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 Abstract - Stream mining is the process of mining a 
continuous, ordered sequence of data items in real-time. Naïve 
Bayes (NB) classification is one of the popular classification 
methods for stream mining because it is an incremental 
classification method whose model can be easily updated as 
new data arrives. It has been observed in the literature that the 
performance of the NB classifier improves when irrelevant 
features are eliminated from the modeling process. This paper 
reports studies that were conducted to identify efficient 
computational methods for selecting relevant features for NB 
classification based on the sliding window method of stream 
mining. The paper also provides experimental results which 
demonstrate that continuous feature selection for NB stream 
mining provides high levels of predictive performance.  

   
Index terms -  data mining, feature selection, Naïve Bayes 

classification, stream mining 

I. INTRODUCTION 

Predictive data mining involves the creation of classification 
or regression models. A classification model predicts the 
value of a categorical dependent variable while a regression 
model predicts the values a numeric dependent variable. 
Data stream mining also known as stream mining is the 
process of mining a continuous, ordered sequence of data 
items in real-time [1], [2], [3]. Naïve Bayes (NB) 
classification is one of the popular classification methods for 
stream mining. The popularity of the NB classifier for 
stream mining stems from the fact that it is very easy to 
update the NB model for classification as new stream data 
arrives. It has been observed in the literature that the 
performance of the optimal Bayes classifier (from which the 
NB classifier is derived) is not affected by irrelevant 
features, that is, features with little or no predictive power.  
However, it has also been observed that the performance of 
the NB classifier improves when irrelevant features are 
eliminated from the modeling process. Since stream mining 
is done in real time, there is a need to employ fast methods 
of modeling.  

This paper reports studies that were conducted to identify 
efficient computational methods for selecting relevant 
features for NB classification based on the sliding window 
method of stream mining. The paper also provides 
experimental results which demonstrate that continuous 
feature selection for NB stream mining provides high levels 
of predictive performance compared to once-off feature 
selection. The rest of the paper is organised as follows: 
Section II provides background for stream mining, Naïve 
Bayes classification and feature selection.   
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Section III presents the experimental methods. Section IV 
presents the experimental results. Section V concludes the 
paper. 

II. BACKGROUND 

A. Stream mining 

Data collected over time is commonly described as a data 
stream. More precisely, a data stream is a real-time, 
continuous, ordered sequence of data items [1], [2], [3]. One 
major challenge for mining data streams is due to the fact 
that it is infeasible to store the data stream in its entirety. 
This problem makes it necessary to select and use training 
data that is not outdated for the mining task. The second 
challenge for stream mining is due to the phenomenon of 
concept drift, which is defined as the gradual or rapid 
changes in the concept that a mining algorithm attempts to 
model [1], [2], [3]. Given that data items arrive continuously 
and that the concept being modeled changes gradually or 
rapidly, there is a need to employ fast methods of modeling 
for stream mining.  Predictive modeling, e.g. predictive 
classification is commonly applied to stream data. Predictive 
classification involves the estimation of the conditional 
probability )( x|cPr j  of assigning a class label jc to an 

instance vector x . This probability is related to the 
probability )(xPr of encountering an instance with feature 
vector x . For predictive classification, changes in 

)(xPr imply that changes have occurred in the probability 
distribution of the predictive feature values of the concept 
for which the model is being created. Gao et al. [2], [4] call 
these changes ‘feature changes’. One approach to selecting 
data for mining data streams is called the sliding window 
approach. A sliding window, which may be of fixed or 
variable width, provides a mechanism of limiting the data to 
be analysed to the most recent instances. The main 
advantage of this technique is to prevent stale data from 
influencing the models obtained in the mining process [5], 
[6]. The studies reported in this paper are based on the 
sliding window technique. 

B. Naïve Bayes classification 

For predictive classification, the training dataset for a 
classifier is typically characterised by d predictor variables 

di X,...,X and a class variable C . Predictor variables are 
also known as the features for the prediction task. The set of 
n training instances is denoted as )}{( jc,x where 

)( 1 dx,...,x=x  are the values of a training instance and 

}{ 1 Jj c,...,cc ∈  are the class labels.  Naïve Bayes 

classification has been reported in the literature as one of the 
‘ideal’ algorithm for stream mining, due to its incremental 

Proceedings of the World Congress on Engineering 2013 Vol III, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



 

nature [7]. The Naïve Bayes classifier assigns posterior class 
probabilities for the query instance x  based on Bayes 
theorem. Given a new query instance )( 1 dx,...,x=x  Naïve 
Bayes classification involves the computation of the 
posterior probability for each class defined as  

 

.cC|xXPrcCPrxX|cCPr jijij )()()( ===∝== Π
            (1) 
 
For zero-one loss classification, the class cj with the highest 
posterior probability is selected as the predicted class. For 
categorical features, the quantities )( jcCPr =  and  

)( ji cC|xXPr ==  are estimated from the training data. 

For the rest of this paper, )( ij xX|cCPr == will be 

denoted as )( ij x|cPr , )( jcCPr = will be denoted as 

)( jcPr  and )( ji cC|xXPr ==  as )( ji c|xPr . 

One weakness of the Naïve Bayes algorithm is to due to 
the inclusion of irrelevant features. Irrelevant features have a 
very small or no correlation with the class variable, and so, 
have very little or no predictive power. Liu and Motoda [8] 
and  Kohavi [9] have observed that theoretically, the 
irrelevant features should not affect the classification 
outcome for Naïve Bayes classification. They have argued 
that even though, theoretically, the removal of any feature 
cannot affect the classification performance of the (optimal) 
Bayesian classifier, the Naïve Bayes classifier should 
perform better when irrelevant features are removed. John et 
al. [10] have observed that in practice (empirically) the 
irrelevant features lead to a degradation in classification 
performance. The second weakness for Naïve Bayes 
classification is that for some ix  values that appear in the 
training data, the frequency counts for these values may be 
too small to produce a reliable estimate of )( ji c|xPr  [11]. 

This is especially likely when a feature iX  has many levels 
and / or the prediction task has a large number of classes. In 
this paper, the )( ji c|xPr are referred to as the likelihood 

terms. 

C. Feature selection for stream mining 

Feature selection involves the identification of features 
that are relevant and not redundant for the prediction task 
[8]. A common method of identifying relevant features is to 
compute the class-feature correlations for all the features 
present in the data and then select only those features with  
class-feature correlation values that are above a specified 
threshold. It is common practice, for Naïve Bayes 
classification, to discretise all numeric features so that all 
features for NB classification are categorical. This leads to a 
straight forward implementation of (1).  In order to identify 
irrelevant features, methods for measuring correlations 
between qualitative features need to be employed. One such 
method is the use of the symmetrical uncertainty (SU) 
coefficient which is defined in terms of the entropy function. 
The entropy for variable predictor variable X and class 
variable C can be computed as [12] 
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where )( ir xP   is the probability that variable X  has the 

value ix and )( jr cP  is the probability that variable C has 

the value jc . The joint entropy of the variables X and C 

denoted as )( C,XE can  be computed as [12] 
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The symmetrical uncertainty (SU)  coefficient for X and C is 
defined in terms of the entropy function as 

 
)).()()()()(02 CEXE/(C,XECEXE.SU +−+=

�
         (5) 

 
The SU coefficient takes on values in the interval [0,1] and 
has the same interpretation as Pearson’s product moment 
correlation coefficient for quantitative variables [8]. White 
and Liu [12] have observed that the entropy functions of (2) 
and (3), and the joint entropy function of (4) can be 
computed from a contingency table. Contingency tables are 
discussed below. 

D. Estimating probabilities from contingency tables  

A 2-dimensional contingency table is a cross-tabulation 
which gives the frequencies of co-occurrence of the values 
of two categorical variables X  and Y . For Naïve Bayes 
classification and feature selection, X  is the feature and the 
second variable is C , which is the class variable. Various 
statistical measures can be derived from a contingency table 
in order to characterise the association (correlation) between 
X  and C . Suppose X  can take on I distinct values I,..,xx1  

and C can take on J distinct values c1,..,cJ.  Let ijn denote 

the frequency for ixX = and jcC = in the table cell for row 

i and column j ,  +in denote the sum of the counts for row 

i , jn+  denote the sum of the counts for column j .  

Suppose that the sample from which the counts 
(frequencies) are derived is of size n . The probability terms 
in (2), (3), and (4) can be computed from the counts in the 
contingency table cells as follows: =)( ixPr )( n/ni+ , 

=)( jcPr )( n/n j+ , and =)( ji c,xPr )( n/nij . The quantity 

)( ji c,xPr is the probability of co-occurrence of values 

ix and jc for variables X and C  [12]. For the computation 

of the SU coefficient, the entropy and joint entropy statistics 
for variables X and C can be computed from the above 
probabilities. The probability estimates )( jcCPr = and 

)( ji cC|xXPr == are used in the computation of the 

Naïve Bayes posterior probability 
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)( ij xX|cCPr == defined in (1). It is useful to note that 

these quantities  can also be computed from the contingency 
table as )()( n/ncPr jj += and  )()( jijji n/nc|xPr += . 

A common approach to the implementation of the Naïve 
Bayes classifier is to use two tables for the model. One table 
stores the class prior probability estimates )( jcPr while the 

second table stores the likelihood estimates )( ji c|xPr  for 

each feature value. Classification of a new query instance 
then involves looking up the values in the tables and 
computing (1) for the new instance. The above observations 
on contingency tables point to the fact that the same data 
structures (contingency tables) can be used for the 
computations of the class-feature correlations and the Naïve 
Bayes probability estimates. The use of the same 
computational data structures for the feature selection and 
Naïve Bayes computations results in fast and efficient 
implementation of feature selection for Naïve Bayes 
classification. This approach is especially desirable for 
stream mining, and it is the approach that was used for the 
studies reported in this paper. 

E. Reliable estimates of  probabilities from contingency 
tables  

It was observed above that for some ix  values that appear 
in the training data, the frequency counts for these values 
may be too small to produce a reliable estimate of the 
likelihood terms )( ji c|xPr . This problem is very common 

in stream mining, since not all the data is available at the 
start of the mining process. This problem can be solved 
using the Bayesian approach to estimating probabilities, 
called the m estimate of probability [13]. Suppose the count 
for class jc  is jn+  and the count for instances with value 

ix for feature iX and class jc is ijn . Then the estimated 

probability is )()( jijji n/nc|xPr += . Mitchell [13] has 

observed that if the value  ijn   is very small then 

)( ji c|xPr will be close to zero so that this term will 

dominate the computational result of the product in (1). In 
order to avoid this problem, the Laplace estimate or the 
m estimate of the probability should be used instead. The m  
estimate is computed as )()( mn/mpn jij ++ + where ijn   

and  jn+ are as defined above, p  is the prior estimate of the 

probability to be determined, and m is a constant called the 
equivalent sample size [13], [14]. A common method for 
choosing p is to assume uniform priors. If the feature iX  
has L  possible values (levels) then p  is computed as 

L/1 [13]. The Laplace estimate is a special case of the m  
estimate with Lm = and L/p 1= . This corresponds to 
adding a value of 1 to every cell count in the contingency 
table so that each column has an additional count of L  
instances. 

III. EXPERIMENTAL METHODS 

A. Objectives for the experiments 

The objectives of the studies reported in this paper were 
to establish whether continuous feature selection for stream 
mining using the Naïve Bayes classifier and the sliding 
window technique leads to improved predictive performance 
compared to a once-off feature selection approach. This 
section provides a description of the considerations that 
were made for the experimental set up. Three alternative 
approaches to incremental Naïve Bayes classification were 
used for the feature selection studies. The first approach was 
to add newly arriving instances to the training dataset for the 
model without removing old instances. The second approach 
was to use a sliding window where a small number of old 
instances are removed whenever new instances are added to 
the training dataset for the model. The third alternative was 
to use a sliding window where a large number of old 
instances are removed whenever new instances are added to 
the training dataset. Two alternatives for feature selection 
were studied. For the first alternative, predictive features 
were selected at the start of the mining process, using the 
initial batch of training data. These features were used for 
NB classification for all subsequent time windows. The 
second alternative was to conduct feature selection at the 
beginning of each time window. 

B. Implementation of the Naïve Bayes and feature 
selection algorithms 

The discussion of Section IID indicated that contingency 
tables can be used to store data (frequencies) for the 
computation of the SU coefficients for feature selection as 
well as the computation of the probability terms for Naïve 
Bayes classification. This approach was used for the 
experiments reported in this paper. The algorithms and data 
structures for Naïve Bayes classification and feature 
selection were implemented in C++ using the GNU C++ 
compiler. Two main data structures were implemented for 
stream mining. The first data structure is the list of features 
where each entry in the list stores a description of a feature 
as (name, type, category count, categories, SUcoefficient, 
relevant). The second data structure is a list of contingency 
tables. Each entry in the list is a contingency table for one 
(feature, class) pair, so that for the d  predictor variables in 
the data there are d  contingency tables in the list. The 
feature list and contingency table list were used as a basis 
for all the feature selection and Naïve Bayes computations.  

C.  Data set for the experiments 

The KDD Cup 1999 dataset available from the UCI KDD 
Archive [15] was used for the experiments. The KDD Cup 
1999 dataset consists of two datasets: a training dataset and 
a test dataset. The small version of the training dataset 
consists of 494,022 instances. This version of the dataset 
was used for the experiments of this paper. The training 
dataset has 41 features. The KDD Cup 1999 dataset is a 
common benchmark for the evaluation of intrusion detection 
systems (IDS). The training dataset consists of a wide 
variety of network intrusions (attack types) simulated for a 
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military environment. The training dataset has 23 classes 
(attack types). The 23 classes were grouped into five 
categories that were treated as the classes for prediction. The 
classes are: NORMAL (normal connection), DOS (denial of 
service attack), PROBE (probing that precedes an attack), 
R2L (unauthorised access from a remote machine), and U2R 
(unauthorised access to super-user privileges). Shin and Lee 
[16] have used the same categories as the prediction task 
classes. For the stream mining experiments, the dataset was 
treated as a data stream by time stamping the instances 
based on the order in which they appear in the dataset. 

IV. EXPERIMENTAL RESULTS FOR STREAM MINING 

A. Preliminary experiments 

The initial Naïve Bayes model was constructed using the 
first 50,000 instances of the KDD Cup 1999 dataset. Table I 
shows the class distribution for these 50,000 instances. The 
initial set of predictive features was also selected based on 
these instances. Numeric features were each discretised into 
10 intervals using equal-width binning [5], [17]. Table II 
provides a description of the features selected from the 
50,000 instances using the SU coefficient. Cohen [18] has 
recommended that correlations with a magnitude less than 
0.1 have no practical significance. For this reason,  features 
with an SU coefficient less than 0.1 were considered to be 
irrelevant and were excluded from the classification process. 
 

TABLE I 
CLASS DISTRIBUTION FOR 50,000 TRAINING INSTANCES 

Number of instances in the  dataset of 
50,000 instances 

 
Class 

All instances for the 
class 

Unique instances for 
the class 

NORMAL 37,966 37,641 
DOS 11,625 671 
PROBE 343 236 
R2L 61 61 
U2R 5 5 

 
TABLE II 

SELECTED FEATURES FOR THE INITIAL TRAINING DATA OF 
50,000 INSTANCES 

Feature Type SU coefficient 

Count Numeric (discretised) 0.75 

SrvCount Numeric (discretised) 0.73 

ProtocolType categorical 0.69 

Service categorical 0.58 

LoggedIn categorical 0.57 

DstHostSameSrcPortRate Numeric (discretised) 0.46 

DstHostCount Numeric (discretised) 0.15 

 
It was stated in Section IIE that the m estimate of 

probability solves the problem of having cells with zero 
counts or vey small counts in a contingency table. For 
stream mining using Naïve Bayes classification this estimate 
may be needed for the computation of the likelihood terms 
( )( ji c|xPr ) since there is a high prevalence of zero counts 

in the contingency table cells. In fact, for the KDD Cup 
1999 dataset, it was observed that for all (feature, class) 
contingency tables there is a very high occurrence of zero 
counts in the contingency tables for all time windows. Two 

of the contingency tables are given in the appendix in order 
to illustrate this problem. Unfortunately, there are no clear 
guidelines in the literature on how to set the m value. 
Experiments were conducted to determine the appropriate 
m  value, using the same 50,000 as a basis for Naïve Bayes 
classification. The same 50,000 instances were used for the 
construction of the contingency tables and for the testing of 
classification performance. Table III shows the classification 
results for these experiments. The accuracy and true positive 
rates (TPRATE%) on the classes are given in the table. The 
true positive rate for each class is computed as TPRATE = 
(number classified correctly / number in the test data).  The 
m  values of 0, L, 10L, 20L, and L30 were used for 
probability estimation. The results of Table III indicate that 
for the classes with a large number of instances (NORMAL 
and DOS) changes in the m value do not affect the 
classification performance. However, for the classes with a 
very small number of instances (R2L and U2R), small 
values of m provide the best performance. Given these 
observations, the value of m = 0 was selected for the Naïve 
Bayes probability computations for the experiments. 
 

TABLE III 
CLASSIFICATION RESULTS FOR 50,000 TEST INSTANCES 

Naïve Bayes classification accuracy% and class TPRATE% 
for class: 

 
 
 
m 
value 

A
ll 

cl
as

se
s 

N
O

R
M

A
L

 

D
O

S 

PR
O

B
E

 

R
2L

 

U
2R

 

 0 97.4 99.5 90.5 96.8 90.2 80.0 
 L 97.2 99.4 90.5 94.8 88.5 0.0 
10L 96.6 98.6 90.5 94.3 0.0 0.0 
20L 96.4 98.4 90.5 91.8 0.0 0.0 
30L 96.2 98.2 90.5 91.3 0.0 0.0 

 

B. Stream mining experiments 

Three alternative models were used for the stream mining 
experiments. The model MsA (s = 2,3,4,5) corresponds to 
the alternative of adding 1,000 new instances to the training 
dataset without removing any old instances. The model MsB 
corresponds to the alternative of adding 1,000  new 
instances and removing the 1,000 oldest instances. The 
model MsC corresponds to the alternative of adding 1,000  
new instances and keeping only the newest 10,000 
instances. Fig. 1 provides a representation of the sliding 
windows W2, W3, W4 and W5 for model creation and the 
time periods T2, T3, T4 and T5 for testing the model 
predictive accuracy. The testing periods T2,..,T5 are 
consecutive periods which respectively correspond to time 
periods when a batch of 1,000 new instances have arrived 
and have been classified by the models MsA, MsB and MsC 
which are created for the sliding windows W2, W3, W4 and  
W5. 

The models are shown in column 2 of Table IV. Column 
3 of Table IV shows the predictive accuracy when the three 
models use the seven features selected at the start of the 
mining process. Column 5 shows the predictive accuracy 
when the three models use features selected at the start of 
each sliding window. The number of selected features for 
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continuous feature selection are shown in column 4. Testing 
period T2 appears to be a period of concept drift since the 
accuracy plummets to 3.3%. After T2 has passed, the 
accuracy results for testing periods T3, T4 and T5 indicate 
that in general the use of features selected at the beginning 
of each sliding window period results in either the same 
level of NB predictive accuracy as for period T3 or higher 
levels of predictive accuracy as for T4 and T5.  
 

 
Fig.  1: Representation of models for the sliding window periods (Wi) and 
testing periods (Ti) for i = 2, 3, 4, 5. 
 
 

TABLE IV 
MODEL ACCURACY FOR TWO FEATURE SELECTION METHODS 

Testing 
period 
(test 
instances) 

 
 
 
Model 

Accuracy % on 
fixed feature 
selection 
(7 features) 

Number of 
features for 
continuous 
feature 
selection 

Accuracy on 
continuous 
feature 
selection 

M2A 3.3 7 3.3 
M2B 3.3 7 3.3 

 
T2 

(1000) 
M2C 3.3 21 3.3 
M3A 97.2 7 97.2 
M3B 97.2 7 97.2 

 
T3 

(1000) 
M3C 97.4 20 98.4 
M4A 57.6 9 69.5 
M4B 57.6 9 69.5 

 
T4 

(1000) 
M4C 55.2 17 55.1 
M5A 43.3 9 91.0 
M5B 43.3 9 91.0 

 
T5 

(1000) 
M5C 91.7 15 92.0 

 
A detailed analysis of the classification performance is 

provided in Tables V and VI. For each class, the number of 
instances  present in the test data is given in column 1. The 
true positive rates (TPRATE%) for each class are given in 
columns 3 through 6. The U2R class did not appear in the 
part of the data stream that was used for the experiments, so 
it is not shown in the tables. The results of Tables V and VI 
indicate that the NORMAL class is generally very easy to 
predict correctly and both methods of feature selection 
provide high TPRATES for this class. The PROBE class is 
also generally easy to predict correctly. However, fixed 
feature selection provides higher predictive performance for 
time period T4. The DOS class is very difficult to predict for 
time periods T2 and T4. For period T2 there are no correct 
predictions for DOS by any of the models for both feature 
selection methods. For period T4 the models which use 
fixed feature selection fail to make any correct predictions 
for DOS while two of the models which use continuous 

feature selection manage to achieve a TPRATE of 29.5% for 
the DOS class. 
 

TABLE V 
MODEL TPRATES FOR THE FIXED FEATURE SELECTION 

METHOD 
Naïve Bayes classification performance for fixed 
feature selection 

TPRATE% for class: 

Testing 
period 
(class counts 
in test 
dataset) 

Model 
NORMAL DOS PROBE R2L 

M2A 100 0  0 

M2B 100 0  0 

T2 
(NRM: 33 
DOS:   965 
R2L:    2   ) M2C 100 0  0 

M3A 98.4  100  

M3B 98.4  100  

T3 
(NRM: 539 
PRB:   461 ) 

M3C 95.2  100  
M4A 99.8 0 96.2 0 

M4B 99.8 0 96.2 0 

T4 
(NRM: 552 
DOS:    417 
PRB:     26 
R2L:       5 ) 

M4C 100 0 0 0 

M5A  43.3   

M5B  43.3   

T5 
(DOS: 1000) 

M5C  91.7   

 
TABLE VI 

MODEL TPRATES FOR THE CONTINUOUS FEATURE SELECTION 
METHOD 

 Naïve Bayes classification performance for continuous 
feature selection 

TPRATE% for class: Testing 
period 
(class counts 
in test 
dataset) 

Model 

NORMAL DOS PROBE R2L 

M2A 100 0  0 
M2B 100 0  0 

T2 
(NRM: 33 
DOS:   965 
R2L:    2   ) M2C 100 0  0 

M3A 94.8  100  
M3B 94.8  100  

T3 
(NRM: 539 
PRB:   461 ) 

M3C 97.0  100  
M4A 99.9 29.5 80.8 0 

M4B 99.9 29.5 80.8 0 

T4 
(NRM: 552 
DOS:    417 
PRB:     26 
R2L:       5 ) 

M4C 100 0 0 0 

M5A  91.0   

M5B  91.0   

T5 
(DOS: 1000) 

M5C  92.0   

 

V. CONCLUSIONS 

The main objective for the studies reported in this paper  
was to determine whether the use of continuous feature 
selection for the sliding window technique of stream mining 
based on Naïve Bayes classification leads to improved 
predictive performance. The experimental results reported in 
Section IV have indicated that for the dataset used in the 
experiments, continuous feature selection leads to improved 
predictive performance. It was pointed out in Section II that 
there is a need to employ fast methods of modeling for 
stream mining. A fast method of feature selection for Naïve 
Bayes stream mining has been presented in this paper. This 
method uses the same up-to-date data, stored in contingency 

Time  
and 
instance 
arrival 

Wi Ti 

Training instances for model 
in window Wi: 
 
MsA:  50,000 + (i-1)*1000 
 

Test 
instances in 
test period 
Ti: 
1,000 

MsB:  50,000  

MsB:  10,000  
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tables, for both feature selection and Naïve Bayes 
classification. 
 

APPENDIX 
 

Tables VII and VIII respectively show the feature-class 
contingency tables for the ProtocolType and Count features 
for the first 50,000 instances of the KDD Cup 1999 training 
dataset. Each numeric entry in a table cell shows the 
frequency of co-occurrence of one (feature-value, class- 
value) pair. 
 

TABLE VII 
CONTINGENCY TABLE FOR PROTOCOLTYPE AND CLASS 

Class value  
ProtocolType 
value NORMAL DOS PROBE R2L U2R 

icmp 195 10523 104 0 0 

tcp 36540 1003 238 61 5 

udp 1231 99 1 0 0 
 
 

TABLE VIII 
CONTINGENCY TABLE FOR COUNT AND CLASS 

Class value  Count 
value 
(bin) NORMAL DOS PROBE R2L U2R 

Bin1 37576 1082 313 61 5 

Bin2 242 61 10 0 0 

Bin3 24 4 10 0 0 

Bin4 35 11 7 0 0 

Bin5 30 6 3 0 0 

Bin6 45 5 0 0 0 

Bin7 14 10 0 0 0 

Bin8 0 7 0 0 0 

Bin9 0 7 0 0 0 

Bin10 0 10432 0 0 0 
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