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Abstract—Most medical datasets are not balanced in their 

class labels. Indeed in some cases it has been no ticed that the 
given class labels do not accurately represent characteristics of 
the data record. Most existing classification methods tend not 
to perform well on minority class examples when the dataset is 
extremely imbalanced. This is because they aim to optimize the 
overall accuracy without considering the relative distribution 
of each class. In this paper we propose a cluster based under 
sampling technique that solves the class imbalance problem for 
our cardiovascular data. It shows significant better 
performance than existing methods.  

Keywords— class imbalance, under-sampling, over-
sampling, clustering, SMOTE. 

I. INTRODUCTION 

 well balanced training dataset is very important for 
creating a good training set for the application of 

classifiers. Most existing classification methods tend not to 
perform well on minority class examples when the dataset is 
extremely imbalanced. They aim to optimize the overall 
accuracy without considering the relative distribution of 
each class [1]. Typically real world data are usually 
imbalanced and it is one of the main causes for the decrease 
of generalization in machine learning algorithms [2]. 
Conventional learning algorithms do not take into account 
class imbalance; giving the same attention to a data record 
irrespective of whether it is from the majority class or the 
minority class. When the imbalance is massive, it is hard to 
build a good classifier using conventional learning 
algorithms [3]. Conventional classification algorithms like 
neural networks, decision tree, Native Bayes and K-nearest 
neighbour assume that all classes have a similar number of 
records in the training data and the cost derived from all the 
classes is equal [1-4]. Actually, the cost in miss-predicting 
minority classes is higher than that of the majority class for 
many class imbalance datasets; this is particularly so in 
medical datasets where high risk patients tend to be the 
minority class. Indeed in many cases the class labels do not 
accurately reflect the nature of a patient. Some patients die 
for some reason other than the target cause and some 
patients are alive by chance. Therefore, there is a need of a 
good sampling technique for such datasets where the target 
classes are not balanced and the given labels are not always 
appropriate.  

Sampling strategies have been used to overcome the class 
imbalance problem by either eliminating some data from the 
majority class (under-sampling) or adding some artificially 
generated or duplicated data to the minority class (over-
sampling) [4].  

Over-sampling techniques [5] increase the number of 
minority class members in the training set. The advantage of 
over-sampling is that no information from the original 
training set is lost since all members from the minority and 
majority classes are kept. However, the disadvantage is that 
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the size of the training set is significantly increased [5]. 
Random over-sampling is the simplest approach to over-
sampling, where members from the minority class are 
chosen at random; these randomly chosen members are then 
duplicated and added to the new training set [6]. Chawla [5] 
proposed an over-sampling approach called SMOTE in 
which the minority class is over-sampled by creating 
“synthetic” examples rather than over-sampling with 
duplicated real data entries. Depending upon the amount of 
over-sampling required, neighbours from the k nearest 
neighbours of a record are randomly chosen. SMOTE 
blindly generates synthetic minority class samples without 
considering majority class samples; this may cause 
overgeneralization [7].  

In summary, over-sampling may cause longer training 
time and over-fitting. The alternative to over-sampling is 
under-sampling. If we do not consider the time taken to 
resample, under-sampling betters over-sampling in terms of 
time and memory complexity [1]. Drummond and Holte [8] 
showed that random under-sampling yields better minority 
prediction than random over-sampling. Under-sampling is a 
technique to reduce the number of samples in the majority 
class, where the size of the majority class sample is reduced 
from the original datasets to balance the class distribution. 
One simple method of under-sampling (random under-
sampling) is to select a random subset of majority class 
samples and then combine them with minority class sample 
as a training set [7]. Many researchers have proposed more 
advanced ways of under-sampling the majority class data. 
Chyi [9] developed an under-sampling approach based on 
distance uses four distinct modes to select the representative 
samples from the majority class: the nearest; the farthest; the 
average nearest; and the average farthest distances between 
Minority and Majority classes.. For every minority class 
sample in the dataset, the first method (‘‘nearest”) calculates 
the distances between all majority class samples and the 
minority class samples, and selects k majority class samples 
which have the smallest distances to the minority class 
sample. If there are n minority class samples in the dataset, 
the ‘‘nearest” method would finally select (k x n) majority 
class samples (k>1). However with this method, some 
samples within the selected majority class samples might be 
duplicated. The ‘‘farthest” method selects the majority class 
samples which have the farthest distances to each minority 
class sample. The third method (‘‘average nearest”) 
calculates, for every majority class sample in the dataset, the 
average distances between one majority class sample and all 
minority class samples. This method selects the majority 
class samples which have the smallest average distances. 
The last method ‘‘average farthest” is similar to the 
‘‘average nearest” method. It selects the majority class 
samples which have the farthest average distances from all 
the minority class samples. The Chyi under-sampling 
approaches [9] spend a lot of time selecting the majority 
class samples in the large dataset, and they are not efficient 
in real applications [7].  

In the rest of this paper we present a cluster based under-
sampling technique to balance cardiovascular data. 

A 
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II. CLUSTER BASED UNDER-SAMPLING 

Down-sizing the majority class results in a loss of 
information that may result in overly general rules [10]. In 
order to overcome this drawback of the under-sampling 
approach Yen and Lee (2009) proposed cluster-based under-
sampling. Their approach is to first cluster all the training 
samples into K clusters (they have run the experiment with 
different K values to observer the outcome) then choose 
appropriate training samples from the derived clusters. The 
main idea is that there are different clusters in a dataset, and 
each cluster seems to have distinct characteristics. If a 
cluster has more majority class samples and less minority 
class samples, it will behave like a majority class sample. 
On the other hand, if a cluster has more minority class 
samples and less majority class samples, it does not hold the 
characteristics of the majority class samples and behaves 
more like the minority class samples. Therefore, their 
approach selects a suitable number of majority class samples 
from each cluster by considering the ratio of the number of 
majority class samples to the number of minority class 
samples in the derived cluster [7].  

They first cluster the full data to K clusters. A suitable 
number (M) of majority class samples from each cluster are 
then selected by considering the ratio of the number of 
majority class samples to the number of minority class 
samples in the cluster. The number M is determined by 
equation 1, and they randomly choose the M numbers of 
majority class samples from each cluster. In the i

th
 cluster 

(1≤ i ≥ K) the  will be: 

 = (m x ) x           (1)  

This approach may be suitable for datasets where class 
labels are confidently defined and truly reflect the property 
of the labeled class. But as we mention earlier that in some 
cases, especially for medical datasets, there is no guarantee 
that the class labels are truly reflecting the actual 
characteristics of that record. 

III. PROPOSED CLUSTER BASED UNDER-
SAMPLING METHOD 

 Our approach to under-sampling is different to the 
approach of Yen and Lee (2009). As shown in the figure 2, 
we first separated the data in to two sets, one subset has all 
the majority class samples and the other subset has the entire 
minority class sample. Next we cluster the majority class 
samples to K clusters (K > 1) then make K subsets of 
majority class samples, where each cluster is considered to 
be one subset of the majority class. The aim was not to 
derive a majority and minority class ratio of 1:1; we just 
wanted to reduce the gap between the numbers of majority 
class samples to the numbers of minority class samples. All 
the subsets of the majority class are separately combined 
with the minority class samples to make K different training 
data sets (The K value is dependent on the data domain, in 
our implementation  

 

 

 

 

 

 

 

Figure 1. Example cluster based under-sampling of cardio vascular dataset  

the K value was 3). All the combined datasets are classified 
with decision tree [11] and Fuzzy Unordered Rule Induction 
Algorithm [12]. We kept the datasets that gave the highest 
accuracy with the majority of the classifiers for further data 
mining processes. 

For experiments we prepared several datasets using 
different clustering and classified using decision tree. The 
experimental outcomes are discussed in the result section.  

Figure 2. Cluster Based Under-Sampling Process 
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IV. EXPERIMENTS AND ALGORITHMS  

We have used two cardiovascular datasets from Hull and 
Dundee clinical sites. K-Means [13] clustering is used to 
cluster the majority samples. For choosing the best subset, 
we have used decision tree [11] and Fuzzy Unordered Rule 
Induction Algorithm [12] as classifiers. 

A.   Cardiovascular Data  

 The Hull site data includes 98 attributes and 498 cases 
of cardiovascular patients and the Dundee site data includes 
57 attributes, and 341 cases from cardiovascular patients. 
After combining the data from the two sites, 26 matched 
attributes are left. 

After combining the data and removing the redundant 
attributes we found that out of 26 attributes with 839 
records. Out of all 18 attributes have a missing value 
frequency from 1% to 30%. Out of 839 records, 612 records 
have 4% to 56% missing values in their attributes. We 
removed 7 records those 50% of attributes have missing 
value. 

From these two data sets, we prepared a combined 
dataset having 26 attributes with 823 records. Out of 823 
records, 605 records have missing values and 218 records do 
not have any missing values. The missing values are 
imputed by the machine learning technique proposed in our 
previous work [14]. Among all the records 120 patients are 
dead and 703 patients are alive, with the majority and 
minority ratio 6:1. For this experiment according to clinical 
risk prediction model (CM1) [15], patients with status 
“Alive” are consider to be “Low Risk” and patients with 
status “Dead” are consider to be “High Risk”. The “High 
Risk” profiles are assumed to represent characteristics of 
concern; however, some alive (i.e. “Low Risk”) patients will 
have similar profiles. Conversely, some “High Risk” 
patients display data characteristics similar to alive (i.e. 
“Low Risk”) patients. We accept, for the time being, this 
flaw in labelling the data. 

B.   K-means Clustering 

K-means is one of the simplest unsupervised learning 

algorithms, first proposed by Macqueen in 1967, which has 

been used by many researchers to solve some well-known 

clustering problems [16]. The technique classifies a given 

data set into a certain number of clusters (assume k clusters). 

The algorithm first randomly initializes the clusters center. 

The next step is to calculate the distance between an object 

and the centroid of each cluster. Next each point belonging 

to a given data set is associated with the nearest centre. The  

cluster centres are then re-calculated. The process is 

repeated with the aim of minimizing an objective function 

knows as squared error function given by:  

                                   (2)  

Where,  is the Euclidean distance between the 

data point  and cluster centre ,  is the number of data 

points in cluster and c is the number of cluster centers. 

C.  Overview of FURIA 

Fuzzy Unordered Rule Induction Algorithm (FURIA) is 
a fuzzy rule-based classification method, which is a 
modification and extension of the state-of-the-art rule 
learner RIPPER [17]. Fuzzy rules are obtained through 
replacing intervals by fuzzy intervals with trapezoidal 
membership functions [18].  

df

1

0 else

, ,

,
, ,

, ,

,
, ,

, ,

c L c U

s L
s L c L

c L s L
F

s U
c U s U

s U c U

I

                        (3)

  

Where 
Lc,

and 
Uc,

are the lower and upper bound 
of the membership of the fuzzy sets. For an instance x = 
(x1……xn) the degree of the fuzzy membership can be found 
using the formula [18]: 

                                    (4) 

For fuzzification of a single antecedent, only relevant 

training data  is considered and data are partitioned into 
two subsets and rule purity is used to measure the quality of 
the fuzzification [18]:  

 

                                                                               (5)
     

                                                                    (6) 

Where,  

 

  

 

 

The fuzzy rules  are learnt for the class λj, the 

support of this class is defined by [18]: 
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Where, the certainty factor of the rule is defined as  
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 The use of the algorithm in different areas of data 
mining can be found in [12, 18, 19]. 

C.  Decision Tree  

     The decision tree classifier is one of the most widely 
used supervised learning methods. A decision tree is 
expressed as a recursive partition of the instance space. It 
consists of a directed tree with a “root” node with no 
incoming edges and all the other nodes have exactly one 
incoming edge [16]. Decision trees models are commonly 
used in data mining to examine the data. The induced tree 
and its associated rules will be used to make predictions 
[11]. Ross Quinlan introduced a decision tree algorithm 
known as Iterative Dichotomiser (ID 3) in 1979. C4.5, as a 
successor of ID3, is the most widely-used decision tree 
algorithm [20]. The major advantage to the use of decision 
trees is the class-focused visualization of data. This 
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visualization is useful in that it allows users to readily 
understand the overall structure of data in terms of which 
attribute mostly affects the class. Typically the goal is to 
find the optimal decision tree by minimizing the 
generalization error [16]. The algorithms introduced by 
Quinlan [21, 22] have proved to be an effective and popular 
method for finding a decision tree to express information 
contained implicitly in a data set. WEKA [23] makes use of 
an implementation of C4.5 algorithm called J48 which has 
been used for all of our experiments. 

D.  Classifier Performance Evaluation  

The performance of the classification is evaluated by 
accuracy (ACC); sensitivity (Sen); specificity (Spec) rates, 
and the positive predicted value (PPV) and negative 
predicted value (NPV), based on values residing in a 
confusion matrix.  

Assume that the cardiovascular classifier output set 
includes two typically risk prediction classes as: “High 
risk”, and “Low risk”. Each pattern xi (i=1, 2..n) is 
allocated into one element from the set (P, N) (positive or 
negative) of the risk prediction classes. Hence, each input 
pattern might be mapped into one of four possible outcomes: 
true positive- true high risk (TP)- when the outcome is 
correctly predicted as High risk; true negative- true low risk 
(TN)- when the outcome is correctly predicted as Low risk; 
false negative-false Low risk (FN)- when the outcome is 
incorrectly predicted as Low risk, when it is High risk 
(positive); or false positive- false high risk (FP) - when the 
outcome is incorrectly predicted as High risk, when it is 
Low risk (negative). The set of (P, N) and the predicted risk 
set can be built as a confusion matrix.  

 
Predicted classes 

Expected/

Actual 
Classes 

High risk High risk Low risk 

TP FN 

Low risk FP TN 

Figure 3. Confusion Matrix  

The accuracy of a classifier is calculated by: 

                                                        (9) 

The sensitivity is the rate of number correctly predicted 

“High risk” over the total number of correctly predicted 

“High risk” and incorrectly predicted “Low risk”. It is given 

by:  

                                                                  (10) 

The specificity rate is the rate of correctly predicted 

“Low risk” over the total number of expected/actual “Low 

risk”. It is given by: 

                                                                 (11)  

Higher accuracy does not always reflect a good 
classification outcome. For clinical data analysis it is 
important to evaluate the classifier based on how well the 
classifier predicts the “High Risk” patients. In many cases it 
has been found that the classification outcome is showing 
good accuracy as it can predict well the low risk patients 
(majority class) but failed to predict high risk patients (the 
minority class).  

V. RESULTS 

We tried different methods in preparing a closely 
balanced datasets through clustering as outlined above. The 
method never runs with the aim of having class ratio 1:1. 
Our aim was to reduce the ratio gap between the majority 
and minority classes. The results are presented in table 1 and 
2.  

We made six datasets with different combinations of the 
clusters from majority and minority class samples and 
named as D1…D6, as described in table 1. For exploring 
different alternatives we also tried to reduce further the ratio 
gap of majority class samples to minority class samples. In 
order to understand the quality of the training sample we 
also cluster the minority samples into three clusters and 
group them by different combinations with the clusters of 
majority class samples. An example of such a dataset is D2. 
We took the dataset D2 that has the best classification 
sensitivity among all the other datasets, we further cluster 
the majority class samples of D2 and select one cluster out 
of three clusters and combine with the minority class sample 
of the D2 and made another sample datasets called “D6”. 

We also made two more datasets using the under-
sampling by clustering method proposed by Yen and Lee 
(2009). The first dataset (K3M1Yen) was produced by 
separating the full data to 3 clusters and collected the 
majority class samples using equation 1 with the majority 
and minority ratio 1:1 (M=1). The second dataset 
(K3M2Yen) was produced by separating the full data to 3 
clusters and collected the majority class samples using 
equation 1 with the majority and minority ratio 2:1 (M=2). 
The datasets are classified using J48 and FURIA and results 
are presented in tables 2 and 3. 

TABLE 1.  
THE DESCRIPTIONS OF THE DATASETS  

Data Ratio Description 

D1: 2 : 1 
Data consist of all the minority class samples 
(“dead”) and one cluster of majority class records 
out of three clusters made by K-Mean. 

D2: 2.4 : 1 

Data consist of combination of two clusters of the 
minority class samples and one cluster of 
majority class samples. Clusters are made with 
simple k-mean for both of the classes (K=3). 

D3: 3 : 1 
Data consist of combination of all the minority 
class samples with randomly (random cut 1) 
selected samples from majority class sample. 

D4:  
 

3: 1 
Data consist of combination of all the minority 
class samples with randomly (random cut2) 
selected samples from majority class sample.  

D5:  6 :1  Original data with full samples.  

D6: 1.8 : 1 
Majority samples of the data set D2 are clustered 
in to 3 cluster and each clusters are combined 
with the minority samples.  

K3M1Yen 1: 1 
Majority and minority ratio 1:1 (M=1) using Yen 
and Lee (2009) 

K3M2Yen 2: 1 
Majority and minority ratio 2:1 (M=2) using Yen 
and Lee (2009) 
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TABLE 2. 
CLASSIFICATION OUTCOME OF FURIA 

Data Sets  ACC% SEN% SPEC% PPV% NPV% 

D1  85.89 64.17 98.12 95.06 82.94 

D2 92.11 79.78 97.21 92.21 92.07 

D3  74.68 11.67 96.29 51.85 76.07 

D4  70.82 15.83 89.52 33.93 75.78 

D5  66.71 30.00 72.97 15.93 85.93 

D6  96.39 91.01 99.38 98.78 95.21 

K3M1Yen 61.48 67.50 55.65 59.56 63.89 

K3M2Yen 60.39 22.50 79.66 36.00 66.90 

TABLE 3. 
CLASSIFICATION OUTCOME OF DECISION TREE 

Data Sets ACC% SEN% SPEC% PPV% NPV% 

D1 84.08 67.50 93.43 85.26 83.61 

D2  92.05 83.15 95.77 89.16 93.15 

D3  67.66 35.83 78.57 36.44 78.13 

D4  66.60 33.33 77.90 33.90 77.46 

D5  79.59 20.00 89.76 25.00 86.80 

D6  97.59 93.26 100 100 96.39 

K3M1Yen 51.64 52.50 50.81 50.81 52.50 

K3M2Yen 59.55 39.17 69.92 39.83 69.33 

 
From the table 2 and 3 we can see that the original 

unbalance dataset D5 has accuracy of 66.71% with FURIA 
classification and 79.59 % with decision tree classification. 
But for both of the classifiers the sensitivity value is very 
poor (30% and 20%). The accuracy is high because the 
classifier was able to classify the majority class (Alive) 
sample well (72.97% and 89.76%) but failed to classify the 
minority. Dataset D1 where data are balanced by clustering 
the majority class samples and combining all the minority 
samples shows better classification outcome than the 
original unbalance data. With the FURIA and decision tree 
classification of the D1 dataset, we found the sensitivity 
value 0.642 with the decision tree and 0.675 with the 
FURIA. The classification outcome of the D1 is 2 to 3 times 
higher than the original datasets. The datasets prepared by 
the method proposed by Yen and Lee (2009) could show 
some increase in the sensitivity value but the accuracy was 
dropped and overall performance was not good. Under 
sampling by random cut D3 and D4 also disappointed by its 
accuracy and sensitivity values. 

It is observed from the experiments that the majority and 
minority ratio is not only the issue of building a good 
prediction model. There is also a need of good training 
simples those should have true property of the class label 
assign to them. As we discuss early that most of the time the 
class labels of clinical dataset do not reflect the true property 
of the class. The majority and minority ratio of D1, D2 and 
D6 are very close but the classification outcomes are not 
similar. Although the majority minority ratio is almost same 
but there is a big difference of the classification accuracy, 
sensitivity and specificity of D1 and D6 can be noticed in 
the table 2 and 3. The dataset “K3M1Yen” prepared by the 
method proposed by Yen and Lee (2009) has 1:1 ratio but 
still have less classification outcome than other datasets. 

  
Figure 4. ROC of Decision Tree Classification. 

If we analyse the ROC [24] space for all datasets 
classified with decision tree plotted in figure 4 and FURIA 
plotted in figure 5, we will find that overall accuracy of all 
the datasets are above the random line and the datasets D1, 
D2 and D6 which are prepared by our proposed method are 
having highest accuracy than all the other datasets. 

 
Figure 5. ROC of FURIA Classification 

CONCLUSIONS 

Class imbalance is a common problem with most 
medical datasets. Most existing classification methods tend 
not to perform well on minority class examples when the 
dataset is extremely imbalanced. Sampling strategies have 
been used to overcome the class imbalance problem by 
either over-sampling or under-sampling. Many researchers 
proposed different methods of under-sampling the majority 
class sample to balance the data. We proposed a cluster 
based under-sampling method that not only can balance the 
data but also can chose good quality training set data for 
building classification models. The outcome labels of most 
of the clinical datasets are not always appropriate. If we 
consider the cardiovascular risk based on dead or alive 
status of previous patients records, some of the patients may 
have died with some other cause and some are alive by 
chance. The proposed method is found to be useful for such 
datasets where the given class labels are not always 
appropriate and truly reflect the underlying characteristics of 
the patient record. 

In summary, we suggest the techniques used here are of 
benefit for problematic data and can help to alleviate the 
class imbalance problems typically found in clinical datasets 
and data from other domains. 
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