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Abstract—The networked control system (NCS) design for
continuous- time systems with probabilistic delays is discussed
in this paper. The delay is assumed to follow a given probability
density function. A design scheme for the observer-based
output feedback controller is proposed to render the closed-
loop networked system exponentially mean-square stable with
H∞ performance requirement. The design method is fulfilled
through solving linear matrix inequalities. A numerical example
is provided to show the advantages of the proposed technique.

Index Terms—Networked control systems, Delays, Varying
sample interval, Packet dropout.

I. I NTRODUCTION

I N many modern complex and distributed control systems,
remotely located sensors, actuators, controllers and filters

are often connected over a sharing communication network.
Systems with such architectures are often called the network-
based systems, which bring a lot of advantages such as low
cost, simple installation and maintenance, increased system
agility and so on [1]. In spite of these advantages, the
sharing network makes the analysis and synthesis of such
network-based systems challenging. Recently, the network-
based control system, which is called the networked control
system (NCS), has attracted much research interest [2]. So
far, there has been considerable research work appeared to
address modelling, stability analysis, control and filtering
problems for NCSs, [3]. In [4], an LMI-based robustH∞

dynamic output feedback control design was provided using
discrete time-delay system approach. Most of the studies
on NCSs have concentrated on state feedbacks [14], and
the commonly investigated systems have been discrete-
time models, sampled-data models, continuous-time models
through sampled-data feedback controls. Upon unavailable
state information, observer-based feedbacks have to be per-
formed to achieve control purposes [5]-[13] and [15].

As has been mentioned above that it is difficult to deal
with the NCS with long time-varying or random delays, and
one aspect of the difficulties lies in providing an appropriate
modeling method for such NCSs. Since the delay may be
larger than one sampling period, more than one control sig-
nals may arrive at the actuator during one sampling interval.
Moreover, the numbers of the arriving control signals vary
over different sampling intervals, thus the dynamic model of
the overall closed-loop NCS varies from sampling period to
sampling period [16]. So, the closed-loop NCS is naturally
a switched system with the subsystems describing various
system dynamics on the different sampling intervals. The
switched system model has been used to describe the NCS
with delays [17], [18]. However, it is assumed in most of the
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existing results that the delay is smaller than one sampling
period. In [19], the switched system model was used to
describe the NCS with long time-varying delays. However,
the arbitrary switching scheme was used, which may be
conservative and infeasible when some subsystems of the
NCS are unstable. Recently, the observer- based feedback
controls have been further studied for discrete-time NCSs
with random measurements and time delays. In [20], the
closed-loop system was transformed into a delay-free model,
and an observer-basedH∞ control design scheme was given
in terms of a linear matrix inequality (LMI) to render the
closed-loop systems exponentially mean-square stable.

Motivated by the above observations, in this paper, we
provide a generalized approach to treating NCSs with prob-
abilistic delays. Specifically, we study the problem of the
exponential stability of NCSs with probabilistic time-varying
delay. By adopting a LyapunovKrasovskii functional (LKF)
approach and linear matrix inequalities (LMIs), new criteria
for the exponential stability of such NCSs are derived in the
form of feasibility testing of LMIs, which can be readily
solved by using standard numerical software based on inner-
minimization methods [22]. We also adopt an appropriate
free-weighting matrix method [23] suitable for the derivation
of the main results for our considered problem. Numerical
example is provided to illustrate that when the variation
probability of the time delay is given, the upper bound of
the time delay could be much larger than that when only the
variation range of the time delay is known.
Notation : We use I and 0 to denote, respectively,

the identity matrix and the zero matrix with compatible
dimensions; the superscriptsT and′−1′ stand for the matrix
transpose and inverse, respectively;W > 0 means thatW is
a real symmetric positive definite matrix;‖ · ‖ is the spectral
norm; IE{·} denotes the expectation andPr{·} means the
probability; λmax(·) and λmin(·) denote, respectively, the
maximum eigenvalue and the minimum eigenvalue of a
matrix. In symmetric block matrices or complex matrix
expressions, we use the symbol• to represent a term that
is induced by symmetry.

II. PROBLEM FORMULATION

Consider a continuous-time system described by

ẋ(t) = Ax(t) +Bu(t) +Bxww(t),

z(t) = Azx(t) +Bzu(t) +Bzww(t), (1)

wherex(t) ∈ Rn, u(t) ∈ Rm, z(t) ∈ Rp andw(t) ∈ Rq

are the state, the control input, the controlled output and
the disturbance input belonging toL2[0,∞), respectively.
A,B,Bxw, Bz, Bzw andCz are known constant real matrices
with appropriate dimensions. The pair(A,B) is assumed
stabilizable. The measured outputy(t) ∈ Rr frequently
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experiences sensor delay, and it can be described by two
random events:
{

Event1 : y(t) dose not experience sensor delay,

Event2 : y(t) experience sensor delay,

Recall from the theory of functional differential equa-
tions that a continuous and piecewise differentiable initial
condition guarantees the existence of the solutions. Assume
that the measurement delayτ(t) from sensor to controller
is a random variable whose density function is given by
p(τ ;π(t)), where π(t) is a vector of parameters ofp. In
this paper, we assume that the experience sensor delay
distribution is stationary, that is,π(t) = π,whereπ is a given
vector. For example, ifp is the normal density function, then
π(t) = {µ(t), σ(t)}, whereµ(t) andσ(t) are the mean and
variance ofτ(t). If the support ofp contains values that
the experience sensor delay cannot attain such as negative
values, one could truncate the density functionp to have a
specified range[0, ϑ]. In this case, the truncated distribution,
pT is given by

fT (τ ;π(t)) =
f(τ ;π(t))

∫ β

α
f(r;π(t))dr

, ̺1 ≤ τ(t) ≤ ̺2 (2)

Next, consider partitioning the range[α, β] into
n mutually exclusive partitions whose end points
are: [τ0, τ1][τ1, τ2] . . . [τn−2, τn−1][τn−1, τn] where
τ0 = ̺1, τn = ̺2. Let ρj = Pr(τj−1 ≤ τ(t) ≤ τj).
Define the indicator functionsϕj(t) as follows

ϕj(t) =

{

1 : τj−1 ≤ τ(t) ≤ τj ,

0 : otherwise,
(3)

Further we introduce the time-varying sensor delayτj(t), j =
1, . . . , n where τj−1 ≤ τj(t) ≤ τj . In this paper, we
will consider the application where the sensor delayτ(t) is
stationary, that is,µ(t) = µ andσ(t) = σ, for all t. Observe
that

Pr(ϕj = 1) = Pr(τj−1 ≤ τ(t) ≤ τj) = ρj ,

Pr(ϕj = 0) = 1 − ρj (4)

IE(ϕj) = ρj , Var(ϕj) = ρj(1 − ρj) (5)

In this paper, we consider two cases for the time delay
τ(t) :

• Case 1: There exist scalars̺1, ̺2 andh with 0 ≤ ̺1 <

̺2 such that

̺1 ≤ τ(t) ≤ ̺2,
˙τ(t) ≤ h. (6)

• Case 2: There exist scalars̺1 and̺2 with 0 ≤ ̺1 < ̺2

such that
̺1 ≤ τ(t) ≤ ̺2.

Case 1 means that the time delay is a smooth function oft

and its derivative is known to be upper bounded byh, while
Case 2 implies that the information of the derivative ofτ(t)
is unknown. Note that for most of NSCs the communication
delay can be converted to be piecewise continuous but its
derivative is unavailable [24], in which situation only Case
2 is effective. Anyway, in the sequel, we will focus on
Case 1 unless specified since the results under Case 2
are straightforward from those under Case 1 with special
treatments .

Let the full-order dynamic observer-based feedback con-
trol be

˙̂x(t) = Kax̂(t) +Kcy(t),

u(t) = Kbx̂(t), (7)

where x̂ ∈ Rn is the observer state, and the feedback
gainsKa,Kb and Kc are to be designed. Denoteδ(t) =
[x(t)T x̂(t)T ]T and ρ = diag{ρ1, . . . , ρn}. Then the closed-
loop system of (1) with (4) and (7) is described by

δ̇(t) = Mδ(t) +Mτδ(t− τ(t)) +Bδww(t)

+

n
∑

j=1

(ϕj(t) − ρj) [Nδ(t) +Nτδ(t− τ(t))]

z(t) = Mzδ(t) +Bzww(t), (8)

where

M =

[

A BKb

ρKcC Ka

]

, N =

[

0 0
KcC 0

]

,

Mτ =

[

0 0
(In − ρ)KcD 0

]

, , Bδw =

[

Bxw

KcByw

]

Nτ =

[

0 0
−KcD 0

]

,

Mz =
[

Cz BzKa

]

(9)

Here, although the dynamic of the closed-loop system
requires only initial values of̂x(0),w(0) andx(t) = φ(t)(t ∈
[−̺2, 0]), for later convenience, we extend the range of the
definition of φ(t) from [−̺2, 0] to [−2̺2, 0] and define a
continuous function ˆφ(t) on [−2̺2, 0] such thatφ̂(t) = x̂(t).
So, we haveξ = [φ(t)T φ̂(t)T ]T for t ∈ [−̺2, 0]. We also
definew(t) = 0 for t ∈ [−τ0, 0).

Stochastic theory has had a wide range of applications in
both theory and practice, and many results have appeared
tackling various problems ranging from stochastic stabiliza-
tion, filtering and control, [14]. Let

f(δ, t) := Mδ(t) +Mτδ(t− τ(t)) +Bδww(t),

g(δ, t) := Nδ(t) +Nτδ(t− τ(t)). (10)

Sincef(δ, t) and g(δ, t) in (8) satisfy the local Lipschitz
condition and the linear growth condition, the existence and
uniqueness of solution to (8) is guaranteed [23]. Moreover,
under v(t) = 0 for t ∈ [−τ0, 0) , it admits a trivial
solution (equilibrium)δ ≡ 0. In this work we will follow
the definitions of stochastic stability andH∞ performance
requirements.

Definition 2.1: System (8) is said to be exponentially
mean-square stable (EMS) if there exist constantsa > 0
and b > 0 such that

IE{||δ(t)||2} = ae−bt sup
σ∈[−2̺2,0]

IE{||δ(σ)||2} (11)

Definition 2.2: Givenη > 0, system (8) is said to be
EMS withH∞ performance (EMS-η) if under zero-initial
conditions, it is EMS and satisfies

∫

∞

0

IE{||z(t)||2}dt = η2

∫

∞

0

IE{||w(t)||2}dt (12)

Controller for system (8) to be EMS-ηwill be designed.
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III. M AIN RESULTS

Due to the special structure of matricesMτ andNτ in
system (8), one may choose[In 0]δ = x to construct certain
terms of Lyapunov functionals in order to establish stability
conditions [25]. In this work,the full information ofδ is
used to construct a suitable functionalJ(δt, t) and a similar
type Lyapunov functionalV (δt, t) in our study. In details,
motivated by recent construction type for retarded systems
in [25], we chose the following type of functionals suitable
for system (8) to investigate theH∞ performance analysis:

J(δt, t) = J1(δt, t) + J2(δt, t) + J3(δt, t) (13)

whereδt = δ(t+ σ), τ ∈ [−2̺2, 0] and

J1(δt, t) = δT (t)Pδ(t),

J2(δt, t) =

∫ t

t−τ(t)

δT (s)Qδ(s)ds+

2
∑

i=1

∫ t

t−τi

δT (s)Qiδ(s)ds

J3(δt, t) =
∫ 0

−̺2

∫ t

t+θ

[

f(δ, s)
ϕ0g(δ, s)

]T

Z

[

f(δ, s)
ϕ0g(δ, s)

]

dsdθ +

∫

−̺1

−̺2

∫ t

t+θ

[

f(δ, s)
ϕ0g(δ, s)

]T

Z1

[

f(δ, s)
ϕ0g(δ, s)

]

dsdθ,

(14)

in which ρ̂j =
√

ρj(1 − ρj), j = 0, . . . , n, ϕ0 = diag
{ρ̂1, . . . , ρ̂n, 0n} , andP > 0, Q > 0, Q1 > 0, Q2 > 0, Z >

0 and Z1 > 0 are to be determined. For system (8) with
w(t) = 0, we use the following Lyapunov functional to
obtain EMS conditions:

V (δt, t) = V1(δt, t) + V2(δt, t) + V3(δt, t), (15)

whereVi(δt, t) = Ji(δt, t) with w(t) = 0 , i = 1, 2, 3.
Moreover, we useLV to denote the infinitesimal operator of
V [25], which is defined as

LV (δt, t) = lim
∆→0+

1

∆
[IE{V ((δt+∆, t+ ∆)|(δt, t))}

−V (δt, t)] (16)

The following lemma is useful in the development, which
verifies thatV (ϕt, t) is a Lyapunov functional and mean-
while shows that certain condition could ensure system (8)
to be EMS.

Lemma 3.1: Suppose thatKa,Kb,Kc, P > 0, Q >

0, Qi > 0, Z > 0 and Z1 > 0 are given, andV (ϕt, t) is
chosen as in (15). If there exists a constantc > 0 such that

IE{LV (δt, t)} ≤ −c IE{δ(T )}

holds for all t ≥ 0, then system (8) is EMS.
Proof: By Definition 2.1, the proof is similar to [23].
The next lemma will be used to establish the analysis result

for EMS-η.
Lemma 3.2: LetΣ,Σ1 ∈ Rp×p be symmetric constant

matrices. Then,

Σ + τ(t)Σ1 < 0

holds for all τ(t) ∈ [̺1, ̺2] if and only if the following two
inequalities hold:

Σ + ̺1Σ1 < 0

Σ + ̺2Σ1 < 0

If this is the case, for anyz(t) ∈ Rp, the following is true

z(t)T (Σ + τ(t)Σ1)z(t) ≤
max

{

λmax(Σ + ̺1Σ1), λmax(Σ + ̺2Σ1)
}

‖z(t)‖2

Proof: For anyτ(t) ∈ [̺1, ̺2], there exists anαt ∈ [0, 1]
such thatτ(t) = αt̺1+(1−αt)̺2. This givesΣ+τ(t)Σ1 =
αt(Σ + ̺1Σ1) + (1 − αt)(Σ + ̺2Σ1) < 0. Then

z(t)T (Σ + τ(t)Σ1)z(t)

≤ αtλmax(Σ + ̺1Σ1)‖z(t)‖2

+λmax(Σ + ̺2Σ1)‖z(t)‖2

≤ max
{

λmax(Σ + ̺1Σ1), λmax(Σ + ̺2Σ1)
}

‖z(t)‖2

With the aid ofLemmas3.1 and 3.2, the analysis result
for system (8) to be EMS-η.

Theorem 3.1: Givenη > 0, the closed-loop system (8) is
EMS-η if there exist2n×2n matricesP > 0, Q > 0, Q1 > 0
andQ2 > 0, 4n×4n matricesZ > 0, Z1 > 0, L1 > 0, L2 >

0 andL3 > 0, (8n+q)×2n matricesF,G andH, such that




Θ + Θ0
√
̺1F [I, I]

√
̺1 − ̺2H[I, I]

• −L1 0
• • −L3



 < 0 (17)





Θ + Θ0
√
̺2F [I, I]

√
̺1 − ̺2G[I, I]

• −L1 0
• • −L2



 < 0 (18)

EuL1Eu + ElL1El − Z ≤ 0 (19)

EuL2Eu + ElL2El − Z1 ≤ 0 (20)

EuL3Eu + ElL3El − Z − Z1 ≤ 0 (21)

where each ellipsis• denotes a block induced by symmetry,
and

Θ = [I2n02n×(6n+q)]
TPM̃ + M̃TP [I2n02n×(6n+q)]

+M̃T
z M̃z + F [I2n,−I2n, 02n×(4n+q)]

+[I2n,−I2n, 02n×(4n+q)]
TFT

+diag
{

Q+Q1 +Q2, (h− 1)Q,−Q1,−Q2,−η2Iq
}

+G[02n,−I2n, I2n, 02n×(2n+q)]

+[02n,−I2n, I2n, 02n×(2n+q)]
TGT

+H[02n, I2n, 02n,−I2N , 02n×q]

+[02n, I2n, 02n,−I2N , 02n×q]
THT

Θ0 = [M̃T , ϕ0ñ
T ](̺2Z + (̺2 − ̺1)Z1)[M̃

T , ϕ0ñ
T ]T ,

M̃ = [M,Mτ , 02n×4n, Bδw],

M̃z = [Mz, 0p×6n, Bzw], Ñ = [N,Nτ , 02n×(4n+q)],

Eu = diag{I2n, 02n}, El = diag{02n, l2n},
GivenKa,Kb,Kc andη > 0, the conditions ofTheorem

3.1 are in terms of strict LMIs which could be easily solved
using existing LMI solvers. Note that our purpose is to design
LMI schemes to seek these feedback gainsKa,Kb andKc.
The maximum tolerant delay bound for̺2 can be searched
and the minimum level ofη can be computed simultaneously.

Theorem 3.2:Given the delay-interval bounds̺1 >

0, ̺2 > 0 and η > 0, the closed-loop system (8) is EMS-η
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if there existn × n matricesX > 0 and Y > 0, 2n × 2n
matricesQ̃ > 0, Q̃1 > 0 and Q̃2 > 0, 4n × 4n matrices
Z̃ > 0, Z̃1 > 0, L̃1 > 0, L̃1 > 0 and L̃1 > 0, (8n+ q) × 2n
matricesF̃ , G̃ and H̃, n × n matrix Υa, m × n matrix Υb

andn× r matrix Υc, such that the following LMIs hold for
some scalarsκ1 > 0 andκ2 > 0 (22);

EuL̃1Eu + ElL̃1El − Z̃ < 0, (24)

EuL̃2Eu + ElL̃2El − Z̃1 < 0, (25)

EuL̃3Eu + ElL̃3El − Z̃ − Z̃1 < 0, (26)

where Eu and El are as in Theorem 3.1, and other
parameters are defined by (27).

In this case, the feedback gainsKa,Kb andKc are given
by

Ka = U−1(Υa −XBΥb)Y
−1W−T ,

Kb = ΥbY
−1W−T ,

Kc = U−1Υc, (28)

where U and W are two invertible matrices satisfying
UWT = I −XY −1.

Theorem3.2 provides an LMI method towards solving the
matrix inequalities in (17)-(20), and hence presents controller
designs of the form (7) to make the closed-loop system (8)
EMS-η. The novelty of the result mainly lies in that an
LMI design scheme is proposed for NCSs in continuous-time
system settings with random measurements and time delays.
Furthermore, the derivation is proceeded using appropriate
Lyapunov functionals and matrix decoupling techniques.

In Theorem3.2, we have encountered two conservative
steps, that is, the first one is that (52) implies (51), and
the second one is in (49) to bound the term−P

(

̺2Z +

(̺2 − ̺1)Z1

)−1
P . We give two remarks to address these,

respectively.
Remark 3.1:The step of (51) and (52) can be improved

by specifying a matrixK0 ∈ Rm×n a priori

Ξ̃ + Ỹ K̃0 + K̃T
0 Ỹ

T + κ−1
1 Ỹ Ỹ T

+κ1(K̃ − K̃0)
T (K̃ − K̃0) < 0 ⇒ (51) (29)

whereK̃0 = [BK0, 0n×(19n+q)]. As a result, the conditions
(22) and (23) in Theorem 3.2 are replaced by similar ones
with Ξ11,Ξ12, and Ξ16 replaced byΞ′

11,Ξ
′

12 and Ξ′

16,

respectively, where

Ξ′

11 = Ξ11 + diag
{

Y BK0 +KT
0 B

TY, 07n+q

}

Ξ′

12 = Ξ12 +
[

In, 0n×(7n+q)

]T
KT

0 B
TY [In, 03n

]

Ξ′

16 = Ξ16 −
[

BK0, 0n×(7n+q)

]T
. (30)

The reason of the resultant improvement with above re-
placement lies in that whenK0 is chosen close to a computed
Υb the deduction step of (29) involves no conservatism, and
moreover, whenK0 = 0 the conditions of (22) and (23)
are recovered. However, how to choose such a matrixK0

involves much difficulty. In case of stabilizable pair(A,B),
we could selectK0 such thatA+BK0 is Hurwitz.

Remark 3.2:The other conservative step is in (49)⇒
(46) where the inequality (48) is used to bound the term
−diag{P, P}

(

̺2Z + (̺2 − ̺1)Z1

)−1
diag{P, P} This step

can be improved by adopting the cone complementary al-
gorithm [21], which is popular in recent control designs.
To avoid using algorithms, we can introduce two scaling
parametersǫ1 > 0 andǫ2 > 0 to improve the LMI conditions
in Theorem 3.2. That is, we replace (48) by

−diag{P, P}
(

̺2Z + (̺2 − ̺1)Z1

)−1
diag{P, P}

≤ −2diag{ǫ1P, ǫ2P} + diag{ǫ1I2n, ǫ2I2n}
[

̺2Z + (̺2 − ̺1)Z1

]

diag{ǫ1I2n, ǫ2I2n}. (31)

As a result, the conditions (22) and (23) in Theorem 3.2
are replaced by similar ones withΥ22 replaced byΥ′

22 where

Ξ′

22 = −2diag

{

ǫ1

[

Y Y

Y X

]

, ǫ2

[

Y Y

Y X

]}

+diag{ǫ1I2n, ǫ2I2n}
[

̺2Z + (̺2 − ̺1)Z1

]

diag{ǫ1I2n, ǫ2I2n}. (32)

It is seen that the resulting conditions with this replace-
ment cover those in Theorem 3.2 as the special choice of
ǫ1 = ǫ2 = 1 is not required.

Finally, we would like to remark that the main results in
this section imply several results for stability analysis and
stabilization via state feedback. We now list two corollaries
below for stability tests which are straightforward from
Theorem 3.1. Consider the following system of the form (8)
with w(t) = 0,

ẋ(t) = M1x(t) +M1τx(t− τ(t)) +Bδww(t)

+(ϕ(t) − ρ) [N1x(t) +N1τx(t− τ(t))] ,(33)

wherex ∈ Rn,M1,M1τN1 andN1τ are constant matrices
with appropriate dimensions.

So far, EMS-η conditions for a class of NCSs with
probabilistic delays are provided. By constructing a new LKF
and incorporating the delay probability distribution function,
LMI-based techniques have been developed for achieving
delay dependence stability results.

IV. I LLUSTRATIVE EXAMPLE

To illustrate the theoretical developments, we consider a
chemical reactor. The linearized model can be described by
the following matrices:

A =









−4.931 −4.886 4.902 0
−5.301 −5.174 −12.8 5.464

6.4 0.347 −11.773 −1.04
0 0.833 11.0 −3.932









,

Bt =

[

1 0 0 0
0 1 0 0

]

, Bz =
[

1 0
]

Az =
[

1.921 1.915 0 1.908
]

,

C = D =
[

10 0 0 0
]

,

Bxw =
[

0.8 1 0.1 0.2
]T
,

Byw = 0.01,
[

0.8 1 0.1 0.2
]T
, Bzw = 0.4
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Ξ11 Ξ12
√
̺1F̃ [I, I]

√
̺2 − ̺1H̃[I, I] Ξ15 Ξ16 Ξ17

Ξ22 0 0 Ξ25 0 0

∗ −L̃1 0 0 0 0

∗ ∗ −L̃3 0 0 0
∗ ∗ ∗ −κ1In 0 0
∗ ∗ ∗ ∗ −κ−1

1 In 0
∗ ∗ ∗ ∗ ∗ −Ip





















< 0 (22)





















Ξ11 Ξ12
√
̺2F̃ [I, I]

√
̺2 − ̺1G̃[I, I] Ξ15 Ξ16 Ξ17

Ξ22 0 0 Ξ25 0 0

∗ −L̃1 0 0 0 0

∗ ∗ −L̃2 0 0 0
∗ ∗ ∗ −κ2In 0 0
∗ ∗ ∗ ∗ −κ−1

2 In 0
∗ ∗ ∗ ∗ ∗ −Ip





















< 0 (23)

Ξ11 =
















Y A+ATY
(

ATX + Y A+ ρCT ΥT
c + ΥT

a

)

0 0 0 Y Bxw
(

XA+ATX + ρΥcC + ρCT ΥT
c

)

(1 − ρ)ΥcD (1 − ρ)ΥcD 0 XBxw + ΥcByw

∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 04n 0
∗ ∗ ∗ ∗ 0q

















+diag
{

Q̃+ Q̃1 + Q̃2, (h− 1)Q̃,−Q̃1,−Q̃2,−η2Iq
}

+F̃
[

I2n,−I2n, 02n×(4n+q)

]

+
[

I2n,−I2n, 02n×(4n+q)

]T
F̃T

+G̃
[

02n,−I2n, I2n, 02n×(2n+q)

]

+
[

02n,−I2n, I2n, 02n×(2n+q)

]T
G̃T

+H̃
[

02n, I2n, 02n,−I2n, 02n×q

]

+
[

02n, I2n, 02n,−I2n, 02n×q

]T
H̃T ,

Ξ12 =
















ATY
(

ATX + ρCT ΥT
c + ΥT

a

)

0 ϕ0C
T ΥT

c

ATY
(

ATX + ρCT ΥT
c

)

0 ϕ0C
T ΥT

c

0 (1 − ρ)DT ΥT
c 0 −ϕ0D

T ΥT
c

0 (1 − ρ)DT ΥT
c 0 −ϕ0D

T ΥT
c

04n×n 04n×n 04n×n 04n×n

BT
xwY BT

xwX +BT
ywΥT

c 0 0

















Ξ22 = −2diag

{

[

Y Y

Y X

]

,

[

Y Y

Y X

]

}

+ ̺2Z̃ + (̺2 − ̺1)Z̃1,

Ξ15 =

[

Y

0(7n+q)×n

]

, Ξ25 =

[

Y

03n×n

]

, Ξ16 =

[

ΥT
b B

T

0(7n+q)×n

]

, Ξ17 =









CT
z + ΥT

b B
T
z

CT
z

06n×p

BT
zw









. (27)

Using the LMI toolbox in MATLAB, the ensuing results are
summarized by:

X =









0.1448 −0.0020 0.0005 0.0002
−0.0020 0.1442 −0.0005 0.0009
0.0005 −0.0005 0.1420 0.0001
0.0002 0.0009 0.0001 0.1463









,

Y =









0.2142 −0.0560 0.0421 −0.0153
−0.0560 0.0383 −0.0138 0.0515
0.0421 −0.0138 0.0292 0.0435
−0.0153 0.0515 0.0435 0.2597









,

The corresponding feedback gains are evaluated withW = I

andU = I −XY −1 to yield

Ka =

[

0.7573 0.7142 0.3973 0.8391
0.2138 8.2185 13.8882 −3.4177

]

,

Kb =

[

0.3144 −0.7983 −3.8703 1.7806
−0.6559 7.2776 14.8651 −6.8895

]

,

Kc =

[

0.2634 −0.1587 −3.1912 1.5713
−1.0803 8.5794 12.2875 −3.9658

]

Simulation of the closed-loop system is performed and the
ensuing state trajectories are presented in Fig. 1. It is clearly
evident that the the closed-loop system is EMSS-η.
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Fig. 1. Closed-loop state trajectories

V. CONCLUSION

An LMI method has been presented for observer-based
H∞ control of NCSs in continuous-time system settings
with random measurements and probabilistic time delays.
Improved schemes have been shown for the design method.
It has been established that these conditions reduce the
conservatism by considering not only the range of the time
delays, but also the probability distribution of their variation.
A numerical simulation example has been presented to show
the merits and advantages of the proposed techniques.

APPENDIX A
PROOFOF THEOREM 3.1

The proof is twofold: we first choose a functionalJ of
the form (13) to show that theH∞ performance requirement
(12) is satisfied, and then use the Lyapunov functional V of
the form (15) to prove the EMS property. Denote

χ(t) := [δ(t)T , δT
τ , δ

T
1 , δ

T
2 , w(t)T ]T ,

δτ := δ(t− δt), δi := δ(t− δi), i = 1, 2. (34)

From the Newton-Leibniz formula0 = δ(t) − δτ −
∫ t

t−τ(t)
δ̇(s)ds, we have that

ψ1(t) := 2χ(t)TF

[

δ(t) − δτ −
∫ t

t−τ(t)

δ̇(s)ds

]

= 0,

ψ2(t) := 2χ(t)TG

[

δ1 − δτ −
∫ t−̺1

t−τ(t)

δ̇(s)ds

]

= 0,

ψ3(t) := 2χ(t)TG

[

δτ − δ2 −
∫ t−τ(t)

t−̺2

δ̇(s)ds

]

= 0 (35)

hold for any(8n+ q)× 2n matricesF,G andH. Let the
functionalJ(δt; t) be chosen as in (13).

Then, from (16),LJ for the evolution ofJ is given by
[25]

LJ(δt; t) = 2δ(t)TPf(δ, t) + δ(t)T (Q+Q1 +Q2)δ(t)

−(1 − τ̇t)δ
T
τ Qδτ −

2
∑

i=1

δT
i Qiδi

+

[

f(δ, s)
ϕ0g(δ, s)

]T
(

̺2Z + (̺2 − ̺1)Z1

)

×
[

f(δ, s)
ϕ0g(δ, s)

]

(36)

−
∫ t

t−̺2

[

f(δ, s)
ϕ0g(δ, s)

]T

Z

[

f(δ, s)
ϕ0g(δ, s)

]

ds (37)

−
∫ t+̺1

t+̺2

[

f(δ, s)
ϕ0g(δ, s)

]T

Z1

[

f(δ, s)
ϕ0g(δ, s)

]

ds

= 2δ(t)TPf(δ, t) + δ(t)T (Q+Q1 +Q2)δ(t)

−(1 − τ̇t)δ
T
τ Qδτ −

2
∑

i=1

δT
i Qiδi

+

[

f(δ, s)
ϕ0g(δ, s)

]T
(

̺2Z + (̺2 − ̺1)Z1

)

×
[

f(δ, s)
ϕ0g(δ, s)

]

−
∫ t

t−τ(t)

[

f(δ, s)
ϕ0g(δ, s)

]T

Z

[

f(δ, s)
ϕ0g(δ, s)

]

ds

−
∫ t−̺1

t−τ(t)

[

f(δ, s)
ϕ0g(δ, s)

]T

Z1

[

f(δ, s)
ϕ0g(δ, s)

]

ds

−
∫ t−τ(t)

t−̺2

[

f(δ, s)
ϕ0g(δ, s)

]T

(Z + Z1)

[

f(δ, s)
ϕ0g(δ, s)

]

ds

+ψ1(t) + ψ2(t) + ψ3(t) (38)

Note that, inψ1(t), the following inequality holds for any
4n× 4n matrix L > 0, thus :

−2χ(t)TF

∫ t

t−τ(t)

δ̇(s)ds

= −2χ(t)TF [I2n, I2n]

∫ t

t−τ(t)

[

f(δ, s)
(ϕ(s) − ρ)g(δ, s)

]

ds

≤ τ(t)χ(t)TF [I2n, I2n]L−1
1 [I2n, I2n]

T
FTχ(t)

+

∫ t

t−τ(t)

[

f(δ, s)
(ϕ(s) − ρ)g(δ, s)

]T

L1

×
[

f(δ, s)
(ϕ(s) − ρ)g(δ, s)

]

ds

and, similarly, inψi(t) (i = 2; 3), the following inequali-
ties hold for any4n× 4n matricesLi > 0 :

−2χ(t)TG

∫ t−̺1

t−τ(t)

δ̇(s)ds

≤ (τ(t) − ̺1)χ(t)TG [I2n, I2n]L−1
2 [I2n, I2n]

T
GTχ(t)

+

∫ t−̺1

t−τ(t)

[

f(δ, s)
(ϕ(s) − ρ)g(δ, s)

]T

L2

×
[

f(δ, s)
(ϕ(s) − ρ)g(δ, s)

]

ds

and

−2χ(t)TH

∫ t−̺1

t−τ(t)

δ̇(s)ds

≤ (̺2 − τ(t))χ(t)TH [I2n, I2n]L−1
3 [I2n, I2n]

T
HTχ(t)

+

∫ t−τ(t)

t−̺2

[

f(δ, s)
(ϕ(s) − ρ)g(δ, s)

]T

L3

×
[

f(δ, s)
(ϕ(s) − ρ)g(δ, s)

]

ds

Considering (6), (8), (10) and taking the expectation on
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(38), we have

IE
{

LV (δt, t) + ‖z(t)‖2 − η2‖w(t)‖2
}

≤ IE
{

χ(t)T
(

Θ + Θ0 + τ(t)Θ1 + (τ(t) − ̺1)Θ2

+(̺2 − τ(t))Θ3

)

χ(t)
}

+ ψ4(t), (39)

and

Θ1 = F [I2n, I2n]L−1
1 [I2n, I2n]

T
FT ,

Θ2 = G [I2n, I2n]L−1
2 [I2n, I2n]

T
GT ,

Θ3 = H [I2n, I2n]L−1
3 [I2n, I2n]

T
HT ,

ψ4(t) =

∫ t

t−τ(t)

[

f(δ, s)
ϕ0g(δ, s)

]T
(

EuL1Eu

+ElL1El − Z
)

[

f(δ, s)
ϕ0g(δ, s)

]

ds

+

∫ t−̺1

t−τ(t)

[

f(δ, s)
ϕ0g(δ, s)

]T
(

EuL2Eu

+ElL2El − Z1

)

[

f(δ, s)
ϕ0g(δ, s)

]

ds

+

∫ t−τ(t)

t−̺2

[

f(δ, s)
ϕ0g(δ, s)

]T
(

EuL3Eu

+ElL3El − Z − Z1

)

[

f(δ, s)
ϕ0g(δ, s)

]

ds

Applying the Schur complement, conditions (17) and (18)
are equivalent to

Θ̃1 = Θ + Θ0 + ̺1Θ1 + (̺2 − ̺1)Θ3 < 0, (40)

Θ̃2 = Θ + Θ0 + ̺2Θ1 + (̺2 − ̺1)Θ2 < 0, (41)

From (40),(41), (19)-(20) andLemma3.2, we deduce from
(39) that

IE
{

LJ(δt, t) + ‖z(t)‖2 − η2‖w(t)‖2
}

≤ max
{

λmax(Θ̃1), λmax(Θ̃2)
}

IE
{

‖χ‖2
}

≤ 0 (42)

Under zero-initial conditions and noticingJ(δT ;T ) ≥ 0 for
anyT > 0, integrating (42) from0 to ∞ yields that theH∞

performance requirement (12) is satisfied. With a procedure
similar to the above, we can arrive under the given conditions
and by virtue ofLemma3.2 that,

IE
{

LV (δt, t)
}

≤ max
{

λmax(Θ̃1), λmax(Θ̃2)
}

IE
{

‖δ(t)‖2
}

Hence, system (8) is EMS fromLemma3.1.

APPENDIX B
PROOFOF THEOREM 3.2

It cen be seen from (22) or (23) that
[

Y Y

Y X

]

> 0

which gives XY > 0, implying that I − −XY −1 is
invertible. Now let U and W be any invertible matrices
satisfyingUWT = I −XY −1. Choose

P =

[

X U

UT ∗

]

> 0, P−1 =

[

Y −1 W

WT ∗

]

> 0 (43)

where each ellipsis∗ denotes a positive definite matrix
block that will not influence the subsequent development (of
course it makesPP−1 = I). In the sequel, we show that

if (22)-(26) are satisfied, then (17)-(20) hold withP > 0
chosen as in (39), and thus the result follows immediately
from Theorem3.1. Define

S =

[

I I

WTY 0

]

(44)

which is invertible and produces

STP =

[

Y 0
X U

]

, STPS =

[

Y Y

Y X

]

. (45)

We first show that (22) implies (17). By Schur comple-
ment, the matrix inequality (17) holds if and only if (46) In
view of

(

̺2Z + (̺2 − ̺1)Z1 − diag{P, P}
)

×
(

̺2Z + (̺2 − ̺1)Z1

)−1

×
(

̺2Z + (̺2 − ̺1)Z1 − diag{P, P}
)

> 0 (47)

we obtain

−diag{P, P}
(

̺2Z + (̺2 − ̺1)Z1

)−1
diag{P, P}

≤ −2diag{P, P} + ̺2Z + (̺2 − ̺1)Z1 (48)

we have that (46) holds if (49) holds
Now, applying the congruence transformation

diag{S, S, S, S, Iq, S, S, S, S, S, S} to (49) and setting

Q̃ = STQS, Q̃1 = STQ1S, Q̃2 = STQ2S,

Z̃ = diag{S, S}TZdiag{S, S},
Z̃1 = diag{S, S}TZ1diag{S, S},
L̃i = diag{S, S}TLidiag{S, S}, i = 1, 2, 3

F̃ = diag{S, S, S, S}TFS,

G̃ = diag{S, S, S, S}TGS,

H̃ = diag{S, S, S, S}THS,

Υa = XBKbW
TY + UKaW

TY,

Υb = KbW
TY

Υc = UKc (50)

we obtain that (49) is equivalent to

Ξ̃ + Ỹ K̃ + K̃T Ỹ T < 0, (51)

where

Ξ̃ =








Ξ11 + ΞT
17Ξ17 Ξ12

√
̺1F̃ [I, I]

√
̺2 − ̺1H̃[I, I]

• Ξ22 0 0

• • −L̃1 0

• • • −L̃3









Ỹ =
[

ΞT
15,Ξ

T
25, 0n×8n

]T
,

K̃ =
[

ΞT
16, 0n×12n

]

.

Inequality (51) holds if the following is true for anyκ1 >

0,

Ξ̃ + κ−1
1 Ỹ Ỹ T + κ1K̃

T K̃ < 0, (52)

which is equivalent to




Ξ̃ Ỹ K̃T

Ỹ T −κ1In 0

K̃ 0 −κ−1
1 In



 < 0 (53)
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Θ [M̃T , ϕ0Ñ
T ]diag{P, P} √

̺1F [I, I]
√
̺2 − ̺1H[I, I]

• −diag{P, P}
(

̺2Z + (̺2 − ̺1)Z1

)−1
diag{P, P} 0 0

• • −L1 0
• • • −L3









< 0. (46)









Θ [M̃T , ϕ0Ñ
T ]diag{P, P} √

̺1F [I, I]
√
̺2 − ̺1H[I, I]

• −2diag{P, P} + ̺2Z + (̺2 − ̺1)Z1 0 0
• • −L1 0
• • • −L3









< 0. (49)

The above inequality is, by Schur complement again,
exactly that of (22), and we conclude that this implies (17).

Next we show that (23) implies (18). This can be done
by using a procedure analogous to the above. As for the
verification of other inequalities, applying the congruence
transformation diag{S, S} to (19)-(20) and setting matrix
variables as in (50), it is seen that (19)-(20) are equivalent
to (24)- (26). So far, we have proven that (22)-(26) ensure
(17)-(20) and thus the closed-loop system (8) is EMS-η. In
this case, from (50), the feedback gains are computed as in
(28).
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