
On Combating Content Poisoning
in Peer-to-Peer Networks

Mohammed Hawa, Member, IAENG, Raed Al-Zubi, Khalid A. Darabkh, and Ghazi Al-Sukkar

Abstract—Poisoning attacks on Peer-to-Peer (P2P) networks
are common nowadays. Poisoning refers to the condition in
which malicious peers share corrupt or infected content in an
attempt to destabilize the system and waste network bandwidth.
By so doing, regular peers find less value in the P2P network
and get discouraged from participating in the system. This
problem can be thwarted by introducing mechanisms to verify
the integrity of the downloaded content. However, this requires
extra resources for such verification process. In this paper,
we propose a strategy to minimize the threat of content
poisoning, while requiring less verification overhead on the
peers participating in the network.

Index Terms—Peer-to-Peer, content poisoning, probabilistic,
verification.

I. INTRODUCTION

P eer-to-Peer (P2P) networks have emerged as a popular
way to share content across the Internet [1]. Both the

number of participating peers in P2P networks and the
traffic volume they exchange rose to quite significant levels.
The distributed nature of such networks and the lack of
a centralized authority were among the main reasons why
P2P networks were such a success. However, those same
reasons made such networks vulnerable to various malicious
attacks, such as content poisoning, free-riding, collusion,
Sybil and denial-of-service attacks [2], [3], [4], [5]. In
content poisoning, a malicious peer injects corrupt or infected
content into the P2P network. This might be a video file
with missing or white noise content, a corrupt or mislabeled
archive file, or an executable file infected with viruses [5],
[6], [7], [8].

Several measurement studies indicate that P2P systems are
plagued by content poisoning. In [6], the authors studied
content poisoning in the FastTrack network, and found that
for some popular songs, more than 50% of the shared
song versions were poisoned. A similar study investigated
the poisoning in both the FastTrack and the Overnet P2P
networks, and showed that both were affected by poisoning
[7]. A more recent study [8] analyzed a large number of
popular files on the KAD Kademlia-based distributed hash
table (DHT) network implemented in the eMule client [9],
and showed that 66% of its content is poisoned.

Poisoned content degrades the quality of data available
on the P2P content sharing network, and deters peers from
participating in the system in the future. Without proper
countermeasures, regular peers might also end up as un-
willing participants in distributing such poisoned content.

Manuscript received March 8, 2013. This work was supported in part by
the Deanship of Academic Research at The University of Jordan.

M. Hawa, R. Al-Zubi, and G. Al-Sukkar are with the Electrical Engineer-
ing Department, The University of Jordan, Amman, 11942, Jordan, e-mail:
{hawa, r.alzubi, ghazi.alsukkar}@ju.edu.jo,

K.A. Darabkh is with the Computer Engineering Department, The Uni-
versity of Jordan, Amman, 11942, Jordan, e-mail: k.darabkeh@ju.edu.jo.

This happens when an unsuspecting peer downloads poi-
soned content from a malicious peer, and then shares such
content with the rest of the P2P system, thus infecting more
unsuspecting peers.

In this paper, we propose a probabilistic approach to
address content poisoning, in which we balance the trade-
offs between quickly identifying poisoned content and thus
eliminating the risk of this attack, and the overhead of such
undertaking on various peers in the system. We argue that
balancing those two issues will provide a more practical
solution for real-life P2P systems.

This paper is organized as follows: In Section II we
cite some related work. In Section III we elaborate on
the verification overhead required to address the problem
of content poisoning, and in Section IV we describe our
approach to achieve the best possible balance between verifi-
cation overhead and poisoning-restraint. The simulation setup
and evaluation results are explained in Section V, and we
conclude our work in Section VI.

II. RELATED WORK

Two forms of poisoning exist in real-life P2P networks [8]:
the first form, called content poisoning, consists of sharing
files whose content is deliberately damaged or infected. The
second form of poisoning, called index poisoning or meta-
data poisoning, consists of corrupting the file indices used
by the P2P system to advertise fake files which are actually
not shared by any peer.

Several researchers have proposed solutions to the problem
of content and index poisoning, especially in DHT-based
overlay networks. For example, a scheme of maintaining a
centralized database of blacklisted peers was proposed in
[7]. In addition, various reputation systems, such as peer
reputation [10], object reputation [11], and hybrid reputation
[12] were also suggested to fight against content poisoning
by introducing the concept of distributed voting, which adds
an extra overhead on peers as they need to collect votes and
process them. Such reputation systems are also vulnerable to
malicious votes and other similar attacks.

Other suggested methods to combat poisoning include
using a digital signature scheme applied to shared content
[13], similar to what is used in various Internet applications
[14]. However, this solution requires peers to access a cen-
tralized trusted authority to verify the digital signatures for
every download, which consumes intensive resources from
the centralized authority, it also compromises privacy, and
introduces a single point of failure.

Another similar alternative is using a distributed or cen-
tralized service to perform the verification on behalf of the
peer. This idea is similar to submitting an executable file to
the http://virustotal.com/ service to check if the file contains

Proceedings of the World Congress on Engineering 2013 Vol II, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



a virus. Although this provides a more reliable verification
compared to running a local copy of an anti-virus software
(since such services test the file using multiple methods of
analysis), it again consumes intensive resources from the
third party, introduces a single point of failure, and adds
to the resource consumption of the network bandwidth.

None of the proposed solutions has actually been widely
deployed so far because of the associated overhead required
for such solutions. To the best of our knowledge, no previous
work looked at the issue of minimizing the required overhead
in combating poisoned content to make the system more
practical.

III. CONTENT VERIFICATION

The various proposed solutions to the problem of content
poisoning allow peers to identify and eliminate poisoned
content. This, however, requires performing an integrity
verification on the requested content before (or after) down-
loading such content. Whatever the method of verification
we adopt, for this integrity verification to be reliable (i.e.,
accurate and with minimal false-positives), it will require
sizable processing overhead on the peer’s part.

Hence, we ask the following question: does every peer
really need to invoke this expensive verification process every
single time the peer downloads a file? Is there a way to
reduce such overhead, while still minimizing the outbreak of
poisoned content across the network. Since we do not live
in an ideal world, and since solutions that require extreme
overhead are difficult to implement and even more difficult to
scale well in real-life practical systems, we propose a prob-
abilistic technique for reducing this verification overhead
while still minimizing any possible outbreak of poisoned
content.

In addition, our algorithm does not disturb the decen-
tralized nature of the P2P system, as each participating
peer manages the potential risks involved in the content
downloading and sharing by himself without communicating
with other peers in the network. This is done based on the
experience and knowledge acquired by that peer during his
participation in the P2P network.

The choice of the exact method used for verification
is irrelevant to this work. We just assume that the cost
of verification is expensive, and we attempt to minimize
this overhead. We will quantify the performance tradeoffs
introduced by our proposed technique using simulation.

IV. POISONING RESTRAINT

Peers in a P2P network share the files they have created,
and the files they download from others. We assume that
each peer downloading a file has the ability (if it so desires)
to perform integrity verification on the content of that file
before (or after) the download process. If the peer decides to
perform this integrity check and finds the file to be infected,
it immediately deletes that file from its shared folder. On the
other hand, if it finds the file to be genuine, or if it decided
to skip the verification step, it shares the file with the rest of
the network.

We propose two techniques to restraint poisoning, while
limiting the number of content verifications done by each
peer. In both techniques the decision to perform integrity

1 initialize P i
c to 0.5 for all peers i

2 for file F from peer i
3 with probability P i

c verify file F
4 {
5 if F is infected
6 Delete F
7 else
8 Keep and share F
9 }
10 otherwise
11 Keep and share F

Fig. 1. Pseudo-code for the probabilistic verification algorithm.

verification or not is done on a random basis using a
predetermined check probability Pc. We adopt this choice
in order to reduce the number of verifications at various
peers in the network. Moreover, each peer in our framework
maintains a list of the peers from which it has downloaded
content in the past, and maintains a value P i

c for each such
peer i. This probability represents the probability of verifying
files downloaded from peer i in the future. Maintaining a list
of peers with which the downloader has interacted is done
regularly in the popular ED2K P2P network [9], and does
not require excessive local storage resources in real-life P2P
systems.

We present two overhead-minimizing poisoning-restraint
algorithms: In the first one, the value of P i

c is fixed for
all peers in the system, and it set to 0.5. We call this the
probabilistic verification method (see pseudo-code of Fig.
1). In the second algorithm, the probability P i

c changes
dynamically as the content of files received from peer i are
investigated. We call this the dynamic verification method.

The idea behind dynamic verification is the following: if
the downloading peer starts noticing that peer i is sending
infected files, it will increase P i

c to always verify files
from peer i, and hence avoid being infected by its shared
content. On the other hand, if the downloading peer starts
noticing that peer j is sending genuine files most of the
time, it will decrease P j

c to reduce its verification cost.
This is essentially an attempt to identify poisoners versus
regular peers in the network based on interactions between
the different peers, and hence has the potential to achieve
a better tradeoff between the need for verification versus
limiting the spread of infected files. The dynamic verification
method is illustrated in the pseudo-code of Fig. 2. Notice that
we maintain P i

c ∈ [0.1, 1.0]. The reason we avoid dropping
P i
c to 0.0 is to fend against the practical possibility of regular

peers turning to poisoners midways through the lifespan of
the peer.

V. EVALUATION

In this section, we first describe the simulation setup used
to test our poisoning-restraint algorithms. We then present
our key performance metrics, and discuss the simulation sce-
narios. Finally, we study the performance of the poisoning-
restraint strategies we proposed earlier.

A. Simulation Setup

In the following simulations, we assume a P2P network
composed of 2000 peers. A total of 20% of such peers are

Proceedings of the World Congress on Engineering 2013 Vol II, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



1 initialize P i
c to 1.0 for all peers i

2 for file F from peer i
3 with probability P i

c verify file F
4 {
5 if F is infected
6 P i

c ← 1.0
7 Delete F
8 else
9 P i

c ← max
(
P i
c ÷ 2, 0.1

)
10 Keep and share F
11 }
12 otherwise
13 Keep and share F

Fig. 2. Pseudo-code for the dynamic verification algorithm.

poisoners, while the remaining 80% are regular peers. Other
poisoner ratios, such as 5% and 10% of the total population
have been tested, and we found that the results are quite
similar. For brevity, we do not report on them here.

At the start of the simulation, each peer in the system
creates 10 files and shares them. The 10 files created by
each regular peer are genuine files, while the 10 files created
by each poisoner peer are infected files. Poisoners are not
interested in downloading content from the P2P network.
On the other hand, regular peers have good faith, and do not
know which files are good or bad. Hence, such regular peers
are interested in all files in the network, and they download
such files at random instants of time.

Once a regular peer downloads a file, it shares such file
with the rest of the P2P network, unless it decided to verify
the content of this file and discovers that it is infected, in
which case the file is deleted and never downloaded again.

This downloading process continues until all regular peers
have download all the files in the network. To normalize
our simulation setup we break the time necessary to finish
downloading all files into 20 cycles.

B. Performance Metrics

We seek to reach a condition in which we minimize the
number of carried out file verifications while also reducing
the infection level expected in the P2P network. Hence, we
evaluate two performance measures: the first is the fraction
of all files downloaded that are verified, whether kept or
found to be infected and deleted. Higher values represent
larger verification cost, resulting in a waste of resources at
the various peers.

The second quantity we evaluate is the fraction of all
downloaded files that are infected but never detected, and
hence shared, because of lack of verification. Larger infection
values are undesirable because they destabilize the P2P
system and waste the network bandwidth.

C. Simulation Scenarios

To evaluate the performance of our proposed poisoning-
restraint methods, we simulate the following four scenarios:

• Full verification: In this simple case, we set P i
c = 1.0

for all peers in the simulation. This means that peers
will always verify the files they download from others.

We expect maximum verification overhead, but also zero
infections.

• No verification: Here, we set P i
c = 0.0 for all peers.

This means that peers will never verify the files they
download from others. We should expect the maximum
possible infection level, but zero verification overhead.

• Probabilistic verification: In this case, we set P i
c =

0.5 for all peers. This means that after downloading a
file, the peer will have a fifty-fifty chance of verifying
the file, which reduces the verification overhead, but
allows infections in the network. This is our proposed
probabilistic verification method (see Fig. 1).

• Dynamic verification: Here, we use the more elaborate
dynamically changing P i

c values based on the pseudo-
code of Fig. 2. This is our dynamic verification method.

It is obvious that the first two scenarios represent limiting
cases, and hence, will help us provide upper and lower
bounds on the possible performance of poisoning-restraint
algorithms. They will also represent a convenient way of
validating our simulation code.

The last two scenarios represent the two poisoning-
restraint mechanisms proposed in the previous section. We
wish to quantify the performance of those proposed methods.

D. Results

Fig. 3 shows the fraction of verifications for the four
tested scenarios versus simulation time, and Fig. 4 shows
the fraction of infections that occurred in the P2P system
versus time. These fractions are calculated based on the total
number of downloaded files.

The results for the full verification and no verification
scenarios match what we expect, and hence validate our
simulations: When 100% of the files are verified by the
downloading peers, 0% infections occur in the P2P system.
On the other hand, when trying to eliminate the cost of ver-
ifying files, the infection rate reaches the maximum possible
value, which is equal to the fraction of injected poisoned
content (20% in this experiment). This is exactly the same
ratio of poisoners in the P2P system.

Our proposed algorithms attempt to reduce the verification
overhead by as much as possible while still maintaining a
small infection rate in the P2P network. We observe that
this is somewhat possible using the probabilistic verification
method, but is perfectly achieved by the dynamic verification
technique. In the probabilistic approach, we notice that the
verification overhead dropped from 100% to 50% (compared
to full verification), while the infection rate has dropped from
20% to 10% (compared to no verification). This represents a
simple, but reasonable tradeoff between verification cost and
infection breakout.

However, the highlight of the performance results come
from the dynamic verification algorithm. In such case, the
verification overhead is reduced to 45.9% by the end of
the simulation. This is achieved while the infection level is
kept to 0%. This is because all downloaders in the dynamic
verification algorithm start by verifying all files they receive
(i.e., P i

c = 1.0), but they gradually drop the probability P i
c

for the remoter peers that have good reputation of delivering
genuine files. It is worth mentioning that the verification
overhead can be brought down even further if we drop the

Proceedings of the World Congress on Engineering 2013 Vol II, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Simulation Cycles

F
ra

ct
io

n 
of

 V
er

ifi
ca

tio
ns

 (
%

)

 

 

Full Verification, 20% Poisoners
Dynamic Verification, 20% Poisoners
Prob. Verification, 20% Poisoners
No Verification, 20% Poisoners

Fig. 3. Fraction of verifications in the case of 20% poisoners sharing
infected files.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Simulation Cycles

F
ra

ct
io

n 
of

 In
fe

ct
io

ns
 (

%
)

 

 

No Verification, 20% Poisoners
Prob. Verification, 20% Poisoners
Dynamic Verification, 20% Poisoners
Full Verification, 20% Poisoners

Fig. 4. Fraction of infections in the case of 20% poisoners sharing infected
files.

value of P i
c quicker (by dividing by, say, 4.0), and/or if we

lower minimum value of P i
c from 0.1 to 0.0.

However, the reason we do not do this is that a poisoner
peer m can start by sending genuine content to reduce its Pm

c

to 0.0 at other peers in the system, and then starts sending
infected files. We have to admit, though, that this is a remote
possibility. For starters, in real-life P2P systems the main
concern of poisoners is to destabilize the P2P network with
the minimum possible effort. Therefore, poisoners who are
willing to send genuine content to other peers (and hence
dedicate the resources to do such thing) are extremely rare.
We see this often in the real-life BitTorrent P2P file sharing
network, for example [15]. In addition, since each peer in
the network has its own Pm

c for the poisoner peer m, the
poisoner has to work extremely hard to deliver genuine
content to so many peers to gain good reputation, which
again requires extensive resources in a large P2P system.

With that being said, we still would like to quantify how
our proposed algorithms work in the case where poisoners
send some genuine content along with infected files. There-
fore, we repeat our simulation experiments with the same

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Simulation Cycles

F
ra

ct
io

n 
of

 V
er

ifi
ca

tio
ns

 (
%

)

 

 

Full Verification, 20% Poisoners
Dynamic Verification, 20% Poisoners
Prob. Verification, 20% Poisoners
No Verification, 20% Poisoners

Fig. 5. Fraction of verifications in the case of 20% poisoners sharing both
genuine and infected files.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Simulation Cycles

F
ra

ct
io

n 
of

 In
fe

ct
io

ns
 (

%
)

 

 

No Verification, 20% Poisoners
Prob. Verification, 20% Poisoners
Dynamic Verification, 20% Poisoners
Full Verification, 20% Poisoners

Fig. 6. Fraction of infections in the case of 20% poisoners sharing both
genuine and infected files.

parameters described earlier, except that this time, poisoner
peers create and share 2 genuine files and 8 infected files
(rather than 10 all infected files). The results of the new
simulation runs are shown in Figs. 5 and 6.

Notice that even when the poisoners are acting as rogue
peers in the system, our dynamic verification method per-
formed quite well. The verification overhead is only 38.4%,
and the infection rate remained at 6%, which is less than both
the no verification case and the probabilistic case. It is worth
mentioning that the dynamic algorithm is quite flexible in its
design, since the value of P i

c can be made to drop slowly to
prevent infection (albeit on a slight increase in the cost of
verification), or can be made to drop quicker to reduce the
verification overhead.

VI. CONCLUSIONS

The reason that P2P systems suffer extensively from
poisoning attacks is the amount of resources needed to im-
plement integrity verification to combat such attacks. Unless
this overhead can be reduced, poisoning-restraint methods
cannot find their way into practical P2P networks.

Proceedings of the World Congress on Engineering 2013 Vol II, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



In this work, we introduced two methods that balance
poisoning-restraint and verification overhead. The first is
the probabilistic verification method, which is extremely
simple, and does not require any processing or storage of
the P i

c values. It results in reasonable, but not excellent,
performance.

The second method, on the other hand, is the dynamic
verification method, which adaptively changes the P i

c values
depending on the observed behavior of the peers in the sys-
tem. This method provides the best balance in performance
against poisoners. It is also resistant to poisoners who are
willing to put more effort into fooling the P2P system into
believing they are regular peers.

REFERENCES

[1] C.-L. Hu and Z.-X. Lu, “Downloading trace study for BitTorrent P2P
performance measurement and analysis,” Peer-to-Peer Networking and
Applications, Volume 5, Issue 4, 2012, pp. 384–397.

[2] P.M.R. Anand and V. Bhaskar, “Polluted content prevention in Peer-
to-Peer file sharing networks.” In: Proceedings of the Annual IEEE
Conference on Engineering Sustainable Solutions, 2011, pp. 1–4.

[3] C. Selvaraj and S. Anand, “A survey on security issues of reputation
management systems for peer-to-peer networks.” Computer Science
Review, Volume 6, Issue 4, 2012, pp. 145–160.

[4] N. Christin, A.S. Weigend, and J. Chuang, “Content availability,
pollution and poisoning in file sharing Peer-to-Peer networks.” In:
Proceedings of the 6th ACM Conference on Electronic Commerce, 2005,
pp. 68–77.

[5] B. S. Sarjaz and M. Abbaspour, “Securing BitTorrent using a new
reputation-based trust management system.” Peer-to-Peer Networking
and Applications, Volume 6, Issue 1, 2013, pp. 86-100.

[6] J. Liang, R. Kumar, Y. Xi, and K.W. Ross, “Pollution in P2P file sharing
systems.” In: Proceedings of the 24th IEEE International Conference
on Computer Communications (INFOCOM), 2005, pp. 1174–1185.

[7] J. Liang, N. Naoumov, and K.W. Ross, “The index poisoning attack in
P2P file sharing systems.” In: Proceedings of the 25th IEEE Interna-
tional Conference on Computer Communications (INFOCOM), 2006,
pp. 1–12.

[8] G. Montassier, T. Cholez, G. Doyen, R. Khatoun, I. Chrisment, and
O. Festor, “Content pollution quantification in large P2P networks:
a measurement study on KAD.” In: Proceedings of the 11th IEEE
International Conference on Peer-to-Peer Computing, 2011, pp. 30-33.

[9] eMule official website and source code, http://www.emule-project.net.
[10] S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina, “The EigenTrust

algorithm for reputation management in P2P networks.” In: Proceedings
of the 12th international world wide web conference, 2003, pp. 640-651.

[11] K. Walsh, and E.G. Sirer, “Experience with an object reputation system
for Peer-to-Peer file sharing.” In: Proceedings of the 3rd conference on
Networked Systems Design and Implementation, Volume 3, 2006, pp.
1-1.

[12] C. Costa and J. Almeida. “Reputation systems for fighting pollution in
peer-to-peer file sharing systems,” In: Proceedings of the Seventh IEEE
International Conference on Peer-to-Peer Computing, 2007, pp. 53–60.

[13] C. Cid, “Recent developments in cryptographic hash functions: Secu-
rity implications and future directions.” Information Security Technical
Report, Volume 11, Issue 2, 2006, pp. 100-107.

[14] Mobione, “iOS Application Provisioning Requirements.”
http://www.genuitec.com/mobile/docs/appledigitalsignature/
appledigitalsignature.html, 2013. Retrieved March 2013.

[15] Ernesto, “Anti-Piracy Outfits Launch Attack on BitTorrent Protocol.”
http://torrentfreak.com/anti-piracy-outfits-launch-attack-on-bittorrent-
protocol-120519/, May 2012. Retrieved March 2013.

Proceedings of the World Congress on Engineering 2013 Vol II, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013




