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Abstract—A new procedure for representation of third 

rank tensors in terms of its orthonormal irreducible 

decomposed parts, namely as irreducible decomposition is 

presented. Orthonormal tensor basis method is developed by 

using the results of existing theory in the literature. As an 

example to third rank tensors, piezoelectricity tensor is 

decomposed by each method and results of this decomposition 

methods are compared for this tensor in hexagonal symmetry. 

As a result of comparison process, it is stated that the results 

for new method and other one are consistent and each 

decomposed parts have physical meaning. Moreover, the norm 

concept of piezoelectricity tensor is used to study the 

piezoelectric effect of some materials. It is also shown that one 

can determine in which material the piezoelectric effect is 

stronger by using the norm for different materials with the 

same symmetries. 

 
 Index Terms—third rank tensor, piezoelectricity tensor, 

irreducible decomposition method, orthonormal tensor basis 

method.  

I. INTRODUCTION 

ENSORS are the most significant mathematical entities 

to describe direction dependent physical properties of 

solids and the tensor components characterizing physical 

properties which must be specified without reference to any 

coordinate system. 

 Piezoelectricity is an interaction between electrical and 

mechanical systems. The direct piezoelectric effect is that 

electric polarization is produced by mechanical stress. 

Closely related to it is the converse effect, whereby a crystal 

becomes strained when an electric field is applied. Both 

effects are manifestations of the same fundamental property 

of the crystal.  
 In the continuum approach, it is well known that certain 

physical properties can be represented by tensors. The 

polarization of a crystal produced by an electric field is an 

example of an anisotropic material property that is 

represented by tensors. If a stress is applied to certain 

crystals they develop an electric moment whose magnitude 

is proportional to the applied stress; known as piezoelectric 

effect. 
 The piezoelectric effect in materials has not attracted 

much attention until after the Second World War, since 

when the applications and the research of piezoelectric 

materials have advanced greatly. Piezoelectric materials 

nowadays have been widely used to manufacture various 

sensors, conductors, and actuators have been, extensively, 
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applied in electronics, laser, ultrasonic, naval and space 

navigation as well as biology, smart structures and many 

other high-tech areas. They also play an important role in 

the so-called smart structures.  

The direct piezoelectric effect comprises a group of 

phenomena in which the mechanical stresses or strains 

induce in crystals an electric polarization (electric field) 

proportional to these factors. Besides, the mechanical and 

electrical quantities are found to be linearly related [1]: 

                                                           (1)                                     

 Where    and     denote the components of the electric 

polarization vector and the components of the mechanical 

stress tensor respectively and      are the piezoelectric 

coefficient forming a rank-three tensor. The coefficients      

are usually referred to as piezoelectric moduli. The 

piezoelectric tensor is a third rank tensor symmetric with 

respect to the last two indices which means that 

                                                                                  (2) 

is reduced from 27 to 18 independent coefficients for the 

triclinic system. For the monoclinic system of class 2, for 

example, the number of independent coefficients is reduced 

to eight, for the orthotropic system of class mm2 is reduced 

to five coefficients and for the hexagonal system of class 

6mm is reduced to three independent coefficients [2]. 

The indices are abbreviated according to the replacement 

rule given in the following TABLE: 
TABLE I 

    ABBREVIATION OF INDICES FOR THREE AND DOUBLE   

                    INDEX NOTATIONS 

Three index notation 11 22 33 23, 32 13, 31 12, 12 

Double index notation 1 2 3 4 5 6 

  

Decomposition of tensor is not new (see, for instance, in 

[2]-[4]) such as canonical tensor and single value 

decompositions. In fact the methods presented here, 

provides new perspectives for decomposition of third rank 

tensors. This work is an extension of the work [5] by means 

of applying the orthonormal basis method to third rank 

tensors. 

One of the aims of this work is to present a new method 

based on orthonormal irreducible representations for third 

rank tensors such as piezoelectricity tensors and compare 

this method with the orthonormal tensor basis method 

developed by the existing theory[5] in the literature. 
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Another one is to elaborate on the norm concept for 

different materials in order to determine the degree of 

anisotropy and the piezoelectric effect of these materials.  

Main outline of the paper is listed as a brief description 

for irreducible decomposition and presentation of 

orthonormal tensor basis method explicitly. Both methods 

are compared. Next the concept of norm is revealed to 

measure the overall effect of material properties. Numerical 

engineering applications are presented for several 

piezoelectric materials like semiconductor compounds and 

piezoelectric ceramics. Finally, conclusions pertinent to this 

work are also stated.  

II. IRREDUCIBLE DECOMPOSITION METHOD 

 In this section a procedure of decomposing third rank 

tensors into orthonormal parts which are irreducible under 

the three dimensional rotation group is given. Explicit 

results for third rank tensor are produced. 

Any rank-n cartesian tensor can be written as the direct 

sum of irreducible tensors in the cartesian representation. 

The term irreducible indicates sets that cannot be resolved 

into subsets with seperate linear transformations.  

The irreducible tensors of the first five ranks have special 

names; Scalar (zero-rank tensor of valance 0), vector (first-

rank tensor of valence 1.), deviator (second-rank tensor of 

valence 2.), septor (third-rank tensor of valence 3.), nonor (a 

fourth-rank tensor of valence 4). The irreducible 

decomposition method can be investigated under the title of 

groups and reflection symmetries. The group of rotations 

associated with elastic symmetry provides an irreducible 

representation.  There are various related ways of 

considering elasticity tensors in terms of rotational group 

properties of tensors for example based on subgroups of 

O(3) or SO(3). These ideas are closely related to definitions 

of elastic symmetry in terms of a single symmetry element: 

reflection about a plane.[6], [7] 

For second-rank tensor, there are three irreducible parts 

which are 1 scalar, 1 vector and 1 deviator. For third-rank 

tensor, there are seven irreducible parts which are 1 scalar, 3 

vectors, 2 deviators, 1 septor and for fourth-rank tensor, 

there are 3 scalars, 6 vectors, 6 deviators, 3 septors and  1 

nonor. 

The reduction of a (rank-n) Cartesian tensor       

generally results in a sum of irreducible tensors, with some 

weights (j) represented more than once. (where nj 0 ), 

it can be accomplished by the formula: 
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where q is called the seniority index of the irreducible 

tensor 
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nT  (irreducible cartesian tensor which is 

symmetric and traceless) and 
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nN  is the multiplicity of 

weight j in this reduction, it denotes  the number of  

independent weight-j   irreducible tensor parts. (See for 

instance, Jerphagnon et al. [6] and Andrews and Ghoul [5])
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  Each irreducible tensor has (2j+1) independent 

components. So that the total number of components in the 

reduction is   
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    The natural projection of jx  onto the irreducible 

subspace 
j

jH  of traceless symmetric tensors of order j is 

denoted by 
)(
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have chosen the mappings  
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2121 ...;...
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jn kkkiiiQ  such that they are 

orthonormal and  gpq will be reduced to  identity matrix, ij

, where gpq is a symmetric matrix which was used and 

defined in Andrews and Ghoul [7] through the relation
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In this work, this relation is reduced to 
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The mappings 
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These tensors can be embedded in the tensor space of order 

n through the mapping                 

,);(

21

);0(

2121

);(

21 ......;......

pj

j

q

jn

qj

n kkkkkkiiiiii tQT                                               (10)                                                              

or  

,' ....

);0(

.....;.......;...... 212121

);0(

2121

);(

21 nnj

q

jn

qj

n lll

p

lllkkkkkkiiiiii TQQT                 (11)  

There are total of seven irreducible parts (one scalar, 3 

vectors, 2 deviators and one septor). These irreducible parts 

can be obtained by using (11) as: 
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Decomposition of the third rank cartesian tensor into 

irreducible parts was given by the work of [8] are not the 

same as these results. In this work, irreducible parts are 

orthonormal to each other but theirs are not. The only 

similarity is that the sum of the irreducible parts for certain 

weight are the same, e.g. for weight j=1: The sum  

    
          

          
      is the same but the individual 

parts     
          

          
      are different. 

As an application of decomposition of third rank tensors, 

piezoelectric tensor d is represented in terms of its 

orthonormal irreducible parts. 

The following irreducible parts for the piezoelectric 

tensor d are obtained by the application of the index 

symmetry condition (2) to (12)-(18). 
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    So we have two vectors and one septor part which are the 

same in number predicted by group theoretical methods for 

this internal tensor symmetry.  Here these decomposed parts 

are orthonormal to each other but those are not in the work 

of [8].                                              

III. ORTHONORMAL TENSOR BASIS METHOD 

   This method comprises of two basic steps which are 

constructing form-invariant and orthonormal basis elements. 

[5] The form invariant expressions are derived for many 

classes of piezomagnetic and piezoelectric coefficients[9]. 

Although such constitutive equations are form invariant with 

respect to arbitrary orthogonal coordinate transformations, 

the coefficients,     , do not determine directly the material 

constants since their values vary with the direction of the 

coordinate axes. 

The form-invariant expressions[9] for the piezoelectric 

coefficients is respectively, 

                                              (22) 

where summation is implied by repeated indices and this 

convention is followed throughout. This expression is 

referred to a Cartesian system Oxyz;     are the components 

of the unit vectors    (       ) along the crystallographic 

axes. The quantity      is invariant in the sense that when 

the Cartesian system is rotated to a new orientation Ox'y'z', 

then (22) takes the form 

    
     

    
    

                                     (23)  

It should be remembered that          form a linearly 

independent basis in three dimensions but are not 

necessarily always orthogonal. Let us consider the 

hexagonal symmetry as an example. The form invariant 

expression for the hexagonal system class 6mm is [9] 

                                              (24) 

where    is the sixfold axis. A similar form can be 

derived from tetragonal symmetry (class 4mm)[1] 

The first step in the generation of orthonormal tensor 

basis is one of writing the     in the place of       in (22). It 

will assume respectively the form 

                                     (25) 

One can subject the expression (25) to the symmetry of 

any crystal and then derive the elements of the basis 

appropriate to that class. Instead the form-invariant 

expression for any given class can be taken and straightaway 

replaced the     by the     to obtain the elements of the 

basis. As an illustration, let us consider the simplest 

example, namely, the expression (24). According to the 

present scheme, the elements of the basis are 

                                                                   (26) 

In constructing this basis we have made use of the 

identity: 

                                                                      (27) 

This is a particular case of a more general identity. 
                                                         

  (28) 

with     is replaced by     and        On subjecting 

these elements to the Gram-Schmidt process, we obtain, 
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These are the elements of the basis for the most general 

case, namely, the noncentrosymmetric triclinic case. 

In the actual exercise, starting with (25) and following the 

recipe to construct the orthonormal tensor basis spans the 

space of the third-rank tensor representing the piezoelectric 

effect and having the index symmetry          ; so the 

use of the identity (27) is understood. 

In terms of this basis, the representation of      is given 

by 

    =            
                                       (30) 

where 

               
                                    (31) 

represents the inner product of     
  and the Kth element     

 ; 

of the basis. The expressions for the inner product of      

with each element of the basis are listed as  
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IV. COMPARISON OF THE METHODS 

In previous sections, for piezoelectric tensor as an 

example for third rank tensors irreducible decomposition 

method is introduced and orthonormal tensor basis method 

is described in detail. 

Let us compare these two methods for hexagonal 

symmetric materials. By using the symmetry condition in 

(2) and applying the formula in (30), piezoelectric tensor for 

hexagonal symmetry is represented in terms of the following 

orthonormal decomposed parts:  
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(33) indicates that the hexagonal symmetric third rank 

tensor,      is a subset of the general symmetric third rank 

tensor and decomposed into three terms, each of which has a 

distinct physical meaning. It is easy to verify that the three 

decomposed parts form an orthogonal set and their sum is 

the hexagonal symmetric third rank tensor,      of class 

6mm which is identical to following matrix: 

         

   
   

 

 
         

 

 
            

   

 
 

 
          

 

 
           

   

        

 

 (34) 
Since 

                                                     (35) 

 

So        is 

         

   
   

         

   
     

     
   

                              (36) 

Physically      is decomposed into three independent 

tensors, each has an independent piezoelectric coefficient 

and physical piezoelectric effect. If a tensile stress    is 

applied parallel to    which is a diad axis of the crystal. The 

first matrix in (33) shows that the components of 

polarization are given by the moduli in the third column of 

the first matrix; so 

                                                  (37) 

The polarization therefore directed along     
On the other hand, a tensile stress    along    produces 

no polarization parallel to itself, but it produces a 

polarization along    which is introduced in the second 

matrix of (33), the tensile stress    along    produces 

                                                                     (38) 

Similarly, for a tensile stress    along   , produces no 

polarization parallel to itself, but it produces a polarization 

along   . 

The tensile stress    along    produces 

                                                (39) 

For the third matrix in (33), the polarization along    can 

be produced by a shear stress    about    so, for this stress 

                                                                      (40) 

and the polarization along    can be produced by a shear 

stress    about    so, for this stress 

                                                                      (41) 

Thus orthonormal tensor basis method presented, is 

decomposing the polarization along orthonormal axes into three 

parts: the first part is the polarization along the diad axes due to 

normal stress, the second part is the polarization along nondiad 

orthogonal axes due to normal stress and the third part is the 

polarization due to the shear stresses.  

By applying the symmetry condition in (2) and applying the 

formulas in (19)-(21), piezoelectric tensor for  hexagonal 

symmetry is represented in terms of the following irreducible 

orthonormal decomposed parts: 
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Where   
              

  
    and   

              

  
. 

The decomposed parts for hexagonal symmetry in (42) 

are different those in (33). So polarization decomposition is 

not valid in irreducible decomposition method. However, 

decomposed parts obtained from both methods are 

orthonormal. 

Furthermore, the irreducible cartesian tensor parts that 

obtained in this work are different than the irreducible 

cartesian tensor parts appeared in the literature [6],[7],[8]. 

mappings                       
 have been chosen such that 

they are orthonormal but theirs are not. 

It should be pointed out that there may be some 

arbitrariness in choosing the first mappings for certain 

weight. Not paying attention to this point may lead to 

different physically meaningless orthonormal irreducible 

parts. In irreducible decomposition procedure, to obtain a 

unique physically meaningful orthonormal irreducible parts 

set, the restriction imposed is that the indices of different 

deltas and epsilon of the first mapping should be chosen in 

the same order as they are written in the cartesian tensor 

itself (it can be called as it the first natural choice or the first 

choice). For instance, for the third rank tensor n = 3; j = 1: 

           . Here the index r is inserted to make the 

number of indices and the number of mapping indices equal 

to each other. 

For example, considering the vector part, in this case, 

there are three choices for the mappings (j = 1), each 

alternative will produce different orthonormal irreducible 

sets of three in number. 

On the other hand, application of the internal symmetry of 

the piezoelectric tensor (which is symmetric with respect to 
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its last two indices, i.e.,          ) to the first choice 

mapping set will produce two irreducible parts which is the 

same number as predicted by group theoretical methods [6] 

and application of the same symmetry condition to the other 

two mapping choices will not produce the same number 

(they produce three), so they are rejected. 

V. NORM CONCEPT 

 Norm is an invariant of the material. Generalizing the 

concept of the modulus of a vector, norm of a Cartesian 

tensor (or the modulus of a tensor) is defined as the square 

root of the contracted product over all indices with itself: 

2

1

}{ ...... ijklijkl TTTN                                (43) 

 Denoting rank n Cartesian Tijkl...... by Tn the square of the 

norm is expressed as Jerphagnon et al.  

 This definition is consistent with the reduction of the 

tensor in Cartesian formulation when all the irreducible 

parts are embedded in the original rank n tensor space.  

Since the norm of a Cartesian tensor is an invariant 

quantity, following rule is suggested: 

The norm of a Cartesian tensor may be used as a criterion 

for representing and comparing the overall effect of a certain 

property of piezoelectric materials of the same or different 

symmetry. At this stage, the norm ratios: 

Nv/N for vector part and Nsp/N for septor part are defined. 

In this work, norms and norm ratios of the irreducible parts 

are used as a criterion. The larger the norm ratio value 

exists, the stronger the material property is.   

Here, the square of the norm of the piezoelectric tensor is 

found as 
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A. Applications 

Among semiconductors crystals, a family of quartzite-

type belongs to the 6mm class, which is piezoelectric active. 

Piezoelectric tensor data and norm are tabulated, norm ratio 

calculations for semiconductors in TABLE II and III 

respectively. 
 

TABLE II 

    PIEZOELECTRIC COEFFICIENTS OF SEMICONDUCTORS,      (           )  

[9] 

Materials d31 d33 d15 

ZnO -5.0 12.4 -8.3 

CdS -5.2 10.3 -14 

CdSe -3.9 7.8 -10 

 

 
 

 

 
 

 

TABLE III 

    THE NORMS AND NORM RATIOS (THE ANISOTROPY DEGREES) FOR 

SEMICONDUCTORS  

 

 

 

 

 

 

 

 

 

 

 

By taking into account the rule, the most piezoelectric 

effective among these three materials is Cds which has a 

very important feature in the thin films of semiconductors. 

Piezoelectric ceramic is the most potential piezoelectric 

material because of its higher strength, high rigidity and 

more importantly, the better piezoelectricity. TABLES IV 

and V include the piezoelectric coefficients and calculated 

norms for these materials. 

 
TABLE IV 

    PIEZOELECTRIC COEFFICIENTS,      (           ) OF PIEZOELECTRIC 

CERAMICS [10] 

Material,class 

symmetry 

d31 d33 d15 

PZT-4 -5.2 15.1 12.7 

PZT-5 -5.4 15.8 12.3 

PZT-5H -6.5 23.3 17 

PZT-8 -4 23.3 10.4 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 

Material Nv Nsp N Nv/N Nsp/N 

ZnO 4.05 19.337 19.757 0.205 0.979 

CdS 11.635 24.695 27.299 0.426 0.905 

CdSe 8.059 18.000 19.722 0.409 0.913 
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TABLE V 

    THE NORMS AND NORM RATIOS (THE ANISOTROPY DEGREES) FOR 

PIEZOELECTRIC CERAMICS 

   

 

 

      

 

 

 

 

 

 

 

 

 

 

Among these piezoceramics the piezoelectric effect in  

PZT-5H is the strongest. 

VI. CONCLUSION 

 Any physical property is characterized by n-rank 

tensors and decomposition methods presented in this work 

are capable for decomposing these tensors with intrinsic 

symmetry which is derived from the nature of the physical 

property itself into orthonormal parts. In other words, these 

methods of constructing orthonormal decomposed parts can 

be easily extended to (physical property) tensor of any rank.  

     In this work, they are applied to piezoelectric tensor. 

The third rank tensor, like piezoelectric tensors are of 

interest in engineering.  

 To summarize, irreducible decomposition method is a 

new procedure in literature which gives orthonormal parts 

and orthonormal tensor basis method is developed to be 

applied to third rank tensors.  

As a result of orthonormal tensor basis method, it is 

possible to decide the stress in which direction the 

polarization will be produced and what type of stress 

required. By use of norm concept for different materials 

with the same symmetries, it is feasible to determine in 

which material the piezoelectric effect is stronger. Both 

irreducible and orthonormal tensor basis methods yield 

orthonormal decomposed parts. 

Besides, decomposition of third rank tensors into 

elementary tensors by both methods, are to be undertaken, to 

offer valuable insight into the tensor structure and at the 

same time, simplifying immensely the calculations of sums, 

products, inverses and inner products. 

Nevertheless, those representations are introducing new 

forms of decomposition that have more featured and 

transparent physical information. Criteria to measure the 

overall effect of the material properties proposed and the 

norms which represent the piezoelectricity effect in the 

material like piezoceramics are computed. Through these 

methods it is possible to study the effect of angle orientation 

of fibers and the material properties of fiber and matrix on 

the stiffness of the composite. One can determine in which 

material the piezoelectric effect is stronger by using the 

norm for different materials with the same symmetries. 

The method developed in this work for tensors has many 

engineering applications in anisotropic elastic materials 

which are both qualitatively and quantitatively different 

from isotropic materials. 
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Material Nv Nsp N Nv/N Nsp/N 

PZT-4 25.462 3.557 25.709 0.990 0.138 

PZT-5 25.360 2.892 25.525 0.994 0.113 

PZT-

5H 

35.507 3.522 35.681 0.995 0.099 

PZT-8 26.822 4.010 27.120 0.989 0.148 
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