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Abstract—In this paper, we show a simple new
method of solving first and second order nonlinear
differential equations in the form

a1y
′(t) + a0y(t) = f(t, y), t ≥ 0, (1)

y(0) = �0, (2)

and

ay′′(t) + by′(t) + cy(t) = g(t, y, y′), t ≥ 0, (3)

y(0) = �0, y
′(0) = �1, (4)

where a0, a1, a, b, c, �0, �0, �1 are given constants, and
f(t, y) and g(t, y, y′) are given nonlinear functions. By
substituting the given constants and functions, then
using an iteration method, solutions are easily ob-
tained. Moreover, some examples are shown exact
solutions.

Keywords: initial value problem, successive approxima-

tion, differential equation, volterra integral equation,

laplace transform

1 Introduction

Finding exact solutions of nonlinear initial value prob-
lems (IVPs) is a goal for mathematicians, engineers, and
scientists, and it plays an important role in real world ap-
plications. In recent years, first and second order nonlin-
ear IVPs were considered by many authors. For instance,
[1-2] used the Adomian decomposition method (ADM)
to solve nonlinear differential equations such as Duffing-
Vanderpole equation, [3-5] solved nonlinear IVPs by the
Laplace Adomian decomposition method (LADM), [6-7]
obtained approximate solutions by the method of differ-
ential transforms (DTM), and the variational iteration
methods (VIM) were used by many authors [8-9].

Although ADM, LADM and DTM are effective and fa-
mous methods for solving nonlinear equations, there are
limitations for using. For example, ADM, LADM and
DTM require infinite series to get solutions which some-
times it is difficult to investigate closed form solution from
infinite series. And we have to use some analytical meth-
ods to complete those schemes by inverse transformations
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of infinite series in order to obtain solutions. Further-
more, VIM needs Lagrange multiplier before using itera-
tion formula.

Recently, Sita [10] introduced an alternative method for
finding solutions of nonlinear higher order IVPs by con-
verting IVP into Volterra integral equation. Then by the
use of the successive approximation, a high accuracy so-
lution will be obtained.

However, in the work of [10], it is introduced in a general
form and requires the inverse Laplace transforms of some
functions in main results of [10]. Motivated by the above-
mentioned work, in this work, a new method needs no
transformation or linearization or Lagrange multiplier,
and it shows some formulas for solving the first order
IVP (1)-(2) and the second order IVP (3)-(4). A solution
is easily obtained by just having some basic knowledge
of integrations and substituting given constants into the
formula. Then an iterative method is needed to seek an
approximate or exact solution. Finally, some examples
establish that this alternative method is very simple and
high performance.

2 Basic idea of Laplace transforms

In this section, we are going to review some basic idea of
the Laplace transforms to use as important tools of our
main results.
Definition 2.1 The Laplace transform of a function f(t),
defined for all real numbers t ≥ 0, is the function F (s),
defined by

F (s) = ℒ{f(t)} =

∫ ∞
0

e−stf(t)dt.

Definition 2.2 Let the Laplace transform of f(t) is
ℒ{f(t)} = F (s), then we say that the inverse Laplace
transform of F (s) is f(t). Or it is defined by

ℒ−1{F (s)} = f(t).

Property 2.1 Let !, c1 and c2 be given constants.
(P1) Inverse Laplace transforms of some functions

ℒ−1{ 1

s2 + !2
} =

sin!t

!
, ℒ−1{ s

s2 + !2
} = cos!t,

ℒ−1{ 1

s2 − !2
} =

sinh!t

!
, ℒ−1{ s

s2 − !2
} = cosh!t.
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(P2) Linearity property

ℒ{c1f(t) + c2g(t)} = c1ℒ{f(t)}+ c2ℒ{g(t)},

ℒ−1{c1F (s) + c2G(s)} = c1ℒ−1{F (s)}+ c2ℒ−1{G(s)}.

(P3) Shifting property

ℒ{e!tf(t)} = F (s− !),

ℒ−1{F (s− !)} = e!tf(t).

(P4) Laplace transform of derivatives

ℒ{f ′(t)} = sℒ{f(t)} − f(0),

ℒ{f ′′(t)} = s2ℒ{f(t)} − sf(0)− f ′(0).

Definition 2.3 The convolution of f(t) and g(t) is de-
fined as

f(t) ∗ g(t) =

∫ t

0

f(x)g(t− x)dx.

Property 2.2 Properties of the convolution
(P5) f ∗ g = g ∗ f ,
(P6) ℒ−1{F (s).G(s)} = f ∗ g.
For more details about the method of Laplace transform,
see [11].

3 Main Results

3.1 Lemma

Lemma 3.1 Suppose that a�R+,and b, c,m, p�R. Let
� = b2 − 4ac, then the inverse Laplace transforms sat-
isfy the followings:

(H1) for � > 0,

ℒ−1{ ms+ p

as2 + bs+ c
} = k1e

�1t + k2e
�2t,

where

k1 =
(
√
�− b)m+ 2ap

2a
√
�

, k2 =
(
√
�+ b)m− 2ap

2a
√
�

,

�1 =

√
�− b
2a

, �2 =
−
√
�− b
2a

,

(H2) for � < 0,

ℒ−1{ ms+ p

as2 + bs+ c
} = e�t(c1 cos!t+ c2 sin!t),

where

� =
−b
2a
, c1 =

m

a
, c2 =

2ap− bm
a
√
∣�∣

, ! =

√
∣�∣

2a
.

Proof Since

ms+ p

as2 + bs+ c
=

m(s+ b
2a ) + (p− bm

2a )

a(s+ b
2a )2 + (c− b2

4a )

=
m

a
[

(s+ b
2a )

(s+ b
2a )2 + ( 4ac−b2

4a2 )
]

+(
2ap− bm

2a2
)(

1

(s+ b
2a )2 + ( 4ac−b2

4a2 )
).

By taking inverse Laplace transforms and using (P2), we
obtain

ℒ−1{ ms+ p

as2 + bs+ c
} = ℒ−1{m

a
[

(s+ b
2a )

(s+ b
2a )2 + ( 4ac−b2

4a2 )
]}

+ℒ−1{(2ap− bm
2a2

)
1

(s+ b
2a )2 + ( 4ac−b2

4a2 )
}.

By using (P3), we have

ℒ−1{ ms+ p

as2 + bs+ c
} = e

−bt
2a [

m

a
ℒ−1{ s

s2 + ( 4ac−b2
4a2 )

}]

+e
−bt
2a [(

2ap− bm
2a2

)ℒ−1{ 1

s2 + ( 4ac−b2
4a2 )

}].

Let � = b2 − 4ac > 0 and by using (P1), then

ℒ−1{ ms+ p

as2 + bs+ c
} = e

−bt
2a [

m

a
cosh

√
�

2a
t+ (

2ap− bm
a
√
�

) sinh

√
�

2a
t].

Since coshx = ex+e−x

2 and sinhx = ex−e−x
2 , we have that

ℒ−1{ ms+ p

as2 + bs+ c
} = (

(
√
�− b)m+ 2ap

2a
√
�

)e
√
�−b
2a t

+ (
(
√
�+ b)m− 2ap

2a
√
�

)e
√
−�−b
2a t.

On the other hand, by setting � < 0, we have that

ℒ−1{ ms+ p

as2 + bs+ c
} = e

−b
2a t[

m

a
cos

√
∣�∣

2a
t

+ (
2ap− bm
a
√
∣�∣

) sin

√
∣�∣

2a
t].

The proof is completed.

3.2 Theorems

Theorem 3.1 Suppose that a1�R
+,and a0, �0�R, and

f : [o,∞)×R→ R. A nonlinear initial value problem

a1y
′(t) + a0y(t) = f(t, y), t ≥ 0,

y(0) = �0,

is equal to the Volterra integral equation as

y(t) = �0e
−a0
a1

t +
1

a1
e
−a0
a1

t
∫ t

0

e
a0
a1
xf(x, y(x))dx.
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Theorem 3.2 A nonlinear initial value problem (1)- (2)
has a closed form solution if

y(t) = lim
i→∞

yi(t),

where

yi+1(t) = �0e
−a0
a1

t +
1

a1
e
−a0
a1

t
∫ t

0

e
a0
a1
xf(x, yi(x))dx,

for i = 0, 1, 2, ..., and y0(t) = �0e
−a0
a1

t.

Theorem 3.3 Suppose that a�R+,and b, c, �0, �1�R, and
g : [o,∞) × R2 → R. Given � = b2 − 4ac, a nonlinear
initial value problem

ay′′(t) + by′(t) + cy(t) = g(t, y, y′), t ≥ 0,

y(0) = �0, y
′(0) = �1,

is equal to the Volterra integral equation as followings:
Let m = a�0 and p = a�1 + b�0,
(A1) for � > 0,

y(t) = k1e
�1t + k2e

�2t

+
1√
�

∫ t

0

(e�1(t−x) − e�2(t−x))g(x, y(x), y′(x))dx,

where

k1 =
(
√
�− b)m+ 2ap

2a
√
�

, k2 =
(
√
�+ b)m− 2ap

2a
√
�

,

�1 =

√
�− b
2a

, �2 =
−
√
�− b
2a

,

(A2) for � < 0,

y(t) = e�t(c1 cos!t+ c2 sin!t)

+
2√
∣�∣

∫ t

0

e�(t−x) sin!(t− x)g(x, y(x), y′(x))dx,

where

� = −b
2a , c1 = m

a , c2 = 2ap−bm
a
√
∣�∣

and ! =

√
∣�∣

2a .

Theorem 3.4 A nonlinear initial value problem (3)- (4)
has a closed form solution if

y(t) = lim
i→∞

yi(t),

where i = 0, 1, 2, ...,
(B1) for � > 0, and y0(t) = k1e

�1t + k2e
�2t,

yi+1(t) = k1e
�1t + k2e

�2t

+
1√
�

∫ t

0

(e�1(t−x) − e�2(t−x))g(x, yi(x), y′i(x))dx,

(B2) for � < 0, and y0(t) = e�t(c1 cos!t+ c2 sin!t),

yi+1(t) = e�t(c1 cos!t+ c2 sin!t)

+
2√
∣�∣

∫ t

0

e�(t−x) sin!(t− x)g(x, yi(x), y′i(x))dx.

3.3 Proofs of Theorems

A proof of Theorem 3.1
Consider the differential equation (1), and by taking
Laplace transforms and using (P2) and (P4), we have

a1ℒ{y′(t)}+ a0ℒ{y(t)} = ℒ{f(t, y)},

a1(sℒ{y} − y(0)) + a0ℒ{y} = ℒ{f(t, y)}.

From the initial condition (2), we get that

(a1s+ a0)ℒ{y} = a1�0 + ℒ{f(t, y)},

i.e.,

ℒ{y} =
a1�0

a1s+ a0
+
ℒ{f}

a1s+ a0
.

By taking inverse Laplace transforms and using (P2) and
(P6), we have

y(t) = ℒ−1{ a1�0

a1s+ a0
}+ ℒ−1{ ℒ{f}

a1s+ a0
}

= �0ℒ−1{
1

s+ a0
a1

}+ f ∗ ℒ−1{ 1

a1s+ a0
}

= �0e
−a0
a1

t + f ∗ 1

a1
e
−a0
a1

t.

This completes the proof by the definition of convolution
and (P5).

A proof of Theorem 3.3
Consider the differential equation (3), and by taking
Laplace transforms and using (P2) and (P4), we have
that

aℒ{y′′(t)}+ bℒ{y′(t)}+ cℒ{y(t)} = ℒ{g(t, y, y′)},

a(s2ℒ{y} − sy(0)− y′(0)) + b(sℒ{y} − y(0)) + cℒ{y}
= ℒ{g(t, y, y′)}.

From the initial condition (4), we get that

ℒ{y} =
ms+ p

as2 + bs+ c
+
ℒ{g(t, y, y′)}
as2 + bs+ c

,

where m = a�0 and p = a�1 + b�0.
By taking the inverse Laplace transforms and using (P2),
we have

y(t) = ℒ−1{ ms+ p

as2 + bs+ c
}+ ℒ−1{ ℒ{g}

as2 + bs+ c
}. (5)

Consider the second term of Eq.(5), and using (P5), (P6)
and (H1), and by setting m = 0, p = 1 and � > 0, we
have

ℒ−1{ L{g}
as2 + bs+ c

} = g ∗ ℒ−1{ 1

as2 + bs+ c
}

= g ∗ 1√
�

(e�1t − e�2t).
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Moreover, by using (H2) with m = 0 and p = 1, for � < 0,
we have

ℒ−1{ L{g}
as2 + bs+ c

} = g ∗ ℒ−1{ 1

as2 + bs+ c
}

= g ∗ 2√
∣�∣
e�t sin!t.

Finally, we complete the proof by Definition 2.3 and
Lemma 3.1.

Proofs of Theorems 3.2 and 3.4
The proofs are completed by the successive approximate
theorem in [10].

4 Examples

Example 1

y′ − y = −2ty; y(0) = 1, (6)

exact solution : y(t) = et−t
2

.

By Theorem 3.1, we convert Eq.(6) to the integral equa-
tion as

y = et − 2et
∫ t

0

e−xxy(x)dx.

To find a solution, we use Theorem 3.2. Thus

yi+1 = et − 2et
∫ t

0

e−xxyi(x)dx,

where i = 0, 1, 2, ... and y0(t) = et.
So we get

y1(t) = et − 2et
∫ t

0

e−xxexdx = et(1− t2),

y2(t) = et − 2et
∫ t

0

e−xxex(1− x2)dx = et(1− t2 +
t4

2
),

y3(t) = et(1− t2 +
t4

2!
− t6

3!
),

y4(t) = et(1− t2 +
t4

2!
− t6

3!
+
t8

4!
),

...

yi(t) = et(1− t2 +
t4

2!
+ ...+ (−1)i

t2i

i!
),

lim
i→∞

yi(t) = y(t) = ete−t
2

= et−t
2

.

This is an exact solution.

Example 2

y′′ − 2y′ = y2 − e4t; y(0) = 1, y′(0) = 2, (7)

exact solution : y(t) = e2t.

We use Theorem 3.3 to convert Eq.(7) to the integral
equation as

y = e2t +
1

2

∫ t

0

(e2(t−x) − 1)(y2(x)− e4x)dx.

And we use Theorem 3.4 to propose an iteration formula.
So we get

yi+1(t) = e2t +
1

2

∫ t

0

(e2(t−x) − 1)(y2i (x)− e4x)dx,

where i = 0, 1, 2, ... and y0(t) = e2t.
Hence, we see that

y1(t) = e2t +
1

2

∫ t

0

(e2(t−x) − 1)(e4x − e4x)dx = e2t,

y2(t) = e2t +
1

2

∫ t

0

(e2(t−x) − 1)(e4x − e4x)dx = e2t,

...

yi(t) = e2t,

lim
i→∞

yi(t) = y(t) = e2t.

Example 3 Vanderpole Oscillator Problem

y′′+y′+y+y2y′ = 2 cos t−cos3 t; y(0) = 0, y′(0) = 1, (8)

exact solution : y(t) = sin t.

From Eq.(8), we have

y′′ + y = 2 cos t− cos3 t− (1 + y2)y′. (9)

By Theorem 3.3, we convert Eq.(9) into the integral
equation and use Theorem 3.4. Then we have

yi+1 = sin t

+

∫ t

0

sin(t− x)(2 cosx− cos3 x− (1 + y2i (x))y′i(x))dx,

where i = 0, 1, 2, ... and y0(t) = sin t.
Thus we have

yi(t) = sin t,

and
lim
i→∞

yi(t) = y(t) = sin t.

5 Conclusions

A new simple way for solving a nonlinear IVP was pro-
posed. It provided a formula of a solution by just using
a basic knowledge of integration. Some examples were
given to show the effectiveness of a new method.
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