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Output-Feedback Control for Networked Systems
with Probabillistic Delays
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Abstract—The networked control system (NCS) design for existing results that the delay is smaller than one sampling
continuous- time systems with probabilistic delays is discussed period. In [19], the switched system model was used to
in this paper. The delay is assumed to follow a given probability describe the NCS with long time-varying delays. However
density function. A design scheme for the observer-based . o . !
output feedback controller is proposed to render the closed- the arbltrgry SW'tC,h'ng §cheme was used, which may be
loop networked system exponentially mean-square stable with conservative and infeasible when some subsystems of the
H., performance requirement. The design method is fulfilled NCS are unstable. Recently, the observer- based feedback
through solving linear matrix inequalities. A numerical example  controls have been further studied for discrete-time NCSs
is provided to show the advantages of the proposed technique. with random measurements and time delays. In [20], the

Index Terms—Networked control systems, Delays, Varying closed-loop system was transformed into a delay-free model,

sample interval, Packet dropout. and an observer-basétdl,, control design scheme was given
in terms of a linear matrix inequality (LMI) to render the
I. INTRODUCTION closed-loop systems exponentially mean-square stable.

N many modern complex and distributed control systems, Motivated by the above observations, in this paper, we
I remotely located sensors, actuators, controllers and filté¥$vide a generalized approach to treating NCSs with prob-
are often connected over a sharing communication netwogkilistic delays. Specifically, we study the problem of the
Systems with such architectures are often called the netwofkiPonential stability of NCSs with probabilistic time-varying
based systems, which bring a lot of advantages such as [@@fay. By adopting a LyapunovKrasovskii functional (LKF)
cost, simple installation and maintenance, increased syst@@Proach and linear matrix inequalities (LMIs), new criteria
agility and so on [1]. In spite of these advantages, tHer the exponential stability of such NCSs are derived in the
sharing network makes the analysis and synthesis of suUfeAm of feasibility testing of LMIs, which can be readily
network-based systems challenging. Recently, the netwof@lved by using standard numerical software based on inner-
based control system, which is called the networked contf@inimization methods [22]. We also adopt an appropriate
system (NCS), has attracted much research interest [2]. f&Re-weighting matrix method [23] suitable for the derivation
far, there has been considerable research work appeare@ftghe main results for our considered problem. Numerical
address modelling, stability analysis, control and filteringxample is provided to illustrate that when the variation
prob]ems for NCSs, [3] In [4], an LMl-based robumoo probablllty of the time d6|ay is given, the upper bound of
dynamic output feedback control design was provided usife time delay could be much larger than that when only the
discrete time-delay system approach. Most of the studi¥ariation range of the time delay is known.
on NCSs have concentrated on state feedbacks [14], andYotation : We usel and 0 to denote, respectively,
the commonly investigated systems have been discret@e identity matrix and the zero matrix with compatible
time models, sampled-data models, continuous-time modéigiensions; the superscrigtsand’ — 1’ stand for the matrix
through sampled-data feedback controls. Upon unavailabi@nspose and inverse, respectivély;> 0 means that?’ is
state information, observer-based feedbacks have to be @efeal symmetric positive definite matrik; || is the spectral
formed to achieve control purposes [5]-[13] and [15]. norm; [E{-} denotes the expectation alk{-} means the
As has been mentioned above that it is difficult to de®robability; A...(-) and Ain(-) denote, respectively, the
with the NCS with long time-varying or random delays, anflaximum eigenvalue and the minimum eigenvalue of a
one aspect of the difficulties lies in providing an appropriat@atrix. In symmetric block matrices or complex matrix
modeling method for such NCSs. Since the delay may &pressions, we use the symbolo represent a term that
larger than one sampling period, more than one control si§-induced by symmetry.
nals may arrive at the actuator during one sampling interval.
Moreover, the numbers of the arriving control signals vary Il. PROBLEM FORMULATION
over different sampling intervals,_ thus the dynar_nic model of consider a continuous-time system described by
the overall closed-loop NCS varies from sampling period to
sampling period [16]. So, the closed-loop NCS is naturally z(t) = Az(t) + Bu(t) + Byww(t),
a switched system with the subsystems describing various 2(t) = A.z(t) + Bou(t) + Boww(t), (1)
system dynamics on the different sampling intervals. The
switched system model has been used to describe the NC@herez(t) € R", u(t) € R™, z(t) € R? andw(t) € R?

with delays [17], [18]. However, it is assumed in most of thare the state, the control input, the controlled output and
the disturbance input belonging -0, c0), respectively.
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experiences sensor delay, and it can be described by twd.et the full-order dynamic observer-based feedback con-

random events:

Eventl : y(t)
Event2 : y(t)

dose not experience sensor delay,
experience sensor delay,

trol be

a(t) =
u(t) =

K, 2(t) + Key(t),

Kyi(t), ()

Recall from the theory of functional differential equa-

tions that a continuous and piecewise differentiable initiathere & € R™ is

the observer state, and the feedback

condition guarantees the existence of the solutions. Assug@ins K,, K, and K. are to be designed. Denotgt) =

that the measurement delayt) from sensor to controller [z(t)"&(t)"]" and p = diag{p, ...

,Pn - Then the closed-

is a random variable whose density function is given bpop system of (1) with (4) and (7) is described by

p(T;w(t)), wherex(t) is a vector of parameters qf. In

this paper, we assume that the experience sensor dela§/<t) -

distribution is stationary, that is(f) = w,wherer is a given

vector. For example, if is the normal density function, then
m(t) = {u(t),o(t)}, whereu(t) ando(t) are the mean and

M5(t) + M,8(t — 7(t)) + Bspw(t)

+Z(<Pj(t) = pj) [INO(t) + N6 (t = 7(2))]

variance ofr(t). If the support ofp contains values that ) = M(t) + Bawl(t), (8)
the experience sensor delay cannot attain such as negatignere
values, one could truncate the density functipto have a
specified rang€0, ¥]. In this case, the truncated distribution, p; — A BE, ] N = { 0 0 }
pr is given by L pE.C K, |’ K.C 0 |’
0 0 B
Jr(rt;m(t)) = M, 01 <7(t) <02 (2) My | (In—p)K.D 0 ] > Bow = { KBy ]
fa f(r;m(t))dr r 0 0
Next, consider partitioning the rangga,3] into Ne = | —K.D 0 ] ’
n mutually exclusive partitions whose end points A/, = [ C. B.K, | 9)
are: [0, 1)1, 72] - - - [Th—2, Tn—1][Tn—1, T where

To = 01,Tn = 02 Let pi = Pr(Tj71 < T(t) < T])
Define the indicator functiong;(¢) as follows

ol masTt) <7,
() = { 0: otherwise,

Further we introduce the time-varying sensor delgy), j =

®)

Here, although the dynamic of the closed-loop system
requires only initial values af(0), w(0) andx(t) = ¢(t)(t €
[—02,0]), for later convenience, we extend the range of the
definition of ¢(¢) from [—g2,0] to [-209,0] and define a
continuous functions(t) on [—2¢,, 0] such thatp(t) = &(t).

So, we havet = [¢(t)Tp(t)T]T for t € [—p2,0]. We also

1,...,n wherer,_, < 7;(t) < 7;. In this paper, we definew(t)=0fort e [-7,0).

will consider the application where the sensor defdy) is
stationary, that isy.(t) = p ando(t) = o, for all t. Observe
that

Pr(p; =1) = Pr(rj_1 <7(t) < 75) = pj,
Pr(p; =0) = 1-p; (4)
E(p;) = pj, Var(p;) =p;j(1-p;) (5

Stochastic theory has had a wide range of applications in
both theory and practice, and many results have appeared
tackling various problems ranging from stochastic stabiliza-

tion, filtering and control, [14]. Let
f(6,t) = Mo(t)+ M o(t —7(t)) + Bsww(t),
g(6,t) = NO()+ N 6(t —7(1)). (10)

In this paper, we consider two cases for the time delay Since f(d,t) and g(d,t) in (8) satisfy the local Lipschitz

7(t) :
o Case 1: There exist scalars, oo andh with 0 < o1 <
02 such that

01 < 7(1) < oo, (6)

o Case 2: There exist scalaps and g, with 0 < p1 < 09
such that

7(t) < h.

01 <7(t) < 02.

Case 1 means that the time delay is a smooth functiagn of

and its derivative is known to be upper boundedhilwhile
Case 2 implies that the information of the derivativerof)

condition and the linear growth condition, the existence and
uniqueness of solution to (8) is guaranteed [23]. Moreover,
underv(t) = 0 for t € [—79,0) , it admits a trivial
solution (equilibrium)d = 0. In this work we will follow
the definitions of stochastic stability anfdloo performance
requirements.

Definition 2.1: System (8) is said to be exponentially
mean-square stable (EMS) if there exist constants- 0
andb > 0 such that

E{ISOIP} = ae™™ suwp  E{|l6(o)[’} (11)

o€[—2p2,0]

is unknown. Note that for most of NSCs the communication Definition 2.2: Given) > 0, system (8) is said to be
delay can be converted to be piecewise continuous but B¥S with Hoo performance (EMS-) if under zero-initial
derivative is unavailable [24], in which situation only Caséonditions, it is EMS and satisfies

2 is effective. Anyway, in the sequel, we will focus on oo oo

Case 1 unless specified since the results under Case 2/ E{||z(t)|[*}dt = 772/ E{||w(t)||*}dt (12)
are straightforward from those under Case 1 with special *° 0

treatments . Controller for system (8) to be EMS-will be designed.
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I1l. MAIN RESULTS

Due to the special structure of matricd$. and N, in

system (8), one may choo$g, 0]6 = z to construct certain
terms of Lyapunov functionals in order to establish stability

conditions [25]. In this work,the full information o is
used to construct a suitable function&lj;, t) and a similar
type Lyapunov functionaV (é;,¢) in our study. In details,

motivated by recent construction type for retarded systems
in [25], we chose the following type of functionals suitable
for system (8) to investigate thHoo performance analysis:

J((St,t) = J](ét,t) + Jz(ét,t) + J3(6t,t> (13)
whered, = 6(t + o), 7 € [-2p2,0] and
J1(8¢,t) = 6T ()P (t),
t
J2(0¢,) = / 67 (s)Qd(s)ds +
t—7(t)
2 t
> [ e
i=1 t—T1;
J3(0¢,t) =
0 T
f(8,s) f(0,s)
/ /t+6|: ©og(d, s ] Z{ 9(é,s) }dé‘de—i_
—Q1 t ( T |: f(é, 8) :| )
/ /+.9 |: Og ;S :| Zl 8009(673) d da’
(14)
in which ij = pJ(]. —pj), j = 0,...,’ﬂ, Yo = dlag
{P1,-+yPn,0n},andP >0,Q >0,Q1 >0,Q2 > 0,7 >

0 and Z; > 0 are to be determined. For system (8) with . 1. E. + B, E, —
w(t) = 0, we use the following Lyapunov functional to

obtain EMS conditions:

V (8¢, t)
where V;(;,t) = J;(0;,¢t) with w(t) = 0,

Vi(0¢,t) + Va(O¢,t) + Va(0s,t), (15)

i=1,2,3.

Moreover, we us&V to denote the infinitesimal operator of

V' [25], which is defined as

lm

A—0

LV (611) (E{V ((64a,t + A)|(6e,1))}

K
—V(61,1)] (16)

The following lemma is useful in the development, which
verifies thatV (¢, t) is a Lyapunov functional and mean-
while shows that certain condition could ensure system (8)

to be EMS.

Lemma 3.1: Suppose thak,, K,, K.,P > 0,Q >
0,Q; > 0,Z >0 andZ;, > 0 are given, andV (¢4, t) is
chosen as in (15). If there exists a constant 0 such that

—c E{5(T)}

holds for allt > 0, then system (8) is EMS.
Proof: By Definition 2.1, the proof is similar to [23].

<

E{LV (5, 1)}

holds for all 7(t) €
inequalities hold:

[01, 02] if and only if the following two

< 0
< 0

X+ 012
Y4 0931

If this is the case, for any(t) € RP, the following is true
2T (S + () <
max {)\ma:v(E + QlE ) )\mam(z + QQEI }H
Proof: For anyr(t) €

)|

lo1, 02], there exists amy; € [0, 1]
such thatr (t) = a1+ (1 —ay) 2. This givesX+7(t)2; =
O[t(E + lel) + (]. — at)(E + 9221) < 0. Then

20T (E+7()E1)2(t)

< W Amaz (B + 0131 [|2(1) |2
+FAmaz (2 + 0251)[12(1)])?

< max {)\mam(E +0121), Aoz (E + 9221)}HZ(7§)H2

With the aid ofLemmas3.1 and 3.2, the analysis result
for system (8) to be EMS-ny

Theorem 3.1: Givem > 0, the closed-loop system (8) is
EMS-n)if there exist2n x 2n matricesP > 0,Q > 0,Q; > 0
and @, > 0, 4n x 4n matricesZ > 0,2, > 0,L; > 0, Ly >
0andLs > 0, (8n+q) x 2n matricesF, G and H, such that

[ ©+6¢ orF[I,I] oi—0:H[I,I]
° —Lq 0 <0 (17
L ° [ ] —L3
_6+@0 @F[I7l] \/QI_QQG[IaI]
. —I 0 <0 (18)
[ ] [ ] —LQ
Z<0 (19)
E.LoE, + EiLo By — 721 <0 (20)
E,LsE, + ELsE, — 7 — 7, <0 (21)

where each ellipsi® denotes a block induced by symmetry,

and

© = [I2102n % (6n+9)) " PM + M7 P[I5,02,,5 (614 )]
+MIM, + Fll,, —Ion, 021 ¢ (4nt-q))

+2n, —Ian, 02n><(4n+q)]TFT
+diag{Q + Q1 + Q2, (h — 1)Q,
+G[021, —I2n, I2n, 020 x (2014+-q)]
+[02n, —I2n, Ton, 02y (204-9)) - GT

+H {020, I2n, 020, —I2n, O2rx g

+[02n, I2n, 02, *IzNaoanq]THT

©0 = (M7, pon (022 + (02 — 01)Z1)[M™, poi™ )",
M = [M, My, 02040, Bsuw),

M. = [M,0px6n, Bzw), N =[N, Nz, O (4ntq))»
E, = diag{l5,,02,}, E; = diag{02p,l2n},

Given K,, K;, K. andn > 0, the conditions ofTheorem
3.1 are in terms of strict LMIs which could be easily solved

—Q1,—Q2, *772111}

The next lemma will be used to establish the analysis resHfiNg existing LMI solvers. Note that our purpose is to design

for EMS-n.

LMI schemes to seek these feedback gains K;, and K.

Lemma 3.2: LetS,¥; € RPXP be symmetric constant The maximum tolerant delay bound fes can be searched

matrices. Then,

S4B < 0
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if there existn x n matricesX > 0 andY > 0,2n x 2n can be improved by adopting the cone complementary al-
matricesQ > 0,Q; > 0 and Q> > 0,4n x 4n matrices gorithm [21], which is popular in recent control designs.
Z>0,7Z,>0,L >0,L; >0andL; >0, (8n+¢) x 2n  To avoid using algorithms, we can introduce two scaling
matricesF, G and H, n x n matrix Y,, m x n matrix Y, parameters; > 0 ande, > 0 to improve the LMI conditions
andn x r matrix Y, such that the following LMIs hold for in Theorem 3.2. That is, we replace (48) by

some scalarg; > 0 and ks > 0 (22);

—~diag{P, P} (027 + (2 — 01)Z1)  diag{P, P}
EuilEu + Eli/lEl _ Z <0, (24) < —2diag{61P, €2P} + diag{€112n, 62]2n}
EyLsE, + EjLoF, — 7, < 0, (25) (022 + (02 — 01) Z1 | diag{e1 Ion, 2120} (31)

E,L3E, + B\ LBy — Z — Z1 < 0, (26) iy .
As a result, the conditions (22) and (23) in Theorem 3.2
where E, and E; are as inTheorem3.1, and other are replaced by similar ones with,, replaced byY',, where

parameters are defined by (27).

In this case, the feedback gaih§,, K;, and K. are given = _ _odiacde Y Y . Y Y
by =22 = g €1 Y X 2y x
K. = U (To— XBY)Y W7, tdiaglerlon, 21} (022 + (2 = 01) 1)
Ky = T,y w7, diag{e1 Ion, €21y} (32)
K., = U T, (28)

It is seen that the resulting conditions with this replace-
where U and W are two invertible matrices satisfyingment cover those in Theorem 3.2 as the special choice of
UWT =7 - XYL €1 = €o = 1 IS not required.
Theorem3.2 provides an LMI method towards solving the Finally, we would like to remark that the main results in
matrix inequalities in (17)-(20), and hence presents controlléris section imply several results for stability analysis and
designs of the form (7) to make the closed-loop system (8)abilization via state feedback. We now list two corollaries
EMS-n. The novelty of the result mainly lies in that anbelow for stability tests which are straightforward from
LMI design scheme is proposed for NCSs in continuous-timéheorem 3.1. Consider the following system of the form (8)
system settings with random measurements and time delayih w(t) = 0,
Furthermore, the derivation is proceeded using appropriate
Lyapunov functionals and matrix decoupling techniques. #(t) = Ma(t)+ Mirx(t — 7(t)) + Bsww(t)

In Theorem3.2, we have encountered two conservative +(p(t) — p) [N12(t) + Niya(t — 7(1))] (33)
steps, that is, the first one is that (52) implies (51), and
the second one is (49) to bound the terP(02Z + \yheres € R™, My, M, Ny and Ny, are constant matrices
(Q2 — QI)ZI) P. We give two remarks to address theSQNith appropriate dimensions.

respectively. . So far, EMS-7 conditions for a class of NCSs with
Remark 3.1:The step of (51) and (52) can be improvegyobapilistic delays are provided. By constructing a new LKF
by specifying a matrixi, € R a priori and incorporating the delay probability distribution function,

LMI-based techniques have been developed for achieving

E4 YKo+ KIYT +k7vY?T o
+ o+ Ko i delay dependence stability results.

+r1(K — Ko) (K —Ko) <0 = (51) (29)

where Ky = [BKo, 0,,x (19n+4)]- AS a result, the conditions

Remark 3.2:The other conservative step is in (49} T
(46) where the inequality (48) is used to bound the termPrw = 08 1 01 02],
—diag{P, P}(02Z + (02 — 01)Z1) 'diag{P, P} This step By, = 001, [08 1 0.1 02]", B., =04

(22) and (23) in Theorem 3.2 are replaced by similar ones IV. LLUSTRATIVE EXAMPLE
with =11,Z12, and Z46 replaced by=),,Z}, and Zi;,
respectively, where To illustrate the theoretical developments, we consider a
chemical reactor. The linearized model can be described by

Ely = Eu+diag{YBK,+ KjB"Y, 07044} the following matrices:

E/12 = E12 + [[ny 0nX(77L+q)]TKgBTY[]na 0371]

Eg = 16— [BKo,Onx(rnig) - (30) [ —4.931 —4.886  4.902 0

The reason of the resultant improvement with above re- A = %’im 05;1774 _1127'33 Ef %i ,
placement lies in that wheR is chosen close to a computed 0 0.833 11’ 0 _3 932
T, the deduction step of (29) involves no conservatism, and : ' ' ’
moreover, whenk, = 0 the conditions of (22) and (23) pt — 1000 B, = [ 1 0 ]
are recovered. However, how to choose such a maditijx L0 1.0 0}
involves much difficulty. In case of stabilizable pdid, B), A, = [1921 1915 0 1.908 ],
we could select, such thatd + BK is Hurwitz. ¢ = D=[10 0 0 0],
[
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[ Z11 Z10 \/EF[LI] Vor — o H[I,I]  E5 Ei6 ST
=99 Q 0 S5 0 0
* —Lq q 0 0 0
* * —L3 0 0 0 < 0 (22)
* * * —k1l, 0 0
* * * * —m;lln 0
L * * * * * —I, ]
[ Zn1 Ei Ve F[LI] Vo:—oG[I1]  Eis E16 Eir ]
Za9o Q 0 Za5 0 0
* —L4 q 0 0 0
* * —Ly 0 0 0 < 0 (23)
* * * —kol, 0 0
* * * —,%Q_lln 0
L * * * * —I, ]
En =
YA+ ATY (ATX +YA+pCTYl 4+ 77 0 0 0 Y B
(XA+ATX + pY.C+ pCTYL) (1-p)YeD (1—p)TcD 0  XByyw+ YeByy
* 0 0 0 0
* * 0 0 0
* * * O4n 0
* * * * 0Oq
+d1ag{Q+Q1 +Q2a( )Q Qla_Q27_n2Iq}
T ~
+F [12717 —Ion, 025 % 4n+q)] [1271; 12n702n><(4n+q)] P
T ~
+G [02717 —Ion, Iop, 02n><(2n+q ] [0271; —Iop, Ion, 02n><(2n+q)] GT
~ T ~
+H[02nal2n702n7 I2n702n><q] [02n7[2n;02n7_[2n702n><q] HT7
Zi2 =
ATY  (ATX 4 pCTYT + 717 0 0o CTYT
ATY (ATX + ,DC’TTZ) 0 gOoCTTZ
0 (1-p)DTYT 0 —oDTYT
0 (1-p)DTYL 0 —poDTYT
04n><n O4n><n 04n><n O4n><n
BZwY B;{wX + ByTwTCT 0 0
- . Y Y Y Y = =
:22:—2d1ag{ |: v X :l 5 |: vy X :| }+Q2Z+(Q2—Q1)Z17
cr +xI'BT
- Y Y TbTBT } cT
=15 = , Zos = , 216 = , Zi7= z . 27
o [ O(7n+q)><n ] 2 |: O3nxn ] 10 [ 0(7n+q)><n 1 06n><p ( )
BT

Using the LMI toolbox in MATLAB, the ensuing results areThe corresponding feedback gains are evaluated Witk 1

summarized by: andU = I — XY ! to yield
K - [ 0.7573 0.7142 0.3973  0.8391
“ [ 02138 82185 13.8882 —3.4177
0.1448  —0.0020 0.0005 0.0002 K, — 0.3144 —0.7983 —3.8703 1.7806
—0.0020 0.1442 —0.0005 0.0009 | —0.6559  7.2776  14.8651 —6.8895
X = 0.0005 —0.0005 0.1420 0.0001 |’ K - [ 02634 —0.1587 -3.1912 1.5713
0.0002  0.0009  0.0001 0.1463 ¢ | -1.0803 85794 12.2875 —3.9658
0.2142  —0.0560 0.0421 —0.0153
v — —0.0560 0.0383 —0.0138 0.0515 Simulation of the closed-loop system is performed and the
- 0.0421 —0.0138 0.0292 0.0435 |’ ensuing state trajectories are presented in Fig. 1. It is clearly
| —0.0153 0.0515  0.0435  0.2597 evident that the the closed-loop system is EMSS-5
ISBN: 978-988-19252-8-2 WCE 2013

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

T
. States T.I’EJEC‘DFIES for subsysterm 2 ) ] '](?(67 S) :|
; ; : Z d 37
S O /tgz[wogh } [@og(&S) ’ (37
L Lt f6s) 1" £(8,5)
Z1 ds
t+0o 9009(6) S) @09(57 S)

=25()TPF(8,1) + ()T (Q + Q1 + Q2)8(t)
—(1-— T't)5TTQ6T — Z 5?@1'51'

i=1

- { <p€;(z’c§,s)s) } (02Z + (02 — 01)21)

- { wﬁ%ﬁ) }

/t [ f(0,s) }TZ{ f(9,s) ]ds
V. CONCLUSION t—r(t) L P09(6;8) ©09(8, s)

Tl fGs) ], [ f6)
An LMI method has been presented for observer-based [ ’5 } 7 { ’ } ds
H, control of NCSs in continuous-time system settings J¢—7(t) 0g(9, ) 5)
with random measurements and probabilistic time delays. [t—7(t) T
P |: f((S,S)) ] (Z+Zl)[ f(4,s) :|d8

Fig. 1. Closed-loop state trajectories

Improved schemes have been shown for the design method. Y ©09(0, s
It has been established that these conditions reduce the ’

t t 38
conservatism by considering not only the range of the tlmeﬂ/}l( ) 2() + ¥s(t) (38)
delays, but also the probability distribution of their variation.
A numerical simulation example has been presented to shg

the merits and advantages of the proposed techniques.

t
- .
APPENDIXA —2x(t) F/t_T(t) 5(s)ds
PROOFOF THEOREM 3.1

Note that, im); (t), the following inequality holds for any
x 4n matrix L > 0, thus :

t
_ T f(57 5)
The proof is twofold: we first choose a functiondl of = —2x(t) F[IQ”’I%]/t ) [ (p(s) —p)g(d, s) ds
the form (13) to show that th& ., performance requirement T 7
(12) is satisfied, and then use the Lyapunov functional V of S ( ()" [12”712”] Lyt [IQT; In]” F7X(1)
the form (15) to prove the EMS property. Denote { ) } I
6 1
V(@) = [6)T.0T. 6T 6T w(®]T, [ " e
6, = 6(t—10;), 6 :=0(t—0), i=1,2.(34 X d
(=) (E=0) i=12.034) { (o(s) ~ )g(6.) } ’
From the Newton-Leibniz formul®d = 4(¢) — 0, — o ) _ o )
f s)ds, we have that and, similarly, iny;(t) (i = 2;3), the following inequali-
t=r(t)? ties hold for any4n x 4n matricesL; > 0 :
I t
i (t) == 2x()TF (5t—57—/ 5(s)ds| =0, t-er .
1( ) ( ) ( ) b—r(t) ( ) —2X<t)TG (5(8)d8

t—7(t)
6(S)d8‘| = 0, < (T(t) - «Ql)X(t)TG [-[27“ IZn] LEI [-[27“ IZn]T GTX(t)

+/tt7j; { (<p(8)f—(6;)§;(5,5) rLz

{ (5] o0 (5.) } s

Ua(t) = 247G |61 — 0. — /t_ )

t—o1

—02

t—7(t)
P3(t) == 2x() TG |5, — 6, —/ (5(3)ds] =0 (35)
¢

X
hold for any(8n + ¢) x 2n matricesF, G and H. Let the

functional J(d¢;¢) be chosen as in (13). and
Then, from (16),£J for the evolution ofJ is given by .
[25] —2x(t)TH 5(s)ds
LJ(8:8) = 25(t) PF(5,8) +3(0)(Q + Q1 + Q2)d(t) - (t);_T((tt))TH o 1o 25 o T T HT(0)
2 S (02— T X o2n,d2n| Lig 2n; 12n X
—(1 =)0 Q6, — 67 Q40 t—(t) s, T
o S e Sman ]
5 S o )
+ { 00g(d, ) } (92Z+ (02 Q1)Z1) X { (@(s)f—( ;)‘)92](57 5) } ds
f(6,5)
x { ©0g(9, 3) } (36) Considering (6), (8), (10) and taking the expectation on
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(38), we have if (22)-(26) are satisfied, then (17)-(20) hold with > 0
chosen as in (39), and thus the result follows immediately
E{LV (31, 1) + [l2(0)[1* — n* w(t)]|*} from Theorem3.1. Define
<E{x(t)"(0+ 600+ 7(t)01 + (1(t) — 01)O> I 1
(o2 = T(£)©3)X(1)} +wa(t), (39) S = { WY 0 } (44)
and which is invertible and produces
O1 = Flln, Ian) Ly (T2, L] F7, STP = [ X 0 ] STPS = { v ox } )
Oy = Gllon, Ion) Ly [Ton, I24]" G7, X U] y X
O3 = H[loy, Ion) L3" [Ion, )" HT, We first show that (22) implies (17). By Schur comple-
t £05,9) T ment, the matrix inequality (17) holds if and only if (46) In
t) = ! E,0FE, i f
Ya(t) /tT(t) { 2095, 5) } (EuLy view o
Z + — 01)Z7 — diag{ P, P
FELLE, ~ Z) { i ] * e =02 et 1)
¥og T’S x(02Z + (02 — 01)Z1)
+/t—.91 |: ‘]"(67 3) :| (E L,E X(QQZ + (,QQ — Ql)Zl — dlag{P, P}) >0 (47)
57 u u
t—r(t) L #0d( S)f(é | we obtain
75 —
BB - 21) [ 0g(d, 5) } o —diag{P, P}(02Z + (02 — 01)Z1)  diag{P, P}
+/tT(t) [ £ 5) r (EuL3E < —2diag{P, P} + 02Z + (02 — 01)Z: (48)
ud3Ly
t—oo ¢0g(9,s) we have that (46) holds if (49) holds

Now, applying the congruence transformation

f(6,5)
ELsE —7Z—Z d :
kst ) { s diag{$, S, S, 5,1,,5,5,5,5,5,5} to (49) and setting

8009(55 S)

Applying the Schur complement, conditions (17) and (18) ¢ = §7QS, O, = STQ,S, Qs = STQ,S,
are equivalent to 5 o diag(S, $}T Zdiag{$5, S},
©1 = O+60+ 0101+ (02 —01)03 <0, (40) Z, = diag{S,S}! Z diag{8S, S},
Oz = O+060+ 0201+ (02— 01)02 <0, (41) L; = diag{S,S}T Lidiag{S,S}, i=1,2,3
From (40),(41), (19)-(20) andemma3.2, we deduce from Fo= diag{5,5,5, SY'Fs,
(39) that G = diag{s,S,S,S}*'GS,
- -
E{LI(00, 1) + ]| 20)* [ ()]]*} H = diag{5.5.55) HS,
< max { A maz (01), Amaz (©2) VE{[X[?} <0 (42) Y, = XBK,W'Y +UK, W'Y,
Und initial conditi d noticing(é7; T) > 0 f To = KW
nder zero-initial conditions and noticing(ér;7") > 0 for Y, — UK, (50)

anyT > 0, integrating (42) fronD to oo yields that theH .
performance requirement (12) is satisfied. With a procedufg obtain that (49) is equivalent to

similar to the above, we can arrive under the given conditions o

and by virtue ofLemma3.2 that, E+YK+K'YT < o, (51)

E{LV(6:,t)} <max {Anaz(01), Amaa(02) JE{||6(t)||?}  Where

Hence, system (8) is EMS frotnemma3.1. = i )

17E1r Eie JarF[IL 1] oz —erH[I, ]
0 0

APPENDIXB . S22 )
PROOFOF THEOREM 3.2 . ° —14 0
[ ]

It cen be seen from (22) or (23) that * * —Ls

Y Y Yf: [51T5a55570n><8n]T;
|:Y X:| >0 K= [E’{GaOnXlQn] .

which gives XY > 0, implying that I — —XY ! is Inequality (51) holds if the following is true for any; >
invertible. Now letUU and W be any invertible matrices 0,
satisfyingUW7T =T — XY ~!. Choose

i E+rYYT i KTK < 0, (52)
X U _ Y-+ w
P= [ UT o« } >0, P = [ wT } >0 (43)  which is equivalent to
where each ellipsisc denotes a positive definite matrix ~§ Y KT
block that will not influence the subsequent development (of YNT —k1ly, 0 < 0 (53)
course it makesPP~! = I). In the sequel, we show that K 0 —fqlfn
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€) [MT, oo NT]diag{P, P}1 VOrFILL I /oo — o1H[I,I]
o —diag{P, P}(02Z + (02 — 01)Z1) diag{P, P} 0 0 < 0. (46)
° ° -1 0
[ ] [ ] [ ] —L3
G [MT, oo NTdiag{ P, P} VOrFILI] oz — o1H[I,I]
o —2d1ag{P, P} + QQZ + (QQ - Ql)Zl 0 0 < 0 (49)
o o —I 0
[ ] [ ] ° —L3

The above inequality is, by Schur complement agaif4]

exactly that of (22), and we conclude that this implies (17),
Next we show that (23) implies (18). This can be don

by using a procedure analogous to the above. As for the]

verification of other inequalities, applying the congruence

transformation diag{.S, S} to (19)-(20) and setting matrix [17]

variables as in (50), it is seen that (19)-(20) are equivalent
to (24)- (26). So far, we have proven that (22)-(26) ensure

(17)-(20) and thus the closed-loop system (8) is EM3nAn (18]
this case, from (50), the feedback gains are computed ag1is

(28).
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