values are very 
small with the maximum value equal to 0.0077% which 
occurs at bus 18. The maximum percentage error of the 
real power and reactive power mean values is equal to 
3.44% and 7.97% at bus 29 and 5 respectively. The 
corresponding maximum error for capacitor value 
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occurs at bus 18 and is as low as 0.1901%. These 
results show a small difference between two methods 
in systems variables mean values which can be seen 
more clearly in Fig. 2.  

2) Variance Value: The maximum percentage errors for 
the system variables variance values are presented in 
Table II. These values for the voltage, active power, 
reactive power and capacitor value variance are equal 
to 1.55%, 1.91%, 2.13% and 1.85% which occur at 
buses 24, 9, 11 and 30 respectively. These small error 
values for the variance of the systems variables are 
shown in Fig. 3.  

 
 
In summary, the percentage errors of the mean and variance 
values for the system variables are well below 8% which 
implies a close match between two methods. Also, it is 
worth noting that largest errors (8%) occur for reactive 
power and voltage magnitude variables due to inherent 
nonlinearity. This nonlinearity for voltage and reactive 
power usually happens in the buses with capacitor banks 
connected to them. 
 
 

TABLE I      
MAXIMUM ERROR OF MEAN VALUES OF THE SYSTEM VARIABLES 

 
 

Bus No. 
CM  

(per unit) 
MCS 

(per unit) 
Error 
(%) 

Voltage 18 0.98 0.98 0.0077 
Active Power  29 0.03 0.03 3.44 

Reactive Power 5 -0.0045 -0.0049 7.97 
Capacitor Value  18 0.15 0.15 0.19 

 
 

TABLE II      
MAXIMUM ERROR OF VARIANCE VALUES OF THE SYSTEM VARIABLES 

 
 

Bus No. 
CM MCS 

Error 
(%) 

Voltage 24 0.0013 0.0012 1.55 
Active Power  9 0.079 0.0811 1.91 

Reactive Power 11 0.0062 0.0061 2.13 
Capacitor Value  30 0.091 0.093 1.85 
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Fig. 2 Error in mean of the output variables using the Cumulant Method and 

MCS technique - 33-Bus System 

 
 
 

The analysis using Cumulant method is captured in 
graphs of Fig. 4 and 5 wherein mean capacitor and bus 
voltage magnitude values are shown with potential spread 
using corresponding 3σ values. This analysis and graphing 
can be rapidly completed using the proposed method.  

Table III presents the time comparison between Cumulant 
method and Monte Carlo Simulation technique. It is evident 
that to identify this spread in values of capacitor settings and 
voltages at buses, though being important information, is 
difficult to obtain using the conventional Monte Carlo 
Simulation technique due to long solution time. However, 
using the proposed cumulant method, using a few additional 
steps such as computation of the Hessian of the Lagrangian, 
yields the variance values of the optimized control 
(capacitor) and dependent (voltage) variables. 

 
Fig. 3 Error in Standard Deviation of the output variables using the 

Cumulant Method and MCS technique– 33-Bus System 

   

 
Fig. 4 Mean capacitor values are shown with potential spread using 

corresponding 3σ values. 
 

 
Fig. 5 Mean bus voltage magnitude values are shown with potential spread 

using corresponding 3σ values. 
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 This is an important benefit for the RDS operator as 
s/he would like to how far the capacitor values and voltage 
solutions might travel from the mean forecasted and 
anticipate/plan to avoid violations. 

 
 

TABLE III      
TIME COMPARISON BETWEEN CUMULANT METHOD AND MONTE   CARLO 

SIMULATION TECHNIQUE 
   Execution 

Time (seconds) 
CM MCS 

 
System #1 

 
4.44 seconds 

2888.05 
seconds. 

 
 

B.  The 129-Bus Test System Case Study 

To show the accuracy and efficiency of the Cumulant 
method, it also has been tested on a large system of 129-bus 
with nine wind generators each having a mean capacity 
equal to 500 kW. The results have been compared with 5000 
sample points of MCS.  

 Table IV shows the mean absolute percentage error of 
mean and standard deviation of the problem variables.  

 
 

TABLE IV  
MEAN ABSOLUTE PERCENTAGE ERROR OF MEAN AND STANDARD 

DEVIATION OF THE PROBLEM VARIABLES  
 

Variable 
Mean Standard Deviation 

Voltage 0.0025 1.4285 
Real Power 0.2206 0.8180 

Reactive Power 0.4580 1.2150 
Capacitor Size 0.0589 1.2537 

 
 
 

TABLE V      
TIME COMPARISON BETWEEN CUMULANT METHOD AND MONTE   CARLO 

SIMULATION TECHNIQUE 
Execution Time 

(seconds) 
CM MCS 

System #2 12.79 seconds  6504.87 
seconds. 

 
 
The method works well for small and reasonably sized 

systems. 
 

V.  CONCLUSION 

This paper describes the Cumulant method for 
probabilistic optimization of radial distribution systems. 
Random variables used in distribution system are the output 
of wind generators and bus loads. Both are modeled using 
Gaussian distribution function. While a Logarithmic Barrier 
Interior Point Method (LBIPM) based solver is used to solve 
the probabilistic nonlinear optimization problem, the 
cumulants of the system variables are easily computed using 
the inverse of the Hessian of the Lagrangian function.  

The method was implemented and tested on a 33-bus and 
129-bus IEEE test system.  In order to illustrate efficiency 
and accuracy of the cumulant method, the resultant data 
using cumulant method are benchmarked with those 
obtained from Monte Carlo Simulation Technique with 5000 
samples. The errors were found well below 8%. An 
execution time comparison demonstrates superiority of the 
Cumulant method. Less computational burden and 
complexity makes the proposed method very practical and 
advantageous. 

This method can be advantageously used by RDS 
operators to know possible swings in optimal capacitor 
settings and voltage solution giving them additional insight 
into operation of the system and anticipate potential 
operational challenges. 

 

APPENDIX 

Table VI presents the mean values used for the load 
demands, and Table VII presents the feeder data. 

 
 
 

TABLE VI   
 33 BUS RDS - MEAN VALUE OF THE LOADS 

 
Bus 

Number 

Mean 

Real Power (kW) Reactive Power (kW) 

1 0 0.0 
2 0.1 0.06 
3 -0.5 0.0 
4 0.12 0.08 
5 0.06 0.03 
6 0.2 0.1 
7 0.2 0.1 
8 0.2 0.1 
9 0.06 0.02 
10 0.06 0.02 
11 0.045 0.03 
12 0.06 0.035 
13 0.06 0.035 
14 0.06 0.04 
15 0.06 0.01 
16 0.09 0.04 
17 -0.5 0.0 
18 0.09 0.04 
19 0.09 0.04 
20 0.09 0.04 
21 0.09 0.04 
22 0.09 0.04 
23 0.09 0.05 
24 0.42 0.2 
25 0.42 0.2 
26 0.06 0.025 
27 0.06 0.025 
28 0.06 0.02 
29 0.12 0.07 
30 0.2 0.6 
31 0.15 0.07 
32 -0.5 0.1 
33 0.06 0.04 
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TABLE VII   
33 BUS RDS - LINE DATA 

From 
Bus 

To 
Bus 

R (Ω) X (Ω) 
Rating 
(MVA) 

System 
Voltage 

(kV) 
1 2 0.0922 0.047 100 12.66 
2 3 0.493 0.2511 100 12.66 
3 4 0.3662 0.1864 100 12.66 
4 5 0.3811 0.1941 100 12.66 
5 6 0.819 0.707 100 12.66 
6 7 0.1872 0.6188 100 12.66 
7 8 1.7114 1.2351 100 12.66 
8 9 1.03 0.74 100 12.66 
9 10 1.044 0.74 100 12.66 
10 11 0.1966 0.065 100 12.66 
11 12 0.3744 0.1238 100 12.66 
12 13 1.468 1.155 100 12.66 
13 14 0.5416 0.7129 100 12.66 
14 15 0.591 0.526 100 12.66 
15 16 0.7463 0.545 100 12.66 
16 17 1.289 1.721 100 12.66 
17 18 0.732 0.574 100 12.66 
18 19 0.164 0.1565 100 12.66 
19 20 1.5042 1.3554 100 12.66 
20 21 0.4095 0.4784 100 12.66 
21 22 0.7089 0.9373 100 12.66 
22 23 0.4512 0.3083 100 12.66 
23 24 0.898 0.7091 100 12.66 
24 25 0.896 0.7011 100 12.66 
25 26 0.203 0.1034 100 12.66 
26 27 0.2842 0.1447 100 12.66 
27 28 1.059 0.9337 100 12.66 
28 29 0.8042 0.7006 100 12.66 
29 30 0.5075 0.2585 100 12.66 
30 31 0.9744 0.963 100 12.66 
31 32 0.3105 0.3619 100 12.66 
32 33 0.341 0.5302 100 12.66 
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