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Abstract—The paper presents an advanced method of recog-
nition of patient’s intention to move of multijoint hand pros-
thesis during the grasping and manipulation of objects in a
dexterous manner. The proposed method is based on two-
level multiclassifier system (MCS) with heterogeneous base
classifiers dedicated to EMG and MMG biosignals and with
combining mechanism using a dynamic ensemble selection
scheme and probabilistic competence and diversity measures.
The performance of MCS with combining procedure based on
proposed competence and diversity functions were experimet-
ally compared against four benchmark MCSs using real data
concerning the recognition of six types of grasping movements.
The system developed achieved the highest classification accu-
racies demonstrating the potential of multiple classifier systems
with multimodal biosignals for the control of bioprosthetic
hand.

Index Terms—EMG signal, MMG signal, bioprosthetic hand,
multiclassifier, competence, diversity

I. INTRODUCTION

Loss of hand significantly reduces the activity of human
life. The people who have lost their hands are doomed to per-
manent care. Restoring to these people even a hand substitute
makes their life less onerous. The hand transplantations are
still in a medical experiment, mainly due to the necessity
of immune-suppression (permanent, to the end of patient’s
life). An alternative is to equip these people with cybernetics
prostheses.

Existing active prostheses of hand (the bioprostheses) are
generally controlled on myoelectric way - they react to
electrical signals that accompany the muscle activity (called
electromyography signals - EMG signals). The control is
feasible since after the amputation of the hand, there remain
a significant number of the muscles in the arm stump that
normally controlled the finger action. The tensing of these
muscles still depends on the patient will and may express
her/his intentions as to the workings of her/his prosthesis
[13], [22].

Nevertheless, reliable recognition of intended movement
using only the EMG signals analysis is a hard problem.
A recognition error increases along with the cardinality of
movement repertoire (i.e. with prosthesis dexterity). The
natural solution to overcome this error is to improve the
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recognition method [15]. Another approach consists in ad-
ditional use of a different kind of modalities on recognition
stage, i.e. to complement EMG signals with another type of
biosignals. The authors studied the fusion of EMG signals
and the mechanomyography signals (MMG signals). The
MMG signals are mechanical vibrations propagating in the
limb tissue as the muscle contracts.

According to the author’s recent experience ([15], [16],
[17]), increasing the efficiency of the recognition stage may
be achieved through the following activities:

« by introducing the concept of simultaneous analysis of
two different types of biosignals, which are the carrier
of information about the performed hand movement —
the EMG and MMG signals;

o through the use of multiclassifier system with the
heterogeneous base classifiers dedicated to particular
registered biosignals;

o through development of the paradigm of dynamic en-
semble classifier selection system using measures of
competence and diversity as results of appropriate op-
timization problems;

« by the appropriate choice of feature extraction methods
(biosignals parameterization) justified by the experimen-
tal results of comparative analysis.

Taking into account above observations and suggestions,
the paper aims to solve the problem of recognition of the
patient’s intention to move the multiarticulated prosthetic
hand during grasping and manipulating objects in a skillful
manner, by measuring and analyzing multimodal signals
coming from patient’s body. The adopted solution takes into
consideration the advantages given by the fusion of the EMG
and MMG signals. The concept combines the recognition
(of EMG and MMG signals) performed by multiclassifier
system working in the dynamic ensemble selection (DES)
fashion with measures of competence and diversity of base
classifiers.

The paper arrangement is as follows. Chapter 2 includes
the concept of prosthesis control system based on the
recognition of patient intention and provides an insight into
steps of the whole decision control procedure. Chapters 3
and 4 present the key recognition algorithm based on the
multiclassifier system with the dynamic ensemble classifier
selection strategy. Chapter 5 presents experimental results
confirming adopted solution and chapter 6 concludes the

paper.
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II. PROSTHESIS DECISION CONTROL

The application of biological signals to control the prosthe-
sis requires the development of three stages (types of actions)
(vide Fig. 1):

1) acquisition of signals;

2) reduction of dimensionality of their representation;

3) classification of signals.
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Fig. 1. Block diagram of the prosthesis decision control based on
recognition process.

The acquisition must take into account the nature of
the measured signals and their measurement conditions. A
quality of obtaining information depends essentially on the
ratio of the measured signal power to interfering signal
power, defined as SNR (Signal to Noise Ratio). For the
non-invasive methods of measurements carried out on the
surface of the patient’s body, to obtain a satisfactory SNR is a
difficult issue [3]. Usually the noise amplitude exceeds many
times the amplitude of the measured signal. For example, for
electrical signals (which include EMG and EEG signals), the
amplitude of voltages induced on the patient body as a result
of the influence of external electric fields, may exceed more
than 1000 times, the value of useful signals. This induces
the need for careful design of measurement channels for
different modalities, including the sophisticated circuits and
high-quality components. New issue of bioprosthesis control
is to include “feeling of grip” — i.e. the feedback about the
posture of prosthesis fingers and their contact with the object
being gripped. The focal point of this issue is choosing the
type of sensors and their location on the artificial hand.
Both types of indicated problems will be addressed in the
design of the measuring stand and the method of conducting
experiments.

After the acquisition stage, the recorded signals have the
form of strings of discrete samples. Their size is the product
of measurement time and sampling frequency. For a typical
motion, that gives a record of size between 3 and 5 thousand
of samples (time of the order of 3-5 s, and the sampling of the
order of 1 kHz). This “primary” representation of the signals
hinders the effective classification and requires the reduction
of dimensionality. This reduction leads to a representation in
the form of a signal feature vector.

Former experimental research showed, that the best meth-
ods in respect of the recognition error and the calculation
costs in the biosignal analysis are the following:

o For the feature extraction: Fast Fourier Transform
(FFT), Discrete Wavelet Transform (DWT) and Autore-
gressive Model (AR) methods [2], [3], [7], [15];
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o For the feature reduction/selection: Interpolation (IP),
Principal Component Analysis (PCA) and Sequential
Backward Selection (SBS) methods [13], [15], [17],
[22].

The classification of the feature vector in bioprosthesis
control system is of great importance. Prosthesis dexterity
implies huge repertoire of movements (between a dozen or
so and several dozens of movements). Because recognition
error increases with the extension of movement repertoire
(i.e. with prosthesis dexterity) [17], the reliable recognition
of intended movement is a hard problem. This is a reason,
why existing commercial prostheses can perform just a few
movements. There is still a need for developing new ways
of increasing reliability of identifying muscle activity. The
existing research focuses mainly on developing methods
of better EMG signal identification. But the distinguishing
capabilities of EMG signal features turn out insufficient for
reliable recognition with many classes. Possible approach is
reinforcement of the algorithm using another kind of signals
that occur during muscle activity, such as mechanomyogra-
phy (MMG) signals (vibrations) or electroencephalography
(EEG) signals that arise in cerebral cortex.

Although as a classifier construction different methodolog-
ical paradigms can be used, we suggest to use multiclassifier
systems, which have proved to be an effective approach in
the problem of EMG signal recognition [10]. We will aply
a multiclassifier system with heterogeneous base classifiers
dedicated to particular registered biosignals and with the
dynamic ensemble classifier selection method using origi-
nal procedure of fusion/selection based on competence and
diversity measures.

III. MULTICLASSIFIER SYSTEM
A. Preliminaries

In the multiclassifier (MC) system we assume that a set
of trained classifiers ¥ = {1,%9,...,%} called base
classifiers is given. A classifier ¢; is a function ;

X — M from a feature space to a set of class labels
M ={1,2,..., M}. Classification is made according to the
maximum rule

(1

Yi(z) =i & di(z) = max dij (),

where [dj1(z), dj2(x), ..., diar(x)] is a vector of class sup-
ports (classifying function) produced by ;. Without loss of
generality we assume, that dy;(2) > 0 and }, di;(z) = 1.

Now, our purpose is to determine the following charac-
teristics, which will be the basis for dynamic selection of
classifiers from the pool:

1) a competence measure C(¢;|x) of each base classifier
(! =1,2,...,L), which evaluates the competence of
classifier ¢/; i.e. its capability to correct activity (correct
classification) at a point z € X.

2) a diversity measure D(V¥ g|z) of any ensemble of base
classifiers ¥ g, considered as the independency of the
errors made by the member classifiers at a point z € X',

In this paper trainable competence and diversity functions

are proposed using a probabilistic model. It is assumed that
a validation set

S ={(x1,51), (x2,52),-- -, (&N, JN)}; o € X, jr €M
()
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is available for the training of competence and diversity
measures.

In the next section the original concept of a reference
classifier will be presented, which — using probabilistic model
— will state the convenient and effective tool for determining
both competence and diversity measures.

B. Randomized Reference Classifier - RRC

A classifier! 1) from the pool ¥ is modeled by a random-
ized reference classifier (RRC) [19] which takes decisions in
a random manner. A randomized decision rule (classifier) is,
for each = € X', a probability distribution on a decision space
[1] or — for the classification problem (1) — on the product
[0,1]™, i.e. the space of vectors of discriminant functions
(supports).

The RRC classifies object z &€ X according to the
maximum rule (1) and it is constructed using a vector of class
supports [01(x), d2(x), ..., 0p ()] which are observed val-
ues of random variables (rvs) [Aq(x), As(x),..., Ay (x)].
Probability distributions of the random variables satisfy the
following conditions:

(D) Aj(z) € [0,1];

@) E[A;(2)] = dy(a), j=1,2,...
(3) 2o i) =1,

where E is the expected value operator. In other words, class
supports produced by the modeled classifier ¢ are equal to
the expected values of class supports produced by the RRC.

Since the RRC performs classification in a stochastic man-
ner, it is possible to calculate the probability of classification
an object z to the ¢-th class:

, M,

.....

In particular, if the object x belongs to the ¢-th class, from
(3) we simply get the conditional probability of correct
classification Pc(EC) ().

The key element in the modeling presented above is the
choice of probability distributions for the rvs A;(z),j € M
so that the conditions 1-3 are satisfied. In this paper beta
probability distributions are used with the parameters o ()
and B;(z) (j € M). The justification of the choice of
the beta distribution can be found in [20] and furthermore
the MATLAB code for calculating probabilities (3) was
developed and it is freely available for download [21].

Applying the RRC to a validation point x; and putting in
(3) @ = jx, we get the probability of correct classification of
RRC at a point x; € S, namely

PC(RRC)(mk) _ P(RRC)(jHCUk), i €S. “)

Similarly, putting in (3) a class j # jr we get the class-
dependent error probability at a point x; € S:

PelREO (jlay) = PERO (lzy), x) €8, j(#jx) € M.

(5)
In next sections probabilities of correct classification (4) and
conditional probabilities of error (5) for validation objects
will be utilized for determining the competence and diversity
functions of base classifiers.

IThroughout this subsection, the index [ of classifier v; and class
suppports dy; () is omitted for clarity
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C. Measure of Classifier Competence

Since the RRC can be considered equivalent to the mod-
eled base classifier ¢; € W, it is justified to use the
probability (4) as the competence of the classifier ¢; at the
validation point zj, € S, i.e.

C(i|r) = PR (xy,). (6)

The competence values for the validation objects z, € S
can be then extended to the entire feature space X. To
this purpose the following normalized Gaussian potential
function model was used ([20]):

Y eres C(ilwg)exp(—dist(z, x1)?)
ZSK}CES exp(*dzst(x, I'k)2)

where dist(z,y) is the Euclidean distance between the
objects = and y.

C(ilz) = N©)

D. Measure of Diversity of Classifiers Ensemble

As it was mentioned previously, the diversity of a classifier
ensemble Wy is considered as an independency of the
errors made by the member classifiers. Hence the method in
which diversity measure is calculated as a variety of class-
dependent error probabilities is fully justified [12].

Similarly, as in competence measure, we assume that at
a validation point z; € S the conditional error probability
for the class j # ji of the base classifier 1; is equal to the
appropriate probability of the equivalent RRC, namely:

Pe)(j|zy) = PePEO (j|zy,). (8)

Next, these probabilities can be extended to the entire feature
space X using Gaussian potential function (7):

S ereszg PeW (low)exp(—dist(x, xx)?)

Pel*)(jlz) = .
doures. o €xp(—dist(z, vx)?)

©))

According to the presented concept, using probabilities (9)

first we calculate pairwise diversity at the point z € X for

all pairs of base classifiers ¢; and v from the pool ¥:

1 . .
D, ¥ule) = 37 Z | P (jlz) — et (j|z)[, (10)
JEM
and finally we get diversity of ensemble of n (n < L) base
classifiers Ug(n) at a point z € X as a mean value of
pairwise diversities (10) for all pairs of member classifiers,
namely:

D) = ey Y

Y1, Y €V E(n);l#£k

D1, Yr ).
(11)

IV. DYNAMIC ENSEMBLE SELECTION SYSTEM
A. Method

The proposed DES competence and diversity based clas-
sification system (DES-CD) is constructed in the procedure
consisting of two steps:

1) For the test object x € X and for given ensemble size

n and the competence threshold « first the ensemble of
classifiers ¥;(n) is found as a solution of the folowing
optimization problem:

D(¥%(n)|r) = mazy ,n) D(YE(n)|z) (12)
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subject to C'(¢;]x) > a for ¢; € ¥, This step elimi-
nates incompetent (inaccurate) classifiers and keeps the
ensemble maximally diverse.

2) The selected classifiers are combined by weighted
majority voting where the weights are equal to the
competence values. The weighted vector of class sup-
ports of DES-CD system is given by

di(@) =Y Clile)dj(x).

PrEXE(n)

13)

B. Solution of Optimization Problem

The key moment in the method developed is the opti-
mization problem (12). As a solution method we propose
suboptimal procedure which is followed sequential forward
feature selection method [8]. In this method first the set of
competent classifiers (better than threshold «) is created and
next classifiers are sequentially selected from this set: at first
the classifier with the highest competence is chosen, next
to the already selected classifier we add another one so as
to create the couple with the best diversity, then the three
classifiers with the highest diversity, including the selected
first and second ones are chosen and so one. This procedure
is continued up to n classifiers are selected.

The pseudo-code of the algorithm is as follows [12]:

Input data: & - validation set; ¥y - the
pool of classifiers;
n — the size of enesemble; = €
X - the testing point;
« — the threshold of competence
1. For each 9y € VU calculate competence
C(¢|z) at the point x
2. Create temporal set of competent
classifiers at the point x
U(z)={ € ¥y : C(thlz) > a}
3. ¥i(n) = {Yu)} and ¥(z) = ¥(x)
Yy CYmlz) = mazyew)C(Y]2)
4. For 1=2 to n do
a) Find v € ¥(z) for which
D(W(n) U dglz) = mazyew)D(Vg(n) U

where

—Yq)

Y|x)
b) ‘I’(): V(x) — ¥
Up(n) = ¥p(n) U
endfor

C. Fusion Procedure at the Second Level

Since recognition of the patient’s intent is made on the
basis of analysis of two different biosignals (EMG and
MMG), the multiple classifier system — according to the
proposed concept of the recognition method — consisits of
two submulticlassifiers: W(PME) and W(MMG) _ each of
them dedicated to particular types of data. It leads to the
two level structure of MC system presented in Fig. 2, in
which the DES method is realized at the first level, whereas
combining procedure at the second level is consistent with
the continuous-valued dynamic fusion scheme.

At the second level of MC, supports (13) are combined
by the weighted sum:

d;MC)(x) = C(EMG)d§EMG)(x) + (MMG) g(MME) (x),

(14)
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Fig. 2. Block diagram of the proposed multiclassifier system.

where weight coefficients ¢(FMG) and ¢(MMG) denote mean
competence of base classifiers from W(FMG) apd W(MMG),

Finally, the MC system classifies © = (2(FM@) p(MMG))
using the maximum rule:

Yyuc(z) =1 < dEMC)( ) = maxd( )(x) (15)

JEM

V. EXPERIMENTS
A. Experimental Setup

In order to study the performance of the proposed method
of EMG signal recognition, some computer experiments were
made. The experiments were conducted in MATLAB using
PRTools 4.1 [6].

In the recognition process of the grasping movements, 6
types of objects (a pen, a credit card (standing in a container),
a computer mouse, a cell phone (laying on the table), a
kettle and a tube (standing on the table)) were considered.
Our choice is deliberate one and results from the fact that
the control functions of simple bioprosthesis are hand clos-
ing/opening and wrist pronantion/supination, however for the
dexterous hand these functions differ depending on grasped
object [15].

The experiments were carried out on healthy persons.
Biosignals were registered using 3 EMG electrodes and 3
MMG microphones located on a forearm above the ap-
propriate muscles (vide Fig.3). EMG and MMG signals
were registered in specially designed 16-channel biosignals
measuring circuit (Bagnoli Desktop EMG System made by
DELSYS Inc.) with sampling frequency 1 kHz.

MMG microphones

Fig. 3. The layout of the EMG electrodes and the MMG microphones on
the forearm

The dataset set used to test of proposed classification
method was acquired in the Biomedical Laboratory of the
Dept. of Systems and Computer Networks of Wroclaw
Technical University. The dataset consisted of 400 measure-
ments, i.e. pairs “EMG signal segment/movement class”.
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Each measurement lasted 3 s and was preceded with a 10 s
break. The root mean square (RMS) values of 250-sample
frames of EMG signal and 8 harmonics were considered as
features, which gave a total of 324 primary features. Next,
primary features were subjected to the PCA feature extraction
procedure for different numbers of principal component
(p = 2,4,6,8,10). Consequently, we got 5 datasets each con-
taining 400 objects desribing by different number of features.
The training and testing sets were extracted from each dataset
using two-fold cross-validation. A half of objects from the
training dataset was used as a validation dataset and the
other half was used for the training of base classifiers. Three
experiments were performed which differ in the biosignals
used for classification (EMG signals, MMG signals, both
EMG and MMG signals). The experiments were conducted
using the set of the following ten base classifiers [5] : (1-
2) linear (quadratic) classifier based on normal distributions
with the same (different) covariance matrix for each class, (3)
nearest mean classifier, (4-6) k-nearest neighbours classifiers
with k = 1,5, 15, (7) naive Bayes classifier (8) decision-tree
classifier with Gini splitting criterion, (9-10) feed-forward
back-propagation neural network with 1 hidden layer (with
2 hidden layers).
The performances of the DES-CD system was compared
against the following four multiple classifier systems:
1) The single best (SB) classifier in the ensemble [9].
2) Majority voting (MV) of all classifiers in the ensemble
[9].
3) DES-local accuracy (LA) system: this system classifies
x using selected classifier with the highest local com-
petence (the competence is estimated using k nearest
neighbours of x taken from the validation set [14].
4) DES-C system: this system classifies x using selected
classifiers with the competences (7) higher then ran-
dom guessing method [11].

B. Results and Discussion

Classification accuracies (i.e. the percentage of correctly
classified objects) for methods tested are listed in Table I.
The accuracies are average values obtained over 10 runs (5
replications of two-fold cross validation). Statistical differ-
ences between the performances of the DES-CD and the
four MC systems were evaluated using Dietterich’s 5x2cv
test [4]. The level of p < 0.05 was considered statistically
significant. In Table I, statistically significant differences are
given under the classification accuracies as indices of the
method evaluated, e.g. for the dataset with p = 8 and EMG
signals the DES-CD system produced statistically different
classification accuracies from the SB, MV and LA methods.

These results imply the following conclusions:

1) The DES-CD system produced statistically significant
higher scores in 42 out of 60 cases (15 datasets x 4
classifiers compared);

2) The multiclassifier systems using both EMG and MMG
signals achieved the highest classification accuracy for
all datasets.

VI. CONCLUSION

Experimental results indicate, that proposed methods of
grasping movement recognition based on the dynamic en-
semble selection with probabilistic model of competence and
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TABLE I
CLASSIFICATION ACCURACIES OF CLASSIFIERS COMPARED IN THE
EXPERIMENT (DESCRIPTION IN THE TEXT). THE BEST SCORE FOR EACH
DATASET IS HIGHLIGHTED. (NPC — NUMBER OF PRINCIPLE

COMPONENTS)
Classifier / Mean (SD) accuracy [%]
NP( SB MV LA DES-C DES-CD
@ &) 3 (C)) ()
EMG signals
2 772123 745/1.5 78.3/1.6  78.5/2.3 79.8/1.7
1,2

4 79.3/1.7 80.5/2.3 84.6/1.9 82.5/2.3 84.3/1.9
1,24

6 85.7/1.9 83.2/1.3 85.1/1.8 85.4/2.5 85.5/2.0
2

8 87.2/23 857125 88.6/1.8 91.1/1.6 91.6/1.6
1,23

10 | 90.5/2.2 92.6/1.8 91.8/1.7 93.1/2.3 93.8/1.7
1,23

MMG signals

2 47.8/1.1 43.5/1.5 46.8/1.6 459/1.3 48.1/0.9
2,34

4 49.8/1.4 46.8/0.8 45.3/1.1 48.4/0.9 49.6/1.3
2,3

6 52.4/1.3 51.2/1.2 50.6/0.8 54.2/0.9 55.6/0.9
1,23

8 57.3/1.5 584/13 623/1.6 61.1/1.3 63.5/0.9
1,24

10 | 65.8/1.1 63.9/0.7 654/09 67.2/1.3 68.5/1.0
1,2,3

MMG and EMG signals

2 82.5/2.1 81.8/1.5 83.1/1.6 84.3/1.5 84.5/1.8
1,23

4 87.4/1.8 87.6/1.3 882/1.5 89.6/1.3 89.0/1.8
1,23

6 92.7/1.7  92.1/1.3  91.9/2.0 93.8/2.1 95.3/1.5
1,2,3.4

8 92.7/1.6  93.2/2.1 93.8/2.1 95.4/2.1 96.6/1.6
1,23

10 | 95.9/1.3 95.1/0.7 94.7/0.9 96.8/1.1 97.9/1.3
1,23

diversity functions, produced accurate and reliable decisions,
especially in the cases with features coming from the both
EMG and MMG biosignals.

The problem of deliberate human impact on the mechan-
ical device using natural biological signals generated in the
body can be considered generally as a matter of “human
— machine interface”. The results presented in this paper
significantly affect the development of this field and the
overall discipline of signal recognition, thereby contributing
to the comprehensive development of civilization. But more
importantly, these results will also find practical application
in the design of dexterous prosthetic hand - in the synthesis
of control algorithms for these devices, as well as develop-
ment of computer systems for learning motor coordination,
dedicated to individuals preparing for a prosthesis or waiting
for a hand transplantation [18].
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