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Abstract—We consider fourth order nonlinear problems
which describe electrostatic actuation in MicroElectroMechan-
icalSystems (MEMS) both in the stationary case and in the
evolution case; we prove existence, uniqueness and regularity
theorems by exploiting the Near Operators Theory.

Index Terms—Singular nonlinearities; Integro-differential
equations; Higher order elliptic and hyperbolic PDE; Regular-
ity results; Steklov boundary conditions; Near operators theory;
Implicit function theorem; MEMS and NEMS; Electrostatic
actuation.

I. INTRODUCTION

Recently a lot of attention has been devoted to the
study of mathematical models which describe, with different
levels of accuracy, the so-called electrostatic actuation in
MicroElectroMechanicalSystems (MEMS), see e.g. [11] and
references therein. These models are studied by considering
nonlinear problems involving nonlinearities which develop
singularities.
As an example we consider a plate set on a micro scale which
is suitably fixed at boundary of a region Ω ⊂ RN . Once that
a drop voltage is applied between the deflecting plate and a
ground plate, the micro-plate leaves the steady state u = 0
moving towards the ground plate set at height u = 1.
The deformation profile u of the MEMS is then governed,
in the stationary case, by the following model:



α∆2u =

(
β

∫
Ω

|∇u|2 dx+ γ

)
∆u

+
λf(x)

(1− u)σ
(

1 + χ

∫
Ω

dx

(1− u)σ−1

) , x ∈ Ω

u = ∆u− duν = 0, x ∈ ∂Ω, d ≥ 0

0 ≤ u < 1, x ∈ Ω

(1)

Here:
• Ω ⊂ RN is a smooth bounded domain;
• u : Ω −→ R is the unknown profile of the deflecting

MEMS plate;
• f : Ω −→ R+ is a bounded function which carries di-

electric properties of the material (permittivity profile);
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• λ ≥ 0 is the drop voltage between the ground plate and
the deflecting plate;

• the positive parameters α, β, γ, χ which are respectively
related to the thickness (rigidity) of the deflecting plate,
material deformation (self-stretching), tangential tension
forces (stretching), and nonlocal dependence of the
electrostatic potential on the solution itself (non uniform
electric charge distribution) and for σ ≥ 2 which takes
into account more general potential than Coulomb’s.

This is an extension of the nonlocal MEMS problem studied
by Cassani-do Ó-Ghoussoub [8] where the case σ = 2
(Coulomb potential) was considered, as well as α = 1,
β = 0, γ = 0 and χ = 0, namely:

∆2 u(x) =
λ f(x)

[1− u(x)]2
;

0 ≤ u(x) < 1, in Ω,

u = ∆u− duν = 0, on ∂Ω, d ≥ 0

(2)

It is well known that the role of boundary conditions in
higher order problems is very delicate, as pointed out in [12].

Here we deal with a rather general physical situation in
which Steklov boundary conditions are considered and given
by

u = ∆u− duν = 0, x ∈ ∂Ω, d ≥ 0

and from which we obtain Dirichlet (u = uν = 0) and Navier
(u = ∆u = 0) boundary conditions by setting respectively
d =∞ and d = 0.
In the stationary case we consider: u(t, x) = u(x); λ(t) =
λ ≥ 0; 0 ≤ f(x) ≤ 1

(Sλ)



∆2u = λ
f(x)

(1− u)2
, in Ω ⊂ RN

0 ≤ u < 1, in Ω
u = ∆u = 0 (Navier)
u = uν = 0 (Dirichlet) on ∂Ω

u = ∆u− duν = 0 (Steklov),

(3)

where f is the permittivity profile of the material. Solutions
have to be understood in the following sense:

Weak solutions: uλ, 1/(1−uλ)2 ∈ L1(Ω), 0 ≤ uλ ≤ 1 such
that ∫

Ω

uλ∆2ϕdx = λ

∫
Ω

h(x)

(1− uλ)2
ϕdx, ϕ-test

Energy solutions: weak-solutions such that uλ ∈ H, the
Sobolev space H2

0 or H2 ∩ H1
0 , accordingly to boundary

conditions.

The first result in the case of Dirichlet boundary conditions
was obtained in [8] and can be summarized as follows:
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• There exists a minimal (pointwise) classical (smooth)
solution uλ for 0 < λ < λ∗(Ω, f,N);

• λ∗ = λ∗ =: sup{λ | there exists a weak solution};
• u∗(x) = limλ↗λ∗ uλ(x) is an energy solution and it is

unique,
which was further developed in [10, Cowan-Esposito-
Ghoussoub-Moradifam]. Navier boundary conditions were
considered in [16, Lin-Yang’07], [15, Guo-Wei’08] and [9,
Cowan-Esposito-Ghoussoub’10] whereas Steklov boundary
conditions in [2, Berchio-Cassani-Gazzola’10].

II. MAIN RESULTS

The following result was proved in [6, Cassani-Fattorusso-
Tarsia ’11].

Theorem 1: Let the dimension N < 8, Ω ⊂ RN be a
bounded domain, f ∈ L∞(Ω) and α, β, γ, χ > 0. Then,
there exist λ∗, d0 ∈ (0,∞) such that for λ ∈ (0, λ∗) problem
(1) possesses a solution u ∈ H4(Ω) provided one of the
following holds:

(SN) 0 ≤ d < d0

or
(D) d =∞ and Ω is a ball
and the diameter of Ω is sufficiently small.

A. Remarks

1) It is worth to emphasize that the solution provided by
Theorem 1, u = uλ for a fixed 0 < λ < λ∗, is such
that ‖uλ‖∞ ≤ C < 1; as a consequence, by elliptic
regularity uλ turns out to be smooth.

2) Let us mention that in applications, the domain Ω rep-
resents the region occupied by the undeflected MEMS
plate which is set on a micro-scale basis; therefore, in
this respect, restrictions from above on the diameter of
the domain do not seem too stringent.

3) The restriction in Theorem 1 on the dimension N < 8
is somehow expected as a consequence of [10], [2]
as for N ≥ 9 the solution in the semilinear case and
avoiding nonlocal effects, is singular approaching λ∗,
in the sense that for λ = λ∗ one has ‖u0‖∞ = 1; this
clearly prevents any existence result to (1).

B. The abstract setting: a version of the Implicit Function
Theorem

The key-ingredient in the study of the stationary case is
provided by the following version of the implicit function
theorem proved in [20, Tarsia ’98] and which remarkably
extends the Near Operator Theory introduced in [4, Cam-
panato ’94].

Theorem 2: Let X be a topological space, Y a set, Z a
Banach space and the following mappings F : X×Y → Z,
B : Y → Z. Suppose that:

(i) there exists (x0,y0) ∈ X × Y such that F (x0,y0) = 0;
(ii) the map x→ F (x0,y0) is continuous at x0;

(iii) there exist k1 > 0, k2 ∈ (0, 1) and a neighborhood of x0,
U(x0) ⊂ X, such that, for all y1, y2 ∈ Y and for all x ∈
U(x0), we have

‖B(y1)−B(y2)− k1[F (x,y1)− F (x,y2)]‖Z
≤ k2‖B(y1)−B(y2)‖Z

(iv) B is injective;
(v) B(Y ) is a neighborhood of z0 = B(y0).

Then, there exists a ball S(z0, r) ⊂ B(Y ) and a neigh-
borhood of x0, V (x0) ⊂ U(x0), such that the following
problem: F (x,y(x)) = 0, ∀x ∈ V (x0),

y(x0) = y0

(4)

posseses an unique solution y : V (x0) → B−1(S(z0, r)).
Moreover, if condition (iii) holds for all x ∈ X, then the
solution y = y(x) turns out to be defined in the whole X .

The second main tool which is actually the starting point
to set up the strategy outlined in Theorem 2, can be obtained
by joining some results of [8] and [2] which we recall in the
following

Theorem 3: Let β = γ = χ = 0 in (1). Then there
exists λ∗ ∈ (0,∞) such that for all λ ∈ (0, λ∗) problem (1)
possesses a classical solution provided one of the following
holds:
(S) 0 ≤ d < d0, where d0 is the first simple boundary

eigenvalue of the biharmonic operator ∆2 under Steklov
boundary conditions;

(D) Ω is a ball and d = ∞, which corresponds to the
Dirichlet boundary conditions u = uν = 0 on ∂Ω.

C. Sketch of the proof of Theorem 1

First we apply implicit function theorem to show that the
problem is well posed and for this purpose we assume

x = (α, β, γ, χ, f, λ), y = y(x);

F (x,y) = F (α, β, γ, χ, f, λ, y)

= α∆2y(x) −
[
β

∫
Ω

|∇y(x)|2 dx γ
]

∆y(x)

+
λ f(x)

[1− y(x)]σ
{

1 + χ

∫
Ω

1

[1− y(x)]σ−1

}
dx

;

(5)

X = R+ × R+ × R+ × R+

×{f ∈ L∞(Ω) : |x : f(x) > 0| 6= 0}
×{λ : 0 ≤ λ < λ∗ < +∞};

B(y) = ∆2y(x);

Y = Yd =

{
u ∈ H4(Ω) : u = ∆u − d

∂u

∂ν
= 0,

a.e. in ∂Ω, d ≥ 0, 0 < u < 1,∫
Ω

1

[1− u(x)]8σ
dx < M1,

∫
Ω

|∆u(x)|2dx < M2

}
;

Z = L2(Ω).

(6)

We consider (x0,y0), belonging to X × Y , which enjoys
F (x0,y0) = 0, where x0 = (1, 0, 0, 0, f0, λ) e y0 =
y0(x0) = u0(x) is the solution of
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∆2 u0(x) =
λ f0(x)

[1− u0(x)]2

0 < u0(x) < 1, in Ω

u0(x) = ∆u0 − d
∂u0(x)

∂ν
= 0, on ∂Ω

(7)

as provided by Theorem 3. Next we sketch how assumptions
of Theorem 2 turn out to be verified.

Assumption (i):

F (x0,y0) = ∆2 u0(x) − λ f0(x)

[1− u0(x)]2
= 0

follows directly from the existence results for problem (Sλ)
subject to Steklov boundary conditions as proved in [2].

Condition (ii) is verified since the dependence of F
through parameters is continuous.

The assumptions (iv) e (v) follow by the properties of the
operator ∆2.

To verify the (iii) we show that there exists k1 ∈ (0, 1)
such that for every (α, β, γ, χ, f, λ) ∈ X one has∫

Ω

|α∆2y1(x) − α∆2y2(x)

− [F (α, β, γ, χ, f, λ, y1) − F (α, β, γ, χ, f, λ, y2)] |2 dx

≤ k1

∫
Ω

|α∆2y1(x) − α∆2y2(x)|2 dx (8)

and in turn we have∫
Ω

|[G(β, γ, y1(x)) + H(λ, χ, f(x), y1(x))]

− [G(β, γ, y2(x)) + H(λ, χ, f(x), y2(x))]|2 dx

≤ 2

∫
Ω

|G(β, γ, y1(x)) − G(β, γ, y2(x))|2 dx

+2

∫
Ω

|H(λ, χ, f(x), y1(x))]−H(λ, χ, f(x), y2(x))|2 dx

≤ k1

∫
Ω

|α∆2y1(x) − ∆2y2(x)|2 dx (9)

where we have set

G(β, γ, u(x)) =

[
β

∫
Ω

|∇u(x)|2 dx + γ

]
∆u(x) (10)

and

H(λ, χ, f(x), u(x))

=
λ f(x)

[1− u(x)]2
[
1 + χ

∫
Ω

1

[1− u(x, t)]2

] dx
Observe that we obtain the existence result globally in the
positive parameters α, β, γ, χ as well as for any σ ≥ 2,
f ∈ L∞, λ ∈ (0, λ∗) as consequence of the last claim in
Theorem 2.

III. NONLOCAL TIME DEPENDENT PROBLEMS

Recently in [7] the authors obtain existence, uniqueness
and regularity results for a model which takes into account
the dynamic of the problem as follows:



α∆2 u(x, t) + c u′(x, t) + p u′′(x, t)

=
[
β
∫
Ω |∇u(x, t)|2 dx + γ

]
∆u(x, t)

+
λ(t)f(x)

[1− u(x, t)]σ
[
1 + χ

∫
Ω

1

[1− u(x, t)]σ−1
dx

] ,
0 ≤ u(x, t) < 1, in Ω× [0, T ]

u(x, 0) = u0, in Ω

u′(x, 0) = 0, in Ω

u(x, t) = ∆u(x, t) − d
∂u(x, t)

∂ν
= 0, on ∂Ω× [0, T ]

(11)

Theorem 4: Let Ω ⊂ RN , 1 ≤ N ≤ 3, be a bounded
domain with sufficiently small diameter, σ ≥ 2, non negative
constants β, γ, χ and 0 ≤ d < d0, where d0 is the first
boundary eigenvalue of the biharmonic operator subject
to Steklov boundary conditions. Let also p, c be bounded
functions and λ ∈ C1((0, T );L2(Ω)) such that ‖λ‖∞ < λ∗,
u0 ∈ H2 ∩ H1

0 (Ω) (satisfying suitable compatibility con-
ditions) and u1 ∈ L2(Ω). Then, problem (11) possesses a
unique solution u ∈ C0([0, T ];H2(Ω)) ∩C1([0, T ];L2(Ω)).
The same conclusion holds if d =∞ and Ω is a ball.

Theorem 5: Let

u ∈ C0([0, T ];H2
0 (Ω)) ∩ C1([0, T ];L2(Ω))

be the solution to problem (11) given by Theorem 4. Assume
u0, u1 ∈ H2 ∩H1

0 (Ω) and c ∈W 1,∞((0, T );L2(Ω)). Then,
the solution enjoys the following regularity:

u ∈ C0([0, T ];H4(Ω)) ∩ C1([0, T ];H2 ∩H1
0 (Ω))

∩ C2([0, T ];L2(Ω))

Theorems (4) and (5) follows by means of a non straight-
forward extension of the technique used in the stationary
case to the dynamic setting and again this approach enables
us to prove existence and uniqueness of the solution locally
in time but globally in the physical parameters involved in
the problem.
Moreover, differently from the stationary case, here the
problem of regularity is somehow delicate as the equation
manifests itself through an hyperbolic nature. Then we are
concerned with proving regularity of solutions by adapting
and further developing abstract results of [1] and [13]. In
this respect, it is worth to mention that standard interpolation
theory does not suite optimal regularity results even with the
aid of higher order (operator) perturbations in a penalized
framework.

Finally, let us mention that the inverse identification
problem of identifying the pull-in voltage λ(t) in (11),
under a suitable (accessible and measurable) supplementary
information on the solution, has been studied in [5, Cassani-
Kaltenbacher-Lorenzi ’09].
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