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Abstract—Finding the optimal value for a problem is usual
in many areas of knowledge where in many cases it is needed
to solve Nonlinear Optimization Problems. For some of those
problems it is not possible to determine the expression for its
objective function and/or its constraints, they are the result of
experimental procedures, might be non-smooth, among other
reasons. To solve such problems it was implemented an API
contained methods to solve both constrained and unconstrained
problems. This API was developed to be used either locally
on the computer where the application is being executed or
remotely on a server. To obtain the maximum flexibility both
from the programmers’ and users’ points of view, problems can
be defined as a Java class (because this API was developed in
Java) or as a simple text input that is sent to the API. For this
last one to be possible it was also implemented on the API an
expression evaluator. One of the drawbacks of this expression
evaluator is that it is slower than the Java native code. In this
paper it is presented a solution that combines both options: the
problem can be expressed at run-time as a string of chars that
are converted to Java code, compiled and loaded dynamically.
To wide the target audience of the API, this new expression
evaluator is also compatible with the AMPL format.

Index Terms—Nonlinear Programming, Java, API, AMPL,
Dynamic code generation.

I. INTRODUCTION

It is usual in many areas of knowledge to have to
find optimal values (solutions) for Nonlinear Optimization
Problems. Some examples of such problems include the
automatic tuning of Location Estimation Algorithms internal
parameters, to fit the characteristics of the mobile terminal
being used in the location system [1], or, tuning of Fuzzy
Logic inference engine internal parameters [2] during the
training phase.

Since for most of these problems it is not possible to
determine the expression for its objective function and/or its
constraints, derivative based methods cannot be used. In these
case Direct Search Methods are the most suitable, because
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they do not need the use of derivatives or approximations to
them.

With the dual objective of being used in areas as the
above mentioned to optimize engineering processes, and to
serve as a tool in research of optimization methods, specially
derivative free methods, it was developed by the authors a
Java-based API (Application Programming Interface).

This API can be used to solve Nonlinear Programming
Problems using the methods referred in section II, as pre-
sented in [3] and [4]. Since this API was developed in Java,
originally it only allowed the development of applications
using this programming technology. To cope with this, and
to allow remote access to it, it was extended to support Web
Services [5] and [6].

A web version, accessible using an Internet browser, was
also developed and presented in [7]. This web application
allowed users to execute the above mentioned methods,
using a set of predefined problems (stored in a database
of problems). To increase the flexibility of that application,
it was also allowed to users to define their own problems.
For this to be possible it was needed to build an expression
evaluator that would interpret the expression introduced by
the user.

Because expressions are interpreted, and not compiled in
Java code, this interpreter is a bottleneck of the API. Another
drawback is the fact that there are widely accepted formats to
define problems that could be used to input data to the API.
For example it is common to find libraries of test problems
defined in AMPL (A Modeling Language for Mathematical
Programming).

To overcome these limitations, it was then developed an
AMPL parser which has as output Java classes that can be
called from the application.

One of the key features of the implemented solution is that
those Java classes are not generated by the user or by the
programmer at application compilation time. These classes
are dynamically generated, loaded and executed by the API
at runtime. The developed solution also allows the input of
simple expressions (as it was already available in the API)
that are dynamically converted into Java classes.

II. OPTIMIZATION METHODS

In some optimization problems it is not possible to
determine its objective function or it might be too complex
to be determined. On other cases the objective function
(or the problem constraints) might be non-smooth or their
derivatives are not known. On the examples presented in the
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previous section, they are a set of discrete results from an
experimental procedure. In all these cases it cannont be used
derivative-based optimization methods, as presented in [8].
In such problems one possible solution to cope with this is
to use direct search methods that do not use derivatives or
approximations to them. For further details see [9], [10] and
[11].

Optimization problems that may appear can be of two
natures: unconstrained optimization problems or constrained
optimization problems. Unconstrained optimization problems
have the form of (1):

min
x∈Rn

f(x) (1)

where:

• f : Rn → R is the objective function;

Constrained optimization problems have the form of (2):

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I

(2)

where:

• f : Rn → R is the objective function as in (1);
• ci(x) = 0, i ∈ E , with E = {1, 2, ..., t}, define the

problem equality constraints;
• ci(x) ≤ 0, i ∈ I, with I = {t + 1, t + 2, ...,m},

represent the inequality constraints;
• Ω = {x ∈ Rn : ci = 0, i ∈ E ∧ ci(x) ≤ 0, i ∈ I} is

the set of all feasible points, i.e., the feasible region.

Both types of problems, constrained and unconstrained,
can be solve by the developed API (Fig. 1). To solve
unconstrained problems the following Direct Search Methods
have been added to it:

• A Coordinated Search algorithm, which can be analysed
in detail in [8];

• Hooke and Jeves algorithm [11];
• An implementation of the algorithm of Audet et. al. as

in [12], [13] and [14];
• The Nelder and Mead algorithm as in [15], or in [16]

and [17];
• A Convergent Simplex algorithm can be analised in

detail in analysed [8] and [18];

To solve constrained methods, were included in the API
Penalty and Barrier methods. These methods transform
problems of the form (2) into a sequence of problems in
the form of (1), i.e., a sequence of unconstrained problems,
which are then solved using the algorithms used to solve
unconstrained problems. The new sequence of unconstrained
problems that replaces the original problem, is defined by:

Φ(xk, rk) : min
xk∈Rn

f(xk) + rkp(x) (3)

where Φ is the new objective function, k is the iteration
number , p is a function that penalises (penalty) or refuses
(barrier) points that violates the constraints and rk is a
positive parameter.

In the API the following Penalty and Barrier methods were
implemented:

Figure 1. API Block Diagram

• A Nonstationary Penalty that can be analysed in [19];
• Adaptative Barrier as in [13], [14];
• Extreme Barrier as in [20] and [21];
• Classical Penalty as in [22], or in [23];
• `1 Penalty which can be analysed in [24], [25] and [26];
Also the Filters Method [27] was included in the API.

Unlike the Penalty and Barrier methods, in this method the
optimality and the feasibility are treated separately, consid-
ering that optimization problems are bi-objective programs.
The goal is the minimization of both the objective function
(optimality) and a continuous function (h) that aggregates
the constraint function values (feasibility).

Since it is not reasonable to have as a solution an infeasible
point, priority must then be given to h. It must then be such
that:

h(x) ≥ 0 with h(x) = 0 if and only if x is feasible.

We can then define h as:

h(x) = ‖C+(x)‖ , (4)

where ‖.‖ is the norm of a vector and C+(x) is the vector
of the t + m values of the constraints in x, i.e, ci(x) for
i = 1, 2, ..., t + m:

C+ (x) =

{
ci (x) if ci (x) > 0

0 if ci (x) ≤ 0

III. PROPOSED METHOD

As above mentioned the API allows users to solve prob-
lems written in Java (hard-coded in the application) or
defined at run time as a text string that is interpreted by
the API.

In the first case we have a higher performance, because the
problem is written in Java and therefore natively executed by
the API. The drawback of this option is that the problem must
exist at compilation time, or, the application must be prepared
to dynamically load external class files and then execute
them. This means that the final user of the software must
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know the insides of the API and know how to program in
Java. While some API users are programmers, there are some
users that only want to solve a problem using an application.

On the second case the problem is interpreted online,
this gives a higher flexibility to the API and application
developed using it. Problems and constraints are written
as a string, for example cos(x0)+ln(x2). The major
drawback of this option is the execution speed.

In this paper it is presented and tested a solution that is a
combination of both options. It is given to the user the ability
to define at run time the problems, without the need to know
how to code it in Java, with the performance achieved with
the problems coded using Java. To make the API compatible
with standard representations used to describe constrained
and unconstrained problems, it was also added to the API
the ability to read problems from a AMPL file.

This file can be located in at a local drive of the computer
where the application is being executed or in a URL, using
for example HTTP (Hypertext Transfer Protocol).

In Fig. 2 is depicted the diagram block of the presented
solution. As above mentioned the input can be either a
string expression of an AMPL file, that are converted to an
intermediate format (that only exists in memory in the form
of Java objects). Any other file formats can later on be added
to the API and the result of parsing those files will always
be this intermediate format.

Figure 2. Diagram Block of the proposed solution

In Fig. 3 it is presented an example of an unconstrained
problem defined in AMPL, in this case problem S201 from
the Schittkowski collection [28]. The corresponding inter-
mediate format for this problem, where all the mathemat-
ical expression are converted into a ”Java friendly” format
is: 4.0*Math.pow((x[(int)(1-1)]-5.0),2.0) +
Math.pow((x[(int)(2-1)]-6.0), 2.0) Some of
the operations that must be made to the problem expression,
and the constraints when they exist, are:

• Convert trigonometric expressions such sin, cos to
the correspondent Java equivalent: Math.sin and
Math.cos;

• Convert power expressions e.g. 2ˆ3 to
Math.pow(2,3);

• Locate logarithms;
• Convert summations;
• Convert variable indexes into array indexes (variables

are sent in an array with the dimension of the problem).

After this conversion, the Java file can be generated.
An example of a Java file generated for problem S201 is
presented on Fig. 4.

param N := 2;
var x{1..N};
minimize f:
4*(x[1]-5)ˆ2+(x[2]-6)ˆ2;
data;
var x:=
1 8
2 9;
solve;
display x;

Figure 3. Problem S201 defined in AMPL.

import algorithms.GeneralProblem;

public class s201 implements GeneralProblem
{

@Override
public int dim() {
return (2);

}

@Override
public double evaluatef(double[] x) {
return (4.0*Math.pow((x[(int)(1-1)]-5.0),

2.0)+Math.pow((x[(int)(2-1)]-6.0), 2.0)
);

}

}
}

Figure 4. Java code generated automatically for problem S201.

Based on this information a .java file is created on the
temporary directory of the system. This file is the compiled
into a .class file that can be used by the application.

All the operations related with loading the AMPL file,
generating the .java file and loading the .class file are
completely transparent for the programmer. The API contains
a class to represent problems, named Problem, that can
be used as follows: Problem pr = new Problem
(′′http://name.of.the.host/problem.file′′).
In this case variable pr will be an instance of a Problem
that has been created, compiled and loaded on the fly. It
can now be used as it was already possible in the API, for
example using the implemented Audet et al. algorithm to
solve an unconstrained problem: Audet audet = new
Audet(pr); audet.run().

IV. TESTS AND NUMERICAL RESULTS

To assess the feasibility of the proposed method, several
comparison tests were made between the proposed method,
the previously implemented expression evaluator and prob-
lems written natively using Java. All tests were made using a
Intel(R) Core (TM) i5-2400 CPU @ 3.10 GHz, with 4Gbyte
of RAM, running Debian Linux 64-bit and Kernel 2.6.32.
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Table I
ORIGINAL PARSER (AVERAGE TIME IN MS)

# 1 10 100 1 000 10 000 100 000
0 0.05 0 1.65 1.30 11.30 112.80
1 0 0.05 0.25 2.50 24.60 245.40
2 0 0 0.45 3.95 39.20 391.20
3 0.05 0 0.55 5.60 55.60 555.35
4 0 0.10 0.70 7.20 72.20 720.55
5 0 0.05 0.90 8.95 88.80 885.40

Table II
AMPL PARSER (AVERAGE TIME IN MS)

# 1 10 100 1 000 10 000 100 000
0 0 0 0.05 0.15 0.90 7.15
1 0 0 0.05 0.25 1.20 11.15
2 0 0 0.05 0.35 1.75 17.60
3 0 0 0.10 0.55 4.55 44.80
4 0 0 0.15 0.90 7.10 71.70
5 0 0 0.15 1.20 9.95 98.75

It was used the 64-bit Java platform compile and run the
applications (version 1.6.0 26).

A. Expression evaluation
This first set of tests aims the benchmarking of the three

options for expression evaluation.
Because the objective is to test those methods, in these

tests were used six expressions that even though they are of
simple calculus, their expression is rather complex. The used
expression is of the form of Eq. (5):

ϕ(x1, x2) =

x1∑
k=0

cos

( √
k + 1

ln(k + 2)
× xk

2

)
(5)

Those tests were made considering x2 = 0.95 and x1 ∈
{0, 1, 2, 3, 4, 5}, resulting on several test expressions.

These expressions were evaluated using the three me-
thods. Each test consisted in measuring the time required
to compute 1, 10, 100, 1 000, 10 000 and 100 000 expression
evaluations. Results from these tests are presented on Tables
I, II and III, where are presented the results obtained using
the original expression evaluator, the AMPL parser and
native Java, respectively.

To be noticed that average times are presented in these
tables, in miliseconds, and they were calculated using the
Java internal time, which as a resolution of 1ms. As a
consequence the minimum time that can be measured is 1ms.
This explains the existence of some 0 value execution times,
meaning that the process was faster than 1ms.

As it was expected, evaluating the expressions using native
Java is much faster than using the expression interpreter
(original parser). These results can be better observed in
Table IV were is presented a comparison of the relative
performance of the three methods for 100.000 evaluations
of the expression.

Another conclusion that can be drawn is that the per-
formance of the expression evaluator using dynamic code
generation and compilation has a performance similar to that
of native Java.

Table III
NATIVE JAVA (AVERAGE TIME IN MS)

# 1 10 100 1 000 10 000 100 000
0 0 0 0 0.10 0.80 7.10
1 0 0.05 0 0.30 1.15 11.05
2 0 0 0.05 0.35 1.60 16.45
3 0 0 0.10 0.70 4.40 43.75
4 0 0.05 0.10 1.10 7.10 70.45
5 0 0 0.15 1.45 9.80 97.55

Table V
SOME SCHITTKOWSKI PROBLEMS (AVERAGE TIME IN MS)

S201 S205 S206 S207 S208
AMPL (parser) 5.35 12.10 8.05 6.95 5.95
JAVA (native) 5.15 5.80 7.45 6.60 5.25
Dif. 0.20 6.30 0.60 0.35 0.70
Dif. (%) 3.89 108.62 8.05 5.30 13.33

B. Testing using Optimization Problems
This second set of tests consisted in testing the two best

methods (based on the above presented results) using the
version of Audet Algorithm implemented in the API, to
solve a set of unconstrained problems from the Schittkowski
collection. These problems were: S201, S205, S206, S207
and S208.

Results obtained for these problems are presented in
Table V, where are presented the execution times for these
five problems using both methods, and, the relative time
difference between the Java native code and the dynamic
code option. The presented results are the average execution
time (in ms). To minimize the effect of outliers the algorithm
was executed 30 times for each problem.

Analysing data it can be concluded that the proposed
solution has a performance very similar to that obtained using
Java native code (only 3.89% to 13.33% slower). There is
an exception for problem S205 that needed the double of the
time to be solved.

V. CONCLUSION AND FUTURE WORK

In this paper it was proposed a new method to evaluate ex-
pressions, to be used on a Java-based Nonlinear Optimization
API. This new method combines the flexibility of a on the
fly expression evaluator with the performance of hard-coded
mathematical expressions inside the application code.

Java code is generated, compiled and loaded dynamically.
This allows the implementation of applications that do not
need to known in beforehand which problems must be
optimized, without any loss of performance.

Also an AMPL parser was included in this expression
evaluator, this allows users to use a standard file format
to define their problem. Furthermore, this is one of the
most used file formats to describe both constrained and
unconstrained optimization problems. This allows users to
use the API to solve problems that can be found in online test
problems repositories. If these problems are located online,
the user does not even need to download them to the hard
drive, they can simply indicate to the API what is the URL
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Table IV
COMPARATIVE 100 000 REPETIONS (SLOWER PERCENTAGE)

# 0 1 2 3 4 5
Native JAVA 7.10 11.05 16.45 43.75 70.45 97.55
% 100 100 100 100 100 100
AMPL Parser (%) 100.70 100.90 106.99 102.40 101.77 101.23
Original Parser (%) 1 588.73 2 220.81 2 378.12 1 269.37 1 022.78 907.64

of the remote file.
Two sets of tests were made to the proposed method to

compare with the methods already implemented in the API
and it can be concluded that it has a good performance, very
similar to the performance of native Java code.

Although the good performance, it is still possible to
do some more optimization on the Java code generated by
the API. Because of its automated nature, there are some
generalizations that may compromise the performance. As
future work an extra step before compilation will be added
to claen-up the code and try to make it even faster.
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