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Abstract—A nonlinear autoregressive moving average with 

exogenous input (NARMAX) model structure is used to 
develop paraplegic dynamic leg joint model and the result is 
compared to a model built using artificial neural network 
(ANN). A series of experiments employing Functional 
Electrical Stimulation (FES) with varying pulse width are 
conducted to determine the impact of the leg swing angle. The 
data obtained is used to develop the paraplegic leg joint model. 
Seven sets of data with 3300 data in each are used to develop 
the joint model. The joint model thus developed is validated by 
experimental data from one paraplegic subject. It is revealed 
that ANN and NARMAX models both can represent the joint 
dynamics but NARMAX joint model is found to be highly 
accurate and able to predict the leg movement with better 
precision as compared to the ANN joint model. In order to 
improve the performance and the precision of the model, 
NARMAX is used with orthogonal least square (OLS) 
algorithm. The established model is then used to predict the 
behaviour of the underlying system and will be employed in 
future for the design and evaluation of various control 
strategies.  

 
Index Terms— Functional electrical stimulation; joint mode; 

NARMAX; NARMAX_OLS; ANN; paraplegic; spinal cord 
injury. 

 INTRODUCTION I.
araplegic is impairment in motor and/or sensory 
function of the lower extremities. It is usually the result 

of spinal cord injury (SCI), which affects the neural 
elements of the spinal canal. In United Kingdom, incidents 
of SCI are 10 to 15 per million people per annum, resulting 
in 600 to 900 new cases each year [1]. Sisto et al [2] have 
reported that more than 200,000 people in the United States 
suffer from SCI and each year 10,000 new cases occur. 

Functional electrical stimulation (FES) is a means of 
producing contraction in paralyzed muscle due to central 
nervous system lesion by utilizing electrical stimulation [3]. 
However, due to the reverse recruitment order, the paralyzed 
muscles tend to fatigue rapidly and the force decline is 
steeper. In a FES activity muscle fatigue is affected by 
several factors including stimulation parameters, pattern of 
stimulation, method of stimulation and the task to be 
performed [4]. To ensure safety in open -loop control of 

FES muscle is normally over stimulated which results in 
greater fatigue [5]. 

To improve the quality of control method and reduce the 
effect of muscle fatigue, closed-loop control methods have 
been extensively reviewed [6-7]. Moreover, modeling of 
muscle behavior under electrical stimulation considering 
fatigue and recovery has gained a lot of momentum. To 
realize an accurate closed-loop control system, a precise 
dynamic model of the muscle or the joint is needed to 
recalculate the best trajectory to complete a desired task.  
The controller then would be able to adjust the controlled 
parameters in order to finish the task by reduced fatigue. 
Therefore, development of a joint model to predict the 
behavior of the system and use it as a feedback is an 
important step prior to the implementation of the movement 
synthesis and associated control strategy. 

The human knee joint has been modeled extensively [8-
11]. Most of the reported models have limited prediction 
capabilities, since they describe the knee joint under very 
restricted conditions and contain too many parameters, 
making them unidentifiable when only the state variables 
are known. Eom et al. [9] have developed their joint model 
considering joint recruitment feature, activation dynamics 
and contraction dynamics, where all the muscle fiber 
parameters have to be estimated. These values are difficult 
to measure and require special equipment and experimental 
procedures. They estimated these values to calculate their 
joint model. Franken  [10] introduced a simpler method 
using least square algorithm in combination with 
Levenburg-Marquardt algorithm to develop a joint model. 
However, developed model failed to track the leg joint for 
movements above 10Hz [10]. 

Ibrahim  [11] has a similar approach for their joint model. 
The joint model is developed using fuzzy logic by 
optimizing the model parameters and genetic algorithm to fit 
the model output to the experimental leg motion. The 
developed model is not generalized and is completely 
subject based. Moreover, it is not been cost effective and the 
technique is limited and not reliable. 

This paper presents the development of a dynamic leg 
joint model using NARMAX_OLS ERR [12] method to 
represent the actual joint behavior of paraplegics and it will 
be used in computer simulation, also it can be used for 
feedback or feed forward control in practical applications 
before FES can be applied in a practical. The sitting joint 
model is developed using input/output data sets. As 
mentioned before, two modeling strategies are used to 
model the leg joint and the results achieved with these 
strategies are discussed.  
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 MATERIAL II.
A. Subject 

A 1.73 meter paraplegic subject weighing 80 Kg and aged 
45 years, was involved in the data collection after informed  
consent. The subject was injured at T2/T3 level and suffered 
from the lesion for 29 years. 

 
B. Apparatus and Setup 

Throughout the experiments, paraplegic subject is placed 
in a semi-upright sitting position (45º) with the thigh 
hanging using thigh support on a frame to avoid any 
constraint on the leg movement. Velcro straps are used to 
stabilise the subject’s upper trunk, waist and thigh. The knee 
angle of the leg movement is recorded via a goniometer 
(Biometrics Ltd, UK), Fig 1 shows the position of 
goniometer. The position of the leg is recorded 
instantaneously using Matlab software through analogue to 
digital converter (ADC) card and serial connection. 

 
C. Data Collection 

Electrical stimulation is delivered via two MultiStick™ 
gel surface electrodes (Pals platinum, Axelgaard Mfg. 
Comp, USA, 50mm x 90mm). The cathode is positioned 
over the upper thigh, covering the motor point of rectus 
femoris and vastus lateralis.  The anode is placed over the 
lower aspect of thigh, just above patella. Prior to each test, 
the electrodes are tested for suitable placement on the 
muscle by moving the electrode about the skin over the 
motor point, looking for the maximum muscular contraction 
using identical stimulation signal for the entire trials. A 
RehaStim Pro 8 channels (Hasomed GmbH, Germany) 
stimulator receives stimulation pulses generated in Matlab 
software through USB connection for application to the 
muscle. More than 1200 stimulation pulses with 10 Hz 
frequency and pulse widths varying from 200µsec to 350sec 
are used to develop the joint model.  

 
 METHODOLOGY III.

Most of the natural phenomena are highly nonlinear. 
There are two approaches to model dynamics of these types 
of systems. The first method is to use physical laws in order 
to design a model for the system where the second is to 
utilize system identification techniques. However, the first 
method is not easy to implement due to three main reasons 
[13]: Setting the right values for physical parameters in 
order to have specific model, difficulties in identification of 
physical parameters from data samples and complexity of 
the model. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
For the second approach, a number of methods have been 

produced, some of which assume that the whole system is 
like a black box. In these methods, there is no need to have a 
lot of information about the physics of the system. These 
methods utilize mapping between the inputs and output [14]. 

 
A. NARMAX and NARMAX_OLS 

The nonlinear autoregressive moving average with 
exogenous input (NARMAX) model structure is commonly 
used to model nonlinear dynamics and is a good candidate 
of the black box modeling approach. It is able to represent a 
wide range of functions around their equilibrium point. 
Moreover, for improved performance and precision, the 
orthogonal least squares (OLS) algorithm [15] is employed. 
In this approach the output can be considered as a nonlinear 
function f(.) of inputs, output and error. The greatest 
challenge in writing this function is to find the most 
important terms that should be included. The OLS algorithm 
searches for the most important terms, that should be 
considered in f(.) as the most significant terms on an 
orthogonal basis [16]. 

The NARMAX-OLS algorithm includes three different 
procedures: parameter estimation, structure selection and 
model validation. Finding the most significant terms, which 
affect the output, is a part of structure selection procedure, 
and this is the most important and complicated part of the 
NARMAX-OLS algorithm. It depends on different 
parameters, such as sampling frequency, prior knowledge of 
the system etc. In this article, the error reduction ratio (ERR) 
method, which is commonly employed and is very useful in 
terms of system identification, is used [12]. 

 
B. Polynomial NARMAX Model Estimation 

The nonlinear relationship between output and input can 
be expressed as:  

 (1) 

Where y, u and e are the output, input and error 
respectively, and  represent the maximum lags in 

the output, input and error, respectively. Noise terms 
included in this model can avoid bias and take into 
consideration uncertainties and un-modeled dynamics. 
Billings and Tsang [17] showed that the NARMAX 
algorithm is able to present a satisfactory model for every 
system around an equilibrium point, if these conditions are 
met: 1- the system should have a finite and realizable 
response; 2- A linear model should exist around the system's 
equilibrium point. 
It is shown that the final model will be: 
Long calculations to reach the final estimated model result 
in: 

  (2) 

Where  is a matrix includes all the linear and nonlinear 

combinations of input and output terms up to and including 

y(t) = f (y(t −1),..., y(t − ny ),u1(t −1),
...,u1(t − nu1 ),...,um (t −1),...,um (t − num ),
e(t −1),...e(t − ne ))+ e(t)

nu , ny , ne

ŷ(t) = φT
yu(t −1)Θ̂yu +φ

T
yuξΘ̂yuξ +φ

T
ξ (t)Θ̂ξ +ξ (t)

φTyu

Fig 1. Experimental Setup 
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time (t-1) with the maximum degree of l.  represents 

the parameters corresponding to these terms.  stands for 
residuals which can be defined as: 

    (3) 
 

To clarify 2, it is better to rewrite this equitation as: 

   (4) 

To solve this equation, value has to be estimated, 
meaning that a cost function must be defined. It is clear that 
cost function should depend on . A good choice for 
cost function is: 

    (5) 

In equation 5 denotes the Euclidean norm.  
Chen et al. [18] suggested three possible approaches to 

solving this problem. The most common method is the 
orthogonal estimation algorithm. 

 
C. Orthogonal Estimation Algorithm 

Complexity of a large scale system which has an m-
dimensional space, can be reduced by transforming the m-
dimensional space into m different one-dimensional spaces. 
This idea can be applied into estimation problems. It makes 
processing easier and results in an independent computation 
of each coefficient [19]. 
y(t) can be expressed as: 

    (6) 

Where represent the number of coefficients, 
regressors and coefficients respectively. This equation can 
be rewritten in other forms, including orthogonal terms. 
Therefore a transformation capable of mapping equation 6 
onto the orthogonal form is required. The general form of 
transformed equation, should appear as:  

    (7) 

Where ’s are orthogonal regressors and ’s are 

coefficients. All the  values should satisfy 
orthogonality over the allotted time. Therefore the following 
conditions should be met: 

  (8)

  
Where N represents the number of data points.

 
To find , 

these relationships can be used:
   

    

    (9)
 
 

 

Here  is: 

 (10) 

To find the coefficients in equation 7, the following 
relationships are useful [17, 20]. 

 

 

       (11) 
 

The following can transform back the coefficients to the 
original form:   

 

  

 

  

      (12)
  

Chen et al. [18] studied four different methods for 
orthogonal decompositions and suggested the modified 
Gram-Schmidt model. This model was preferred over the 
others available because of its greater precision.  

 
D. Structure Selection 

One of the drawbacks of the polynomial NARMAX 
model is the large number of regressors, which are produced 
after the first step. Even when all the regressors for the small 
values of and l are calculated, there are plenty of 

terms that can be used. For example, if there are just 14 
terms (regressors), then 16384 (214) different models can be 
produced. It is not possible to check all these models to find 
the most appropriate one. One does not know how many 
terms are necessary to model the principle dynamics of the 
system. This is similar to the problem that occurs when 
neural networks are used to model a system. Usually, there 
is a tradeoff between generalization and over-fitting. The 
network should be able to predict the behavior of the system 
for an unseen input, and it should also model the small 
dynamics of the system. In order to model the small 
dynamics, as many terms as possible should be included. 
However, this leads to the problem of over-fitting. In 
addition, this may produce some dynamic regimes, which do 
not exist in the original system. This network would also not 
have a good performance when using unseen data. The same 
problem occurs when using the polynomial NARMAX 
model [21]. It is rare that all the terms are necessary to form 
a nonlinear model. Usually, no more than 10 terms are 

Θ̂yu

ξ(t)

ξ (t) = y(t)− ŷ(t)

ŷ(t) = φT (t −1)Θ̂+ξ (t)
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ξ(t)
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required for creating a good model. Even after finding out 
how many terms are necessary, the question remains as to 
which terms should be selected. The terms with the most 
significant effects should be selected and the others 
eliminated. Several methods have been suggested for 
solving this problem [22]. They can be grouped into two 
major categories: 1- Constructive techniques, 2- Elimination 
techniques. Both groups have the same goal but use 
different approaches. Constructive techniques start by 
gradually making and improving the model while 
elimination techniques try to eliminate less important terms 
from the initial all-encompassing model. Most of these 
techniques use statistical analysis to decide which terms 
should be added or eliminated. 

Draper and Smith [23] and Billings and Voon [24] 
suggested a stepwise method, which became a basis for 
future research. Korenberg et al. [20] and Billings et al. [17] 
introduced a new method that became very popular in 
subsequent years, called the error reduction ratio (ERR) 
method. This method has considerable advantages and is 
able to facilitate analysis without the need for all the terms 
to be included, and is compatible with the orthogonal 
estimation algorithm.  

Following a short review, the ERR test can be explained 
as below: 
Multiplying equation 7 by itself and calculating the average 
of the whole equation gives:   

 (13)
 

       
Assuming that is the zero mean average and the 

orthogonality of , gives: 

    (14)

    
Which can be rewritten as: 

    (15) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

If      (16) 

Then equation 15 can be rewritten as: 

     (17)
 

In fact, when no terms are put into the model, this results in 
the maximum squared error and its value is: 

     (18)

  
When one term is added to the model, it reduces the total 
error by: 

    (19) 

Therefore, to find the significance of each term in 
comparison to the other terms, it is necessary to find its error 
reduction value as a fraction of the total squared error.  

 

 RESULTS IV.
Knee modeling provides a better perception of the 

mechanisms of muscular and knee functions. Linear 
approaches are not appropriate for knee modeling due to the 
nonlinear behavior of muscle. In order to model the knee 
joint, experimental data were obtained from an SCI subject 
and used. The subject was seated on a chair, and his foot had 
enough space to move freely. A functional electrical 
stimulator stimulated the quadriceps muscles of his right 
leg, and the knee angle was recorded by a goniometer. One 
of the drawbacks of recording swinging leg by tracking 
goniometer angle is drifting from set value after some time 
due to the leg movement. Angle of 90 degree between the 
shank and foot was considered as zero degree. 
Displacements in the dorsiflexion direction were 
considered as positive and those in the plantar flexion 
direction as negative. The experimental data was 
sampled every 0.05s using Hasomede device.  To avoid 
muscle spasm, the electrical input current was limited to 40 
mA for maximum period of 1s. The input to 
the muscle stimulator is shown in Fig 2, which is electrical 
current applied to the subject’s muscle. The 
higher amplitude means higher current stimulation level, 
and resulting in broader leg movement. Fig 3 shows the 
knee angle recorded by the goniometer. 

The NARMAX-OLS-ERR method and an MPL neural 
network were used to find a model for the knee angle. The 
experimental data used in these studies were not filtered or 
prepossessed. Several different types of neural 
networks were trained in order to find the optimum model 
[25]. Finally, a two layer MLP network including four 
neurons in each layer with five inputs was selected from the 
trained neural networks. To model the knee dynamics u(t), 
u(t-1), u(t-2), y(t-1) and y(t-2) were used to form the input 
data structure to the neural network. The network was 
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Fig 2. Input to the muscle 
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trained using back propagation method [25]. Fig 4 compares 
the neural network output and the experimental data. 
It is clear that the neural network has modeled the system 
dynamics with high accuracy. In order to run the 
simulation, y(t-1) and y(t-2) were stored offline and fed to 
the network during the simulation. The major problem with 
neural network model is that it is unable to predict the knee 
angle accurately as shown in Fig 5. In this figure y(t-1) and 
y(t-2) were generated online by delaying the predicted 
output from the neural network. It is obvious that the neural 
network cannot be used for long horizon predictions. 

To overcome this limitation and find a simpler model that 
can predict the output correctly, NARMAX-OLS-ERR 
algorithm was used. The following model was suggested by 
this method: 
! ! = !!! ! − 1 + !!! ! − 2 + !!! ! − 2 ! 
+!!!(! − 1)! + !!! ! − 1 ! ! − 2 !!  (20) 
  

The terms and coefficients are summarized in Table 1. 
 

Table I. NARMAX parameters 
(! − 1) k1= 1.78 
!(! − 2) k2= 8.57e-01 
!(! − 2)! k3 = 2.947665e-06 
!(! − 1)! k4= 3.222674e-02 

! ! − 1 !(! − 2) k5= 2.974369e-02 
 
The main advantage of using NARMAX-OLS-ERR 

method is that it has good prediction error. Fig 5 shows the 
predicted output of the nonlinear model. Similar to neural 
network model, y(t-1) and y(t-2) were generated online by 
delaying the predicted output from the nonlinear model. It is 
obvious that the system had very good prediction 
performance, although there was accumulation error. A 
delay was noted between the real-time data and the 
NAMAX-OLS-ERR model’s prediction after 50s. As shown 
in Fig 5, the NARMAX model has very good robustness to 
the system noise. The experimental data that was used for 
NARMAX-OLS-ERR algorithm was not filtered or 
processed. It is clear from the equation 20 that the 

NARMAX-OLS-ERR model has just few terms, which 
makes the implementation of the model remarkably easy in 
experimental studies. 

 DISCUSSION AND CONCLUSION V.
The human leg muscles have been modelled extensively. 

Knee joint is also considered by some methods such as 
mathematical models or genetic algorithm [11]. Prediction of 
knee dynamics using simple model and identifiable 
parameters is the most significant focus of all studies. In this 
paper, a ANN joint model, and NARMAX_OLS_ERR have 
been studied and their parameters are compared using FES 
data recorded from paraplegic muscle.  

Most of the reported models have limited prediction 
capabilities, since they describe the knee joint under very 
restricted conditions and contain too many parameters, our 
results show that knee modeling using 
NARMAX_OLS_ERR generates a robust and simple model 
which has much better prediction horizon. This make this 
model suitable for predictive control methods where having a 
robust model with an accurate prediction is necessary. The 
generated model is easy to linearize and easy to implement 
compared with the models generated by neural networks or 
fuzzy methods. It can also be integrated with linear control 
methods like model predictive control.   

It has been demonstrated that NARMAX_OLS_ERR 
could improve the prediction and follow the dynamics 
pattern, at the expense of a delay. So shortening this delay, 
extending the final equation to include parameters to model 
fatigue would be future studies.  However, the developed 
model is robust to long-range prediction for the subject, but 
with more data sets from different paraplegics the model may 
be generalized.   

 

Fig 3. Recorded data from subject’s knee angle  

Figure 4. Trained Neural Network and NARMAX 
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Figure 5. Comparison between long-range prediction by Neural Network model and NARMAX model 
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