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Abstract—An efficient numerical method for solution of
second order nonlinear parabolic equations on a sphere is
presented. The method involves the ideas of operator splitting
and swap of coordinate maps for computing in different
directions. As a result, 1D finite difference problems with
periodic boundary conditions and matrices of a simple structure
appear, so that for their solution a fast numerical algorithm
is applicable. The method is tested via several numerical
experiments, including simulation of the phenomena of blow-up
and temperature waves, that have many important applications
in industry.

Index Terms—second order nonlinear parabolic equations,
operator splitting, coordinate map swap, blow-up and burning
processes.

I. INTRODUCTION

SECOND order nonlinear parabolic equations are ade-
quate mathematical models of many physical phenomena

met in mechanics, biophysics, ecology and other areas of
science [1], [2], [3], [4], [5], [6], [7], [8], [9]. Some of
them are convenient to study in the spherical geometry
separating the differential operator into the spherical and
radial components. Because the radial component is trivial,
in our research we shall focus on the spherical part. The
model has the form

Tt = ∇ · (µTα∇T ) + f, (1)

where ∇ is the spherical Hamilton operator, T =
T (λ, ϕ, t) ≥ 0, µ = µ(λ, ϕ) > 0, α ≥ 0, f = f(T, λ, ϕ, t),
while λ and ϕ are the longitude and latitude of the sphere
S, respectively.

Since equation (1) is being considered on a sphere, we
are dealing with a Cauchy problem formulated in a domain
that has no boundaries. Besides, sphere is a periodic domain
only in λ, while it is not such in ϕ due to the presence of the
poles. Therefore, if one tries to design a numerical procedure
to solve the original 2D problem using periodicity in the
longitude and joining somehow the solution at the poles, it
will definitely be computationally expensive. So, our aim is
to develop an efficient numerical method for solving equation
(1) that would allow computing physically correct numerical
solutions in a fast manner.
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II. SPLITTING AND MAP SWAP

Prior to performing finite difference approximation we
linearise and then split the original equation by coordinates
in the double time interval (tn−1, tn+1) [10]. So, hereafter
we consider two operators, L1—in λ, and L2—in ϕ, i.e.

L1T =
1

R cosϕ

∂

∂λ

(

D

R cosϕ

∂T

∂λ

)

, (2)

L2T =
1

R cosϕ

∂

∂ϕ

(

D cosϕ

R

∂T

∂ϕ

)

. (3)

Here D stands for the diffusion coefficient µ(T n)α computed
at the time moment tn ∈ (tn−1, tn+1), whereas R is the
radius of the sphere. The corresponding split 1D problems are
solved in time successively: the solution to the first problem
is used as the initial condition for the second one, and vice
versa.

The splitting allows one to treat the 1D problems as
periodic in λ and in ϕ, provided each of the problems is
being considered on a separate grid: the first problem is
approximated on the grid

S
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∆λ,∆ϕ =

{

(λk, ϕl) : λk ∈
[

∆λ
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while the second one is approximated on the swapped grid

S
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2
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2 , 3π
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2

)}
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Obviously, both grids are defined on the same set of nodes.
The only change to make in (3) if using (5) is to replace
cosϕ with | cosϕ|, as well.

Now we are ready to construct finite difference approx-
imations of the derived 1D problems. To obtain the sec-
ond approximation order in time, the bicyclic splitting [10]
(a sort of Strang splittings [11]) is used in each double
time interval (tn−1, tn+1) coupled with the Crank-Nicolson
approximation—

T
n−1+i/3
kl − T

n−(4−i)/3
kl =

τLi

(

T
n−1+i/3
kl + T

n−(4−i)/3
kl

2

)

, i = 1, 2, (6)

T
n+1/3
kl − T

n−1/3
kl = 2τfn

kl, (7)
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, i = 2, 1, (8)

Proceedings of the World Congress on Engineering 2013 Vol I, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



where the external forcing f is computed as fn
kl =

f (λk, ϕl, tn). Further, at each point (λk, ϕl) the spatial
derivatives of the operators Li are approximated as

∂

∂λ

(

D
∂T

∂λ

)

≈
1

(∆λ)2
(

D+∇+
k Tkl −D−∇−

k Tkl

)

, (9)

∂
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D
∂T

∂ϕ

)

≈
1

(∆ϕ)2

(

D
+
∇+

l Tkl −D
−

∇−

l Tkl

)

, (10)

where D+ = (Dk+1,l +Dkl)/2, D− = (Dkl +Dk−1,l)/2,
∇+

k Tkl = Tk+1,l − Tkl, ∇−

k Tkl = Tkl − Tk−1,l, D =

D |cosϕ|, D
+

= (Dk,l+1 + Dkl)/2, D
−

= (Dkl +
Dk,l−1)/2, ∇+

l Tkl = Tk,l+1 − Tkl, ∇
−

l Tkl = Tkl − Tk,l−1.
It can explicitly be shown that each of the resulting split

one-dimensional second order finite difference schemes is
dissipative. More generally, it holds

||Tn+1||
L2

(

S
(1)
∆λ,ϕl

) ≤ ||Tn−1||
L2

(

S
(1)
∆λ,ϕl

) +

2τ ||fn||
L2

(

S
(1)
∆λ,ϕl

), (11)

where T = {Tkl} and f = {fkl} are grid functions taken
at the corresponding time moments. Besides, it is easy to
demonstrate that the schemes result to be balanced.

Let us emphasise that a substantial profit we have achieved
due to the splitting is that we use periodic boundary con-
ditions while computing in both directions, λ and ϕ, thus
having finite difference schemes with tridiagonal matrices.
Therefore, the solution can be obtained with a fast linear
solver, so it is cheap from the computational standpoint.

Another gain of the splitting is that one can take higher
than second order finite difference stencils and hence derive
higher order finite difference schemes.

III. NUMERICAL TESTS

A. Test for the Balance Property

Let the function

T (λ, ϕ, t) = c1 sin ξ cosϕ cos2 t+ c2 (12)

with

ξ = ωλ+ θ cosκϕ sin t (13)

be the solution to (1). Then, having found the corresponding
source function f via a substitution of (12) into (1), we can
solve the diffusion problem numerically and compare the
solution with the known analytics.

In doing so, we take c1 = −2.5, c2 = 50, ω = 9, θ = 5,
κ = 3, α = 1, µ = 10−5. In Fig. 1 we plot graphs of
the temporal behaviour of the total mass of the solution,
computed on the grid 6◦ × 6◦, and the source function. As
one can see, the total mass is decaying when the (negative)
sources are growing; when the sources are about zero, the
total mass is nearly a constant, as it ought to be. This
result demonstrates that the constructed schemes possess the
property of balance and hence provide physically adequate
numerical solutions. Maximum relative error of the numerical
solution is δ(tn) = 0.54% at τ = 10−3, as well.
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Fig. 1. Balance Property Test: graphs of the total mass (top) and sources
(bottom) in time

B. Test of Combustion and Temperature Waves

Now we are going to verify the schemes on modelling
two strongly nonlinear real physical phenomena. The first
phenomenon is the propagation of a temperature wave at a
constant amplitude; the second phenomenon is combustion
in a limited area, one of whose applications is metal surface
flaming. Both phenomena were numerically simulated in [1],
[2] as Cauchy problems on R

1. Below we shall apply the
constructed schemes for studying them on a sphere.

Temperature wave. Take α = 0, µ = 10−4 and f =
c(T − T 3) with c = 10. This problem is linear with respect
to the diffusion coefficient, but it is nonlinear with respect
to the source function. We shall consider two cases, taking a
hat-like spot as the initial condition: in the first case the spot’s
epicentre is located in middle latitudes, while in the second
case it is placed exactly on the North pole. The numerical
solutions, obtained on the grid 6◦×6◦, are shown in Fig. 2-3.
There are two features to notice. First, as the time is growing
the wave fronts are covering the entire sphere, while the
waves’ amplitudes are kept constant in time (cf. the colour-
bar’s values at different time moments), that is temperature
waves at constant amplitudes are observed. Second, the
phenomenon is accurately simulated independently of the
location of the initial condition, without any perturbances of
the solution which would have taken place if we had added
any nonphysical modes into the model at the stage of splitting
and/or map swap (4)-(5).

Combustion within a limited area. Let α = 1 and
f = cT β, where c = 4.5. The model is now nonlinear both
with respect to the diffusion coefficient and sources. The
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Fig. 2. Temperature Wave Test: mid-lat numerical solution at several time
moments

parameter β determines distinct regimes of combustion: the
case 0 < β < α+ 1 is the expansion regime (or HS-regime
[1], [2])—the area of combustion is getting larger in time; the
case β > α+1 is the reduction regime (or LS-regime)—the
area of combustion is getting smaller; the case β = α+1 is
the stationary regime (S-regime), when combustion is limited
within an area of a constant size. In all three cases the source
function leads to an infinite increase of the temperature T ,
that is a blow-up occurs.

In Fig. 4 we show the initial condition, while in Fig. 5-
7 there are numerical solutions corresponding to β = 1
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Fig. 3. Temperature Wave Test: North pole numerical solution at several
time moments

(HS-regime), β = 3 (LS-regime) and β = 2 (S-regime),
respectively. In Fig. 8 we plot graphs of the solutions’ L2-
norms. It is seen that a blow-up is tended to be achieved in
all the cases—the solutions’ amplitudes unboundedly grow
in time, while the behaviour of the combustion area depends
on the parameter β and agrees with the theory. Hence,
the constructed schemes allow properly simulating all the
regimes of combusion, including the border sensitive S-
regime.
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Fig. 4. Combustion Test: initial condition
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Fig. 5. Combustion Test: numerical solution for HS-regime at several time
moments

IV. CONCLUSION

A numerical method for solution of nonlinear parabolic
equations on a sphere has been presented. The keypoint
of the method is the operator splitting by coordinates and
subsequent map swap that allows representing the sphere
as if it were a periodic domain in both directions. Hence,
we constructed second order finite difference schemes ap-
proximating 1D diffusion problems with periodic bound-
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Fig. 6. Combustion Test: numerical solution for LS-regime at several time
moments

ary conditions in the longitude and latitude. Therefore we
avoided difficulties related to imposing suitable boundary
conditions at the poles. The constructed schemes keep the
significant properties of the original differential problem—
they are balanced and dissipative, and thus provide physi-
cally adequate numerical solutions. Due to the tridiagonal
structure of the matrices of the linear systems the schemes
are computationally inexpensive. The numerical experiments
demonstrated accurate simulation of two important physical
phenomena—temperature waves and combustion with blow-
up.
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