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Abstract—In this paper, we study the numerical approx-
imation of the Urysohn integral equation by means of the
sinc approximation with the Double Exponential (DE) trans-
formations. This numerical method combine a sinc Nyström
method with the Newton iterative process that involves solving a
nonlinear system of equations. We provide an error analysis for
the method. These method improves conventional results and
achieve exponential convergence. Some numerical examples are
given to confirm the accuracy and the ease of implementation
of the method.

Index Terms—Urysohn integral equation, sinc approxima-
tion, Nyström method.

I. INTRODUCTION

IN this paper, we consider the sinc Nyström method for
the numerical solution of the Urysohn integral equations

of the Fredholm type

u(t)−
∫ b

a

k(t, s, u(s))ds = g(t), t ∈ [a, b], (1)

where u(t) is an unknown function to be determined and
k(t, s, u) and g(t) are given functions. Equation (1) was
introduced for the first time by Pavel Urysohn in [20].
The Urysohn integral equation includes the Hammerstein
equation and many other equations. Equations of these
types appear in many applications. For example, they arise
as a reformulation of two-point boundary value problems
with certain nonlinear boundary conditions [2], [5]. Several
authors have written a number of papers which establish
numerical techniques for finding an approximation of the
nonlinear Fredholm integral equations. These methods
can be categorized into two major types. The first types
are those lead to solve a system of nonlinear equations,
and the other use iterative methods to solve the nonlinear
equation directly. The aim of this work is to present
a numerical scheme for a Nyström method based on
sinc quadrature formulas. This method is derived by
replacing the smoothing transformation, with the so-called
double exponential transformation. Such replacement
improves the order of convergence to O(exp(−C N

logN )).
For a comprehensive study of double exponential sinc
approximation to [6], [7], [8], [9], [10], [11].

Equation (1) can be expressed in the operator form as

(I −K)u = g, (2)
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where (Ku)(t) =
∫ b

a
k(t, s, u(s))ds. The operator is defined

on the Banach space X = Hol(D)
∩
C(D). In this notation,

D ⊂ C is a simply connected domain which satisfies (a, b) ⊂
D and Hol(D) denotes the family of all functions f that are
analytic in the domain D. Furthermore, assume (2) has at
least one solution, and note that the right side of (1) is a
completely continuous opertaor [12]. Let ∥u∥ = sup{|u(t)| :
t ∈ [0, 1]}. Additionally, suppose that the solution u∗(t) to be
determined is geometrically isolated [13], in the other words,
there is some ball

B(u∗, r) = {u ∈ X : ∥u− u∗∥ ≤ r},

with r > 0, that contains no solution of (1) other than
u∗. It is assumed that the linear operator K′(u∗) does not
have 1 as an eigenvalue. Then there is a geometrically
isolated solution for (1) [5]. This paper is organized
in five sections. In section II we will review the basic
properties of the sinc quadrature rule which has been used
in our approximation and analysis. The numerical method
based on sinc approximation are considered in Section
III. We provide in Section IV a complete convergence
analysis for the proposed methods. Finally, in section V,
we present several numerical experiments. The numerical
results are consistent with the theoretical estimates on order
of convergence.

II. THE QUADRATURE FORMULAE

The sinc function is defined on the whole real line by

sinc(t) =

{
sin(πt)

πt , t ̸= 0,
1, t = 0.

The sinc numerical methods are based on approximation over
the infinite interval (−∞,∞), written as

f(t) ≈
N∑

j=−N

f(jh)S(j, h)(t), t ∈ R,

where the basis function S(j, h)(t) is defined by

S(j, h)(t) = sinc(
t

h
− j),

and h is a step size appropriately chosen depending on
a given positive integer N , and j is an integer. The sinc
approximation and numerical integration are closely related
through the following identity∫∞

−∞(
∑N

j=−N f(jh)S(j, h)(t)− f(t))dt

= h
∑N

j=−N f(jh)−
∫∞
−∞ f(t)dt.

(3)

On the other hand, this is a relation between the approxima-
tion error of the sinc approximation and the one of integration
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by the trapezoidal rule [6]. The equation (3) can be adapted to
approximate on general intervals with the aid of appropriate
variable transformations t = φ(x). As the transformation
function φ(x) double exponential (DE) transformations are
applied. In order to define a convenient function space, the
strip domain

Dd = {z ∈ C : |Imz| < d},

for some d > 0 is introduced. The DE-transformation and
its inverse are

φDE(x) =
b− a

2
tanh(

π

2
sinh(x)) +

b+ a

2
,

ϕDE(t) = log[
1

π
log(

t− a

b− t
) +

√
1 + { 1

π
log(

t− a

b− t
)}2].

This transformation maps Dd onto the domain

φDE(Dd) = {z ∈ C : | arg[ 1π log( z−a
b−z )+√

1 + { 1
π log( z−a

b−z )}2]| < d}. (4)

Definition 2.1: Let D be a simply connected domain
which satisfies (a, b) ⊂ D, and let α and C be positive
constants. Then Lα(D) denotes the family of all functions
f ∈ Hol(D) which satisfy

|f(z)| ≤ C|Q(z)|α,

for all z in D where Q(z) = (z − a)(b− z).
The following theorem involves bounding the error of (2N+
3)-point sinc quadrature for f on (a, b). When incorporated
with the DE-transformation, the quadrature rule is desig-
nated.

Theorem 2.2: ([7]) Let (fQ) ∈ Lα(φDE(Dd)) for d with
0 < d < π

2 . Assume that N is a positive integer and h is
selected by the formula

h =
log( 2dNα )

N
.

Then there exists a constant C which is independent of N ,
such that

|
∫ b

a
f(t) dt− h

∑N
j=−N f(φDE(jh))φ

′
DE(jh)|

≤ C exp( −2πdN
log( 2dN

α )
).

(5)

III. SINC NYSTRÖM METHOD

In the DE-sinc Nyström method we approximate the
integral operator in (1) by the quadrature formula (5). Let
u ∈ Hol(φDE(Dd)) and k(t, ., u(.))Q(.) ∈ Lα(φDE(Dd))
for all t ∈ [a, b] and u ∈ B. Then the integral in (1) can
be approximated by Theorem 2.2 and the following discrete
DE-operator can be defined,

KDE
N (u)(t) = h

N∑
j=−N

k(t, tDE
j , u(tDE

j ))φ′
DE(jh).

The Nyström method applied to (1) is to find uDE
N such that

uDE
N (t)− h

N∑
j=−N

k(t, tDE
j , u(tDE

j ))φ′
DE(jh) = g(t), (6)

where the points tDE
j are defined by the formula

tDE
j = φDE(jh), j = −N, . . . , N .

Solving (6) reduces to solving a finite dimensional nonlinear
system. For any solution of (6) the values uDE

N (tDE
j ) at the

quadrature points satisfies the nonlinear system

uDE
N (tDE

i )− h
∑N

j=−N k(tDE
i , tDE

j , u(tDE
j ))φ′

DE(jh)

= g(tDE
i ), i = −N, . . . , N.

(7)
Conversely, given a solution uDE

N (tDE
i ), i = −N, ..., N,

of the system (7), then the function uDE
N defined by

uDE
N (t) = h

N∑
j=−N

k(t, tDE
j , u(tDE

j ))φ′
DE(jh) + g(t),

is readily seen to satisfy (6).

We rewrite the (6) in operator notation as

(I −KDE
N )uDE

N = g. (8)

Atkinson in [3] by using the Leray-Schauder theorem proved
that under certain differentiability assumptions on K and
KDE

N , (8) has a unique solution in a neighborhood of an
isolated solution of (1) and these approximation solutions
converge to an isolated solution for sufficiently large N .
We assume that ku(t, s, u) ≡ ∂k(t,s,u)

∂u is continuous for all
t, s ∈ [a, b] and u ∈ B. This assumption implies that K is
Fréchet differentiable [3] with

K′(u)x(t) =

∫ b

a

ku(t, s, u(s))x(s) ds, t ∈ [a, b], x ∈ X.

Furthermore, the continuity assumption is considered for
second partial derivative of the kernel, kuu(t, s, u), leading
to the existence and the boundedness of the second Fréchet
derivative with

K′′(u)(x, y)(t) =
∫ b

a
kuu(t, s, u(s))x(s)y(s) ds,

t ∈ [a, b], x, y ∈ X.

Similar to KDE
N , (KDE

N )′ and (KDE
N )′′ can be defined by the

DE-sinc quadrature formula as follow

(KDE
N )′(u)x(t) =

h
∑N

j=−N ku(t, t
DE
j , u(tDE

j ))φ′
DE(jh)x(t

DE
j ),

(9)

and

(KDE
N )′′(u)(x, y)(t) =

h
∑N

j=−N kuu(t, t
DE
j , u(tDE

j ))φ′
DE(jh)x(t

DE
j )y(tDE

j ).
(10)

IV. CONVERGENCE ANALYSIS

The convergence of the sinc Nyström method which is
introduced in the previous sections is discussed in the present
section. For the following lemma D represents φDE(Dd).
In this lemma, the sufficient conditions to have a completely
continuous operator have been investigated.

Lemma 4.1: ([12]) Let the kernel k(t, s, u) be continuous
and have a continuous partial derivative ∂k(t,s,u)

∂u for all t, s ∈
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D and u ∈ B. Then K : X → X is a completely continuous
operator and is differentiable at each point of B.

Our basic assumption is that the equation (1) has an
analytic solution. The sufficient conditions to have such a
solution have been mentioned in [12, p. 83]. We supposed
that those conditions are satisfied here. Our idea for deriving
the order of convergence is based on collectively compact
operator theory [14]. For ease of referencing, the following
required conditions are mentioned from [3], [15].

C1. {KDE
N : N ≥ 1} is a collectively compact family on

X .

C2. KDE
N is pointwise convergent to K on X .

C3. For N ≥ 1, KDE
N possesses continuous first and

bounded second Fréchet derivatives on B. Moreover,

∥(KDE
N )′′∥ ≤ α < ∞,

where α is a constant.
It is more convenient to rewrite the quadrature rule defined

in Theorem 2.2 in the following notation. Let QDE
N : X → R

be a discrete operator defined by

QDE
N f = h

N∑
j=−N

f(tDE
i )φ′

DE(jh), (11)

and Q : X → R be an integral operator defind by
Qf =

∫ b

a
f (t ) dt. Kress et al. in [16] have concluded from

Steklov’s theorem that QDE
N f → Qf for all f ∈ C[a, b].

Additionally, it is easily proven by the Banach-Steinhaus
that QDE

N is uniformly bounded [8]. Now, the following
theorem is stated to prove that KDE

N satisfies the conditions
C1-C3.

Theorem 4.2: Assume that k(t, ., u(.))Q(.) ∈
Lα(φDE(Dd)) for 0 < d < π and kuu(t, s, u) is continuous
for all t, s ∈ [a, b] and u ∈ B, then the conditions C1-C3 are
fulfilled.

Proof: From the continuity of the kernel and the above
discussion, the family

S = {KDE
N u | N ≥ 1, u ∈ B},

is uniformly bounded. Furthermore, note that the function
k(t, s, u) is uniformly continuous on [a, b]× [a, b]×B, and
therefore we can conclude from the uniform boundedness of
QDE

N that S is a family of equicontiuous functions. So C1
follows from the Arzelà-Ascoli theorem.

Due to the Theorem 2.2 and the relevant discussion to
(11), the condition C2 holds. By considering (10) on B and
the continuity of kuu(t, s, u), C3 is easily concluded.

Lemma 4.3: Let I − K′(u∗) be nonsingular and the as-
sumptions of Theorem 4.2 be fulfilled. Then for sufficiently
large N , the linear operators I−(KDE

N )′(u∗) are nonsingular;
furthermore,

∥(I − (KSE
N )′(u∗))−1∥ ≤ M,

where M is a constant independent of N .
Proof: Condition C1 is satisfied and {KDE

N (u∗) | N ≥
N1} is equidifferentiable. Therefore, according to Theorem

6.10 in [14], {(KDE
N )′(u) | N ≥ N1} is a collectively

compact family of operators. Moreover, from condition C3
and Theorem 6.11 of [14], we can conclude that (KDE

N )′(u)
is pointwise convergent to K′(u) for all u ∈ B. So, the final
result has been obtained from the existence of (I−K′(u∗))−1

and the theory of collectively compact operators.
Now we are ready to formulate the main result.
Theorem 4.4: Suppose that the assumptions of Lemma 4.3

hold. Then there exists a positive integer N1 such that for all
N ≥ N1, (8) has a unique solution uDE

N ∈ X . Furthermore,
there exists a constant C independent of N such that

∥u∗ − uDE
N ∥ ≤ C exp(

−2πdN

log( 2dNα )
).

Proof: By subtracting (1) from (8) and adding the term
K′(u∗)(u∗ − uDE

N ) on both sides, the following term has
been obtained

(I − (KDE
N )′(u∗))(u∗ − uDE

N ) = K(u∗)−KDE
N (u∗)−

[KSE
N (uDE

N )−KDE
N (u∗)− (KDE

N )′(u∗)(uDE
N − u∗)].

(12)
By applying ∥.∥ on both sides of (12) and Lemma 4.3, we
achieve the following relation

∥u∗ − uDE
N ∥ ≤ M{∥K(u∗)−KDE

N (u∗)∥+

∥KDE
N (uDE

N )−KDE
N (u∗)− (KDE

N )′(u∗)(uDE
N − u∗)∥}.

The second term on the right-hand side has been bounded
by the term 1

2α∥u
∗ − uDE

N ∥ by condition C3, and the finite
result has been obtained from Theorem 2.2

V. NUMERICAL EXPERIMENTS

In this section, the theoretical results of the previous
sections are used for some numerical examples. The numer-
ical experiments are implemented in Mathematica 7. The
programs are executed on a PC with 2.00 GHz Intel Core
2 dual processor with 2 GB RAM. In order to analyze the
error of the method the following notations are introduced:

emax = max{|u(ti)− uN (ti)| : ti =
i

1000
, i = 1(1)1000},

and emax approximate ∥u − uN∥∞. For the solution of
the nonlinear system which arises in the formulation of
the methods, one may use the steepest descent method,
the Newton method or a mathematical software package.
In our experiments we have used Mathematica’s routine
FindRoot. This routine needs an initial guess to solve the
nonlinear systems. If the initial guess is selected badly, this
routine may fail to converge to the desired solution. In these
examples, an initial point is selected by the steepest descent
method [17]. As we saw in Section IV, the convergence
of the method depends on two parameters α and d. In
fact the parameter d indicates the size of the holomorphic
domain of u, and α is the order of the Hölder constant
of kQ [7]. So due to the smoothness of the kernels, it
is assumed that α = 1 for all examples. The important
parameter d values is 1.57 for the DE-sinc methods. emax

is reported for N = 10 (10) 100. In tables, we present the
computing time TDE

N measured in seconds when DE-sinc
is used. Additionally, DESN is the abbreviations for Double
Exponential Sinc Nyström methods. These tables show that
by increasing N , the error is reduced significantly.
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TABLE I
NUMERICAL RESULTS FOR EXAMPLE 5.1

N DESN Method TDE
N

10 1.91E − 11 23.978
20 2.77E − 16 24.539
30 2.77E − 16 24.897
40 2.22E − 16 25.069
50 2.77E − 16 24.741
60 2.22E − 16 25.958
70 2.77E − 16 27.253
80 3.33E − 16 27.097
90 2.77E − 16 28.173
100 2.77E − 16 29.437

TABLE II
NUMERICAL RESULTS FOR EXAMPLE 5.2

N DESN Method TDE
N

10 4.19E − 06 23.556
20 2.01E − 10 24.493
30 2.02E − 14 25.069
40 4.44E − 16 24.227
50 4.44E − 16 25.427
60 4.44E − 16 27.112
70 4.44E − 16 27.238
80 6.66E − 16 31.574
90 4.44E − 16 32.258
100 4.44E − 16 37.643

Example 5.1: The following Urysohn integral equation is
considered

u(t)−
∫ 1

0

ds

2 + t+ u(s)
= g(t), t ∈ [0, 1], (13)

where g(t) is chosen so that u∗(t) = cos(0.3πt) is a
solution of (13). This equation has been solved in [18] by
three algorithms based on multigrid method. The best error
obtained with the described multigrid method is 3.02×10−11

with 16.7 seconds computational time. TABLE I shows the
error results achieved for the DE-sinc Nyström method.

Example 5.2: Consider

u(t)−
∫ 1

0

ds

t+ s+ u(s)
= g(t), t ∈ [0, 1],

with g(t) is chosen so that u∗(t) = 1
1+t . This Urysohn

integral equation has been introduced and solved in [1] by
the projection and iterated projection methods. TABLE 1 and
TABLE 2 in [1] report the Galerkin and iterated Galerkin
solution based on a piecewise polynomial space. TABLE II
shows the DE-sinc Nyström results.

Example 5.3: We consider the following integral equation

u(t) +

∫ 1

0

t

2
cos(u(s)) ds = t, t ∈ [0, 1],

introduced by Döring in [19]. Its exact solution is u∗(t) = qt,
where q is a solution of the nonlinear equation

2t2 − 2t+ sin(t) = 0.

In [4] the Chebyshev-Newton Type Method (CNTM) is
considered. This method constructs a family of iterative
processes free of derivatives, such as the classic secant
method. By comparing TABLE III with Table 2 in [4], it
is concluded that the presented methods are as efficient as
the CNTM.

TABLE III
NUMERICAL RESULTS FOR EXAMPLE 5.3

N DESN Method TDE
N

10 4.38E − 07 0.343
20 4.14E − 13 0.437
30 1.11E − 16 0.453
40 1.11E − 16 0.500
50 1.11E − 16 0.733
60 1.11E − 16 0.718
70 0.00E − 00 1.935
80 0.00E − 00 2.901
90 0.00E − 00 4.352
100 0.00E − 00 5.382

VI. CONCLUSION

Finding exact solutions for nonlinear the Fredholm integral
equations are often not available. So approximating these
solutions are very important. Many authors have proposed
different methods. In this research, a numerical method based
on sinc quadrature, the DE-sinc Nyström method has been
suggested. It has been shown theoretically and numerically
that the scheme is extremely accurate and achieve exponen-
tial convergence with respect to N .
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