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Abstract - HIV-blood interactions were studied using the 
Hamaker coefficient approach as a thermodynamic tool in 
determining the interaction processes. Application was made of 
the Lifshitz derivation for van der Waals forces as an 
alternative to the contact angle approach. The methodology 
involved taking blood samples from twenty HIV-infected 
persons and from twenty uninfected persons for absorbance 
measurement using Ultraviolet Visible Spectrophotometer. 
From the absorbance data the variables (e.g. dielectric 
constant, etc) required for computations were derived. The 
Hamaker constants A11, A22, A33 and the combined Hamaker 
coefficients A132 were obtained. The value of A132abs = 
0.2587x10-21Joule was obtained for HIV-infected blood. A 
significance of this result is the positive sense of the absolute 
combined Hamaker coefficient which implies net positive van 
der Waals forces indicating an attraction between the virus 
and the lymphocyte. This in effect suggests that infection has 
occurred thus confirming the role of this principle in HIV-
blood interactions. A near zero value for the combined 
Hamaker coefficient for the uninfected blood samples A131abs = 
0.1026x10-21Joule is an indicator that a negative Hamaker 
coefficient is attainable. To propose a solution to HIV infection, 
it became necessary to find a way to render the absolute 
combined Hamaker coefficient A132abs negative. As a first step 
to this, a mathematical derivation for A33 ≥ 0.9763x10-21Joule 
which satisfies this condition for a negative A132abs was 
obtained. To achieve the condition of the stated A33 above with 
possible additive(s) in form of drugs to the serum as the 
intervening medium will be the next step.  

  Index Terms - Absorbance, Dielectric Constant, Hamaker 
Coeficient, Human Immunodeficiency Virus, Lifshitz formula, 
Lymphocyte, van der Waal 

 

I. THEORETICAL CONSIDERATIONS 
A.  Concept of Interfacial Free Energy 
THE work done by a force F to move a flat plate along 
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another surface by a distance dx is given, for a reversible 
process, by; 
δw = Fdx                        (1)       

 
 
 

 
Fig. 1.  Schematic Diagramme Showing Application of a 
Force on a Surface  

 
However, the force F is given by; F = Lγ 
Where L is the width of the plate and γ is the surface free 
energy (interfacial free energy) 
Hence;                 δw = Lγdx   
But;   dA =Ldx 
Therefore;  δw = γdA                     (2) 
 
This is the work required to form a new surface of area dA. 
For pure materials, γ is a function of T only, and the surface 
is considered a thermodynamic system for which the 
coordinates are γ, A and T. The unit of γ is Joules. In many 
processes that involve surface area changes, the concept of 
interfacial free energy is applicable.         

 
B. The Thermodynamic Approach to Particle-Particle 

Interaction 
The thermodynamic free energy of adhesion of a particle 

P on a solid S in a liquid L at a separation d0 [1], is given by; 
 
∆Fpls

adh (do) = γps – γpl - γsl                        (3) 
 
Where  ∆Fadh is the free energy of adhesion, integrated from 
infinity to the equilibrium separation distance do; γps is the 
interfacial free energy between P and S; γpl is that between P 
and L and γsl that between S and L.  
For the interaction between the individual components, 
similar equations can be written also;  
 
∆Fps

adh (d1) = γps – γpv - γsv                                         (4) 
∆Fsl

adh (d1) = γsl – γsv - γlv                         (5) 
∆Fpl

adh (d1) = γpl – γpv - γlv                        (6) 
 
For a liquid, the force of cohesion, which is the interaction 
with itself is described by; 
 

F 
dx 
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∆Fll
coh (d1) = -2γlv                        (7) 

 

∆Fadh can be determined by several approaches, apart from 
the above surface free energy approach. The classical work 
of Hamaker is very appropriate [2]. 

To throw more light on the concept of Hamaker 
Constants, use is made of the van der Waals explanation of 
the derivations of the ideal gas law; 
 
PV = RT                        (8) 
 
It was discovered that the kinetic energy of the molecules 
which strike the container wall is less than that of the bulk 
molecules. This effect was explained by the fact that the 
surface molecules are attracted by the bulk molecules (as in 
fig.2) even when the molecules have no permanent dipoles. 
It then follows that molecules can attract each other by some 
kind of cohesive force [3]. These forces have come to be 
known as van der Waals forces. van der Waals introduced 
the following corrections to eqn (8); 

( ) RTbV
V

a
P =−




 +
2

                       (9)       

The correction term to the pressure, 







2V

a  indicates that 

the kinetic energy of the molecules which strike the 
container wall is less than that of the bulk molecules. This 
signifies the earlier mentioned attraction between the surface 

molecules and the bulk molecules. 

 
 

Fig. 2. Attraction of Surface Molecules by Bulk Molecules 
in a Container of Volume V [4] 

 
After the development of the theory of quantum 

mechanics, London quantified the van der Waals statement 
for molecules without a dipole and so molecular attraction 
forces began to be known as London/van der Waals forces 
[5]. London stated that the mutual attraction energy, VA of 
two molecules in a vacuum can be given by the equation; 
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


−=
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−=

6
11

6
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04

3

HH
hVA

βαυ                       (10) 

The interaction of two identical molecules of a material 1 is 
shown in fig.3 below. 

 
 
Fig. 3.  Interaction of Two Identical Molecules of Materials 
1 and Polarizability α, at a Separation H [4] 

 

Hamaker made an essential step in 1937 from the mutual 
attraction of two molecules. He deduced that assemblies of 
molecules as in a solid body must attract other assemblies. 
The interaction energy can be obtained by the summation of 
all the interaction energies of all molecules present as in 
fig.4 below. 

 
 
Fig. 4.  Interaction of Two Semi-infinite Solid Bodies 1 at a 
Separation d in Vacuum [4] 
 
This results in a van der Waals pressure, Pvdw  of attraction 
between two semi infinite (solid) bodies at a separation 
distance, d in vacuum; 








=
3

11

6 d

A
Pvdw π

                                (11) 

For a sphere of radius, R and a semi-infinite body at a 
minimum separation distance, d the van der Waals force, 
Fvdw of attraction is given by; 








−=
2

11

6d

RA
Fvdw                         (12) 

Where A11 is the Hamaker Constant (which is the non-
geometrical contribution to the force of attraction, based on 
molecular properties only) 

 
 
Fig. 5.  Interaction of a Sphere of Radius R at a Separation d 
from a Solid Surface of the same Material 1 in Vacuum [4] 
 
According to Hamaker, the constant A11 equals;  

11
2

1
2

11 βπ qA =                                                    (13) 

 
Where q1 is the number of atoms per cm3 and β11 is the 
London/van der Waals constant for interaction between two 
molecules. Values for β can be obtained in approximation 
from the ionization potential of the molecules of interest, 
and so the Hamaker Constant can be calculated. The 
corresponding van der Waals force between two condensed 
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bodies of given geometry can be calculated provided their 
separation distance is known. 

For combination of two different materials 1 and 2 in 
approximation: 

221112 ββ≈B                                     (14) 

Thus; 221112 AAA =                              (15) 

For a combination of three materials when the gap between 
1 and 2 is filled with a medium 3, from Hamaker’s 
calculations; 

133311131 2AAAA −+=                       (16) 

Also; 23133312132 AAAAA −−+=                     (17) 

Rewriting these equations will give;  

( )2

3311131 AAA −=                                                (18) 

And;                       

( )( )33123311132 AAAAA −−=
                   

(19) 

Equation (19) shows that, for a three-component system 
involving three different materials, 1, 2 and 3, A132 can 
become negative; 

0132 pA                                          (20) 

When; 33223311 AAandAA pf        (21) 

Or;  
223311 AAA pp            (22) 

Hamaker’s approach to the interaction between 
condensed bodies from molecular properties called 
microscopic approach has limitations. This is true against 
the backdrop of its neglect of the screening effect of the 
molecules which are on the surface of two interacting bodies 
as regards the underlying molecules. Therefore, Hamaker’s 
approach is regarded as an over simplification. 

Langbein has shown that as a consequence of the 
screening effect, in the interaction between two flat plates at 
a separation distance d, the predominant contribution to the 
interaction by van der Waals forces comes from those parts 
of the interacting bodies, which are in a layer of a thickness 
equal to the separation distance d between the two plates [6]. 

 
 
Fig. 6. Schematic Demonstration of the Screening Effect for 
the Interaction of Two Solid Bodies 1, at a Separation d, in 
Vacuum [4] 

 
This demonstrates the importance of surface layers like 

the outer membrane of a cell, or the presence of an adsorbed 
layer on the overall interaction between two materials at 
short separations. It also demonstrates the need for the 
characterization of the surface of a body into its adhesional 
behaviour. 

The limitations of Hamaker’s approach led Lifshitz et al 
to develop an alternative derivation of van der Waals forces 
between solid bodies [7]. The interaction between solids on 
the basis of their macroscopic properties considers the 
screening and other effects in their calculations. Thus the 
Hamaker Constant A132 becomes;  
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Where, ε1(iζ) is the dielectric constant of material, j along 
the imaginary, i frequency axis (iζ) which can be obtained 
from the imaginary part ε1

″(ω) of the dielectric constant 
ε1(ω). 
The value of A11 could be obtained from the relation; 
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Where ε10   is the dielectric constant and n1 the refractive 
index of the polymer at zero frequency, both being bulk 
material properties which can easily be obtained. 

 
C. Relationship between Hamaker Coefficients and 

Free Energy of Adhesion ∆Fadh 
 For all given combinations, it is possible to express ∆Fadh 

in terms of van der Waals energies. For instance, for a flat 
plate/flat plate geometry; 
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For the four given combinations i.e. eqns (4) to (7) the 
equilibrium separation distances, however, are not 
necessarily the same. When a gap is a vacuum, the 
equilibrium separation d1 probably is but when the gap 
contains a liquid, a different separation distance do may be 
expected. As a result of this the following becomes true;  
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A detailed study of van der Waals forces revealed that in the 
case of a three-component system, the corresponding 
Hamaker Constant A132 could attain a negative value given 
the conditions stated below.  
 
A11<A33<A22 or A11>A33>A22                                           (28) 
 
Where; A11, A22   and A33 are the individual Hamaker 
Constants of components 1, 2 and 3 respectively.  
The implication of this is that two adhering bodies 1 and 2 
of different composition will separate spontaneously upon 
immersion in a liquid 3 provided the conditions given by 
eqn (28) are fulfilled.  

 
II. MATHEMATICAL MODEL FOR THE 

INTERACTIONS MECHANISM 
The mutual attraction energy, VA of two molecules in a 

vacuum is given by; 

1 

d vacuum 

1 

d 

d 
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Where; h = Planck’s constant 
              v0 = characteristic frequency of the molecule 
              α = polarizability of the molecule 
              H = their separation distance 
The assemblies of molecules as in a solid body have 

interaction energy as the summation of all the interaction 
energies of all the molecules present and the van der Waals 
pressure, Pvdw as follows; 





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

=
3

11

6 d

A
Pvdw π

                                        (30)        

For a sphere of radius, R and a semi-infinite body at a 
maximum separation distance, d the van der Waals force of 
attraction, Fvdw is given as; 






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=
2

11

6d

RA
Fvdw                       (31)                                  

Where A11 = Hamaker constant 

11
2

1
2

11 βπ qA =                         (32) 

Where; q1 = number of atoms per cm3 

         β11 = London-van der Waals constant 
Given two dissimilar condensed bodies of given geometry 
with a separation distance, d, the corresponding van der 
Waals force between them can be determined. For the 
system under study, the interacting bodies are the 
lymphocytes, 1 and the virus, 2. 

                                        

 
 
Fig. 7. Interaction of Two Un-identical Molecules of 
Lymphocyte 1 and Virus (HIV) 2, at a Separation d 
 
The van der Waals force between the lymphocyte, 1 and the 
virus, 2 is given by the relations; 


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                          (33)                                                                      

 

Where 11
2

1
2

11 βπ qA =  = Hamaker constant for 

lymphocyte 

22
2

2
2

22 βπ qA =  = Hamaker constant for the virus (HIV)           

12
2

12
2

12 βπ qA =  = Hamaker constant for both materials 

(i.e. lymphocyte and the virus) 

Where;  221112 βββ =  

Thus the Hamaker constant becomes;

( )( )22
2

2
2

11
2

1
2

12 βπβπ qqA =                      (34)  

221112 AAA =
                      (35)

 

For a combination of the two dissimilar materials (i.e. 
lymphocyte 1, and the virus 2) with the gap between them 
filled with plasma or serum as the medium 3 the combined 
Hamaker coefficient will be given by; 

( )( )33223311132 AAAAA −−=
                   (36)

23133312132 AAAAA −−+=
                    (37)

 

A33 = Hamaker constant for serum (plasma) 
A13 = Hamaker constant for both materials (i.e. lymphocyte 
and plasma)  
A23 = Hamaker constant for both materials (i.e. the virus and 
plasma)
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     (38) 
The mean of all the values of the combined Hamaker 
coefficient, A132 gives an absolute value for the coefficient 
denoted by A132abs; 

( )
N

A
A

N

abs

∑
= 0

132

132
 

                                         (39) 

 
TABLE 1 

COMPARISON OF THE VALUES OF THE 
HAMAKER CONSTANTS A11, A22, A33 AND HAMAKER 

COEFFICIENTS A132, A232 FOR THE INFECTED AND 
A131 FOR THE UNINFECTED BLOOD SAMPLES [8] 
 

Variable 
 

(x10
-21 

Joule)         

Infected Blood Uninfected Blood 

Peak 

Value 

Absolute 

Value 

Peak 

Value 

Absolute 

Value 

A11 --- --- 1.3899 0.9659 

A22 1.4049 0.9868 --- --- 

A33 0.7052 0.2486 0.9369 0.4388 

A132 0.7601 0.2587 --- --- 

A131 --- --- 0.9120 0.1026 

A232 0.7514 0.2823 --- --- 

 
The table 1 shows the peak and absolute values of Hamaker 
constants A11 for the uninfected blood samples. A22 is the 
Hamaker constant for the virus, here represented by the 
infected lymphocytes. This is against the backdrop of no 
known process of isolation of the virus yet. However, it is a 
very close approximation for the virus owing to the manner 
of the infection mechanism. The Hamaker constants A33 for 
the plasma reveal greater values for the uninfected samples 
which invariably indicate a higher surface energy than the 
infected ones. This could be validated by the surface energy 
approach using the contact angle method. The higher 
absolute values of A132 and A232 as against that of A131, as 
well as the near zero (i.e. 0.1026x10-21Joule) value of the 
absolute combined Hamaker coefficient A131abs for the 
uninfected samples is once again a clear indication of the 
relevance of the concept in the HIV infection process.   
    

III.  DEDUCTIONS FOR THE ABSOLUTE 
COMBINED HAMAKER COEFFICIENT A132ABS 

Applying Lifshitz derivation for van der Waals forces as 
in eqn (23 or 38); A mean of all the values of the Hamaker 
coefficients to obtain a single value known as absolute 
combined Hamaker coefficient A132abs became necessary and 
was got as; 

      2 

 

1 

 
d 
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A132abs = 0.2587x10-21Joule 
This was done by obtaining a mean of all the values of the 
Hamaker coefficients for the infected blood over the whole 
range of wavelength, λ=230 to 890Hertz, to obtain a single 
value of 0.2587x10-21Joule. This value agrees with those 
obtained by various authors for other biological processes as 
have earlier been shown in the literature review. 
 

IV.  DEDUCTIONS FOR THE ABSOLUTE 
COMBINED NEGATIVE HAMAKER COEFFICIENT 
To define the condition where the absolute Hamaker 

coefficient becomes negative will require employing the 
relations that express that condition. Hence, recalling eqns 
(16 to 22), we can derive a state where the Hamaker 
Coefficient, A132 is less than zero. This situation could be 
possible with the following already stated conditions; 
 
A132 <0                       (40) 
When; √A11 > √A33 and √A22 < √A33                             (41)     
Or √A11 < √A33 < √A22                               (42) 
 
The mean of all values of A11 and A22 could be obtained and 
substituted into the relation below (i.e. eqn (43)) in order to 
derive a value for A33 at which A132 is equal to zero in 
agreement with the earlier stated reasons.  

( )( )33223311132 AAAAA −−=                      (43) 

Rearranging eqn (43) and making A33 subject of the formula 

we obtain;

2
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Obtaining a mean of the values of A11 and A22 to give 
absolute values of the Hamaker constants yielded the values 
given below; 
A11= 0.9659x10-21Joule 
A22 = 0.9868x10-21Joule 
Thus, plowing these values into eqn (44) and rendering A132 

≤ 0 will give the critical value of A33C that satisfies the 
condition for the combined Hamaker coefficient to be equal 
to or less than zero. Hence any value of A33 greater than the 
critical would be the desired value necessary to attain a 
negative combined Hamaker coefficient.   
Hence, the critical absolute Hamaker constant A33C for the 
plasma (serum) which renders the A132 negative is given as; 
A33C = 0.9763x10-21Joule    
Thus for negative combined Hamaker coefficient A132 of the 
infected blood to be attained, the combined Hamaker 
constant of the serum (plasma) as the intervening medium 
A33 should be of the magnitude; 
A33 ≥ 0.9763x10-21Joule 
Inserting the above value of A33 into eqn (43) would yield a 
negative value for A132 as follows;   
A132 = - 0.2809x10-25Joule (when A33 = 0.9763x10-21Joule) 
To obtain a value for the combined Hamaker coefficient 
A131 for the uninfected blood the relation of eqns (45) and 
(46) are employed. 

133311131 2AAAA −+=
                       (45)                                      

( )2

3311131 AAA −=
                     (46) 

Upon deriving a mean of all values of A131 for the twenty 
uninfected blood samples, an absolute value A131abs was 
derived as given below; 
A131abs = 0.1026x10-21Joule 
This value is very nearly equal to zero which is a clear 
indication of the validity of the concept of Hamaker 
coefficient to the process and progress of human infection 
with the Human Immunodeficiency Virus (HIV). The near 
zero value of the A131abs shows the absence of infection in 
the blood samples thus suggesting the usefulness of the 
concept of negative Hamaker coefficient in finding a 
solution to HIV infection. Table 1 shows the comparison of 
the Hamaker constants and coefficients for the infected and 
uninfected blood samples. 
 

V. CONCLUSION 
This research work reveals that the interactions of the 

HIV and the lymphocytes could be mathematically modeled 
and the ensuing mathematics resolved in a bid to find a 
solution to the infection. The values of the Hamaker 
coefficients and constants derived are a proof of the 
relevance of the concept of Hamaker coefficient to the HIV-
blood interactions and by extension to other biological and 
particulate systems. This study equally reveals the 
possibility of solving for the value of A33C (i.e. a condition 
of the serum) which would favour the prevalence of a 
negative combined absolute Hamaker coefficient A132abs. 
Such a condition in essence would mean repulsion between 
the virus and the blood cells and could prove the much 
desired solution to the HIV jinx. A synergy of Engineers, 
Pharmacists, Doctors, Pharmacologists, Medical laboratory 
scientists etc may well be needed in interpreting the 
meaning of the A33C values and the medical, biological and 
toxicity implications of additives in form of drugs that could 
yield the required characteristics.     
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