
 

  

Abstract—The paper proposes a pair of novel and robust 

nonlinear programming (NLP) approaches to furnish within a 

single step a maximum collapse load bound in one case and a 

minimum collapse load bound in the other of a rigid perfectly 

plastic structure subject to interval applied loads and/or 

material capacities. The schemes adopt mathematical 

programming techniques to reformulate each of the two 

interval formulations as a standard NLP problem that can be 

efficiently solved by any available NLP code. Such techniques 

do not require combinatorial search procedures as typically 

suggested in the literature. The accuracy of the computed 

results is validated, to some extent, through comparisons with 

Monte Carlo simulations. 

 
Index Terms—convex model, interval analysis, limit analysis, 

nonlinear programming, plasticity 

I. INTRODUCTION 

t is a well-known that uncertainties exist in the 

specification of properties for structural design purposes. 

Obvious instances are those caused by material capacities, 

externally applied load regimes and structural geometry. 

Ignoring such effects can lead to either overestimated or 

underestimated strength estimation of the structure under 

consideration. There is also considerable concern regarding 

the applicability of existing analysis methods developed on 

the ubiquitous assumption that uncertain data can be 

approximated using their average, maximum or minimum 

values [1]. 

A better approach, in the absence of full probabilistic 

information, is to incorporate the influence of uncertainties 

through the concept of interval analysis or so-called “convex 

model” [2]. The uncertain parameters are presumed to be 

nonprobabilistic, and are deemed to vary independently 

within specified ranges. The method can provide engineers 

with simple yet fruitful preliminary information through the 

calculation of approximate bounds on some key quantities, 

before any probabilistic schemes are implemented, if 

 
Manuscript received February 28, 2013; revised April 08, 2013. This 

work was supported by an Australian Research Council. 

S. Tangaramvong is with School of Civil and Environmental 

Engineering, The University of New South Wales, Sydney, NSW 2052, 

Australia (corresponding author—phone: +61 2 9385 6223; fax: +61 2 

9385 6139; e-mail: stangaramvong@gmail.com). 

F. Tin-Loi is with School of Civil and Environmental Engineering, The 

University of New South Wales, Sydney, NSW 2052, Australia (e-mail: 

f.tinloi@unsw.edu.au). 

W. Gao is with School of Civil and Environmental Engineering, The 

University of New South Wales, Sydney, NSW 2052, Australia (e-mail: 

w.gao@unsw.edu.au). 

possible. 

The paper focuses on the use of interval analysis in 

computing collapse load bounds for ductile perfectly plastic 

structures. We propose a pair of novel nonlinear 

programming (NLP) approaches to efficiently compute, 

within a single step, a maximum collapse load limit in one 

case and a minimum collapse load in the other of the 

structure subject to interval applied loads and/or interval 

material capacities. The governing formulations, based on 

the classical deterministic plastic limit analysis relations, 

lead to linear programming problems with interval 

coefficients (LPICs) [3]. To solve the computationally 

challenging LPICs, we reformulate them as NLP problems 

that can be processed directly using any available NLP code. 

The main feature of this approach is the elimination of any 

combinatorial search procedures, as commonly suggested in 

the literature. One of a number of successfully solved 

examples is provided to illustrate applicability of the 

proposed methods. The accuracy of the computed results is 

validated, to some extent, using computationally expensive, 

Monte Carlo simulated runs. 

A word regarding notation is in order. Vectors and matrix 

quantities are indicated in bold. A real vector x of size m is 

indicated by x ∈ ℜm
 and a real m × n matrix A by 

A ∈ ℜm × n
. For brevity, a vector of functions f(x) : ℜm

 → ℜn
 

is simply written as f ∈ ℜn
. 

II. DETERMINISTIC PLASTIC LIMIT ANALYSIS 

Classical plastic limit analysis determines, within a single 

step, the maximum load capacity at collapse of structures 

made of rigid perfectly plastic materials, and subject to 

deterministic input parameters (see e.g. [4]). The approach is 

based on the two well-known lower (static) and upper 

(kinematic) bound theorems that can be mathematically cast 

as a pair of standard linear programming (LP) problems for 

a discrete model constructed within a standard finite element 

framework and a piecewise linearized yield surface 

approximation [5-7]. 

In terms of standard notation and description [5-7], the 

deterministic static limit analysis problem in variables (α,Q) 

can be written as follows: 
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It is assumed that the adopted structural system has been 

suitably discretized into n elements, d degrees of freedom, m 

generalized stresses/strain rates and y yield functions. 

The static limit analysis formulation given in (1) is a 

standard LP problem. It maximizes the statically admissible 

load α subjected to equilibrium and plasticity constraints. 

More explicitly, the linear equilibrium in (1.1) between 

generalized stresses Q ∈ ℜm
 and externally applied forces 

fα + fd ∈ ℜd
 is described through a constant compatibility 

matrix C ∈ ℜm × d
, where α denotes a load (scalar) 

multiplier, f and fd are basic variable and fixed applied 

forces, respectively. The plasticity conditions are expressed 

in (1.2) through a normality matrix N ∈ ℜm × y
 and yield 

capacities r ∈ ℜy
, where the matrix N collects all unit 

normal directions to the yield surfaces [5-7]. 

The dual or kinematic problem in variables ( u& , λ& ) is as 

follows (this, in fact, can be constructed without knowledge 

of the mechanical problem using the well-known duality 

property of LP theory): 
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For this pair of LP problems (1) and (2) the “duality” 

property that defines an identical value of the two respective 

optimal objective functions (if they exist), namely 

 

.d λruf &

&

TT +−=α  (3) 

 

In our specific problem, the optimal solutions of the two LP 

problems (2) and (3) represent the collapse loads. 

Mechanically, the LP problem (2) describes the kinematic 

limit analysis counterpart which minimizes the plasticity 

dissipation subject to constraints expressing positivity of the 

external work, and linear compatibility between nodal 

displacement rates dℜ∈u&  and plastic multiplier rates 
yℜ∈λ& . The optimal kinematic variables u&  and λ&  can be 

extracted as by-products from Lagrange multipliers 

associated with the solutions of the primal LP problem (1). 

III. INTERVAL PLASTIC LIMIT ANALYSIS 

The main focus of this section, in fact of the paper, is to 

incorporate the effects of uncertain inputs into the classical 

plastic limit analysis framework. More explicitly, we 

consider the uncertainties caused by externally applied 

forces f and fd and/or plastic capacities r that are still 

deterministic but their values can independently vary within 

specified interval ranges [2]. In essence, we define rrr ≤≤ , 

fff ≤≤  and dd fff ≤≤  as their respective 

(componentwise) convex bounds, namely 
lll

rrr ≤≤  for 

l = 1,…,y; 
kkk

fff ≤≤  and 
k

d
k

d
k

d
fff ≤≤  for 

k = 1,…,d; where overbar and underscore symbols denote 

upper and lower bound values associated with the interval 

parameters. 

The proposed approaches, if successfully processed, 

provide estimates of two extreme, namely maximum α  and 

minimum α , collapse load limit solutions and associated 

parameters for the interval quantities. 

The formulation adopted to capture the maximum 

collapse load α  can be straightforwardly formed from the 

deterministic static limit analysis counterpart given in (1) as 

follows: 
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Problem (4) is a bi-level optimization problem consisting of 

an inner-level maximization and an outer-level 

maximization. In particular, an inner-level problem 

maximizes α subjected to the constraints describing static 

limit analysis problem (1), whilst an outer-level problem 

maximizes the load among all legal collapse load solutions 

influenced by the interval forces and plastic capacities. 

Successfully processing (4) yields the “most favorable” 

solution of the interval static maximization [3]. 

An alternative formulation adopted to find α  and 

founded on the deterministic kinematic counterpart in (2) 

reads: 

 

.                                  

                                  

1  subject to                 

           min                 

,                  

,                  

,   subject to

         max

T

TT

,

TT

,,,

0λ

0λNuC

uf

λruf

fff

fff

rrr

λruf

λu

ffλu

≥

=+−

=

+−

≤≤

≤≤

≤≤

+−

&

&

&

&

&

&

&
&

&
&

&
&

d

ddd

d
d

 (5) 

 

The bi-level problem (5) minimizes plastic dissipation 

subject to the constraints expressing the kinematic limit 

analysis problem (2) in an inner-level optimization, and at 

the same time maximizes the dissipation among all possible 

plastic dissipation solutions under the interval parameters in 

an outer-level optimization. Successfully solving (5) 

captures the “least favorable” solution of an interval 

kinematic minimization [3] and hence the maximum collapse 

load limit α . 
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An important property underpinning the two interval limit 

analysis problems (4) and (5) is that the optimal maximum 

collapse load bound α  obtained from the most favorable 

solution of an interval static maximization problem is 

identical to that from the least favorable solution of the 

interval kinematic minimization problem. 

The well-known duality property of LP theory implies that 

for any specified values of applied forces and plastic 

capacities an identical collapse load limit can be obtained 

from the optimal solutions of the two deterministic static and 

kinematic problems (1) and (2). With a similar range of 

interval inputs, the two interval counterparts (4) and (5) 

contain a similar feasible set of all possible collapse load 

solutions generated by their inner-level optimization, such 

that the outer-level optimization selects a maximum. 

Therefore, the above statement holds. 

To compute the minimum collapse load α , the interval 

formulation formed from the deterministic static LP 

problem (1) takes the form of the following bi-level 

optimization problem: 
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Clearly, (6) calculates in an outer-level optimization a 

minimum load among all possible collapse load solutions 

generated by an inner-level maximization problem. The 

optimal result of (6) represents the least favorable solution 

of the interval static maximization [3]. 

The interval kinematic formulation founded on the direct 

deterministic counterpart (2) to capture α  is written as: 
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The optimal result of (7) represents the most favorable 

solution of the interval kinematic minimization [3]. 

Similarly, the duality property of LP theory stated for the 

maximum collapse load case in both (4) and (5) is valid for 

the minimum collapse load case in (6) and (7). Therefore, 

the optimal minimum collapse limit computed from the least 

favorable solution of the interval static maximization 

problem is identical to that from the most favorable solution 

of the interval kinematic minimization problem. 

For a compact representation of the interval problems (4) 

to (7), we substitute in the two LP problems (1) and (2) the 

direct deterministic counterparts r, f, and fd with the new 

respective interval symbols, i.e. ],[ rr , ],[ ff  and ],[ dd ff , 

satisfying their specified interval ranges, i.e. rrrr ≤≤ ],[ , 

ffff ≤≤ ],[  and dddd ffff ≤≤ ],[ . This leads to two 

generic interval limit analysis formulations, namely an 

interval static limit analysis problem in variables (α,Q): 
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and an interval kinematic limit analysis problem in 

variables ( u& , λ& ): 
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Problems (8) and (9) are known in the mathematical 

programming literature as LPICs [3], where the general term 

“interval coefficients” describes the interval data in the 

right-hand-side and/or coefficients of variables. 

The study of LPICs and their solution algorithms have 

increasingly attracted a number of recent research work (see 

e.g. [2,3,8,9]). An LPIC embodies the formulation of 

numerous applications in operation research and engineering 

mechanics that involve nonprobabilistic uncertain 

information (e.g. see [2,8]). Finding exact bounds to the 

solution of general LPICs is very difficult in view of their 

combinatorial nature. Most of the available techniques (e.g. 

[3,9]) suffer from the need to perform computationally 

expensive exhaustive searches. Unfortunately, simply 

resorting to such schemes as deterministic Monte Carlo 

simulations often fails to capture the exact (optimal) bound 

solutions. 

IV. DIRECT NLP APPROACHES 

This section proposes a pair of novel NLP algorithms that 

can efficiently compute the two extreme bound solutions α  

and α  without the need to perform any combinatorial 

search procedures. The approaches take advantage of the 

important duality property underpinning interval limit 

analysis formulations described, in that it enables the 

maximum α  and minimum α  collapse load solutions to be 

computed from the counterparts of the interval static 

maximization problem (8) and the interval kinematic 
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minimization problem (9), respectively. 

By adopting a maximum value range concept [9], the 

maximum collapse limit α  can be obtained by replacing 

],[ rr  in the interval inequalities (8.2) with their upper bound 

values r . To automate a choice of interval applied forces 

],[ ff  and ],[ dd ff , two respective additional variables 

µµµµ = [µ 
1
,…,µ 

d
] ∈ ℜd

 and ββββ = [β 
1
,…,β 

d
] ∈ ℜd

 are 

introduced. In essence, for each component k the two 

interval parameters ],[
kk

ff  and ],[
k

d

k

d
ff  are replaced by 

the associated deterministic reformulations: 

 

,10  , ≤≤∆+ kkkk
ff µµ  (10) 

,10  , ≤≤∆+ kk
d

kk

d
ff ββ  (11) 

 

where 
kkk

fff −=∆  and .
k

d

k

d
k

d fff −=∆  Such 

deterministic substitution of interval applied loads accepts 

not only the interval values that can arbitrarily lie within the 

intervals, namely 0 < µ 
k
 < 1 and 0 < β 

k
 < 1, but also those 

explicitly on the extreme bounds, i.e. µ 
k
 = 1 (or β 

k
 = 1) at 

an upper bound 
k

f  (or 
k

df ); and µ 
k
 = 0 (or β 

k
 = 0) at an 

lower bound 
k

f  (or 
k

d
f ). 

Therefore, the above implementation enables computation 

for the maximum collapse limit α  to be obtained by 

processing the following standard NLP problem formed 

from the static LPIC (8) in variables (α,Q,µµµµ,ββββ): 
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Successfully processing the optimal solution of the NLP 

problem (12) is guaranteed to provide the global maximum 

collapse load limit α  to the original LPIC (8). 

Likewise, the algorithm for finding the minimum collapse 

load bound α  employs a minimum value range concept [9] 

such that the interval plastic capacities ],[ rr  can be a priori 

set to their lower bound values r . The two interval applied 

forces ],[ ff  and ],[ dd ff  are replaced by their respective 

deterministic reformulations in (10) and (11). Thus, to 

compute the minimum collapse load limit α  the following 

standard NLP problem in variables ( u& , λ& ,µµµµ,ββββ) is solved: 
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Successfully processing the optimal solution of the NLP 

problem (13) is guaranteed to provide the global minimum 

collapse load limit α  to the original LPIC (9). 

Some useful remarks associated with the proposed pairs 

of NLP approaches in (12) and (13) are mentioned in the 

following: 

1) Whilst for both the NLP problems (12) and (13) a priori 

determined values of plastic capacities either to r  in 

(12) or to r  in (13) are not strictly required, they often 

reduce the computational effort involved. 

2) The interval reformulation takes the form of a standard 

NLP problem that can be robustly and efficiently solved 

using any available general purpose NLP code. 

3) Such NLP problems can be processed within a similar 

mathematical programming framework to classical 

deterministic limit analysis problems. Optimal interval 

values and collapse mechanisms corresponding to each 

of the collapse load bounds α  and α  can be extracted 

as by-products. 

4) The proposed NLP schemes offer greater flexibility, and 

hence are suitable for possible extension to more 

sophisticated yet important interval analysis problems, 

such as those incorporating other plasticity models. 

V. ILLUSTRATE EXAMPLE 

The application and efficiency of the proposed NLP 

approaches in computing the optimal extreme collapse load 

limits α  and α  of structures subjected to interval applied 

loads and plastic capacities are illustrated in this section. 

The NLP algorithms were programmed as MATLAB 

codes that were linked with GAMS, an acronym for the 

General Algebraic Modeling System [10], mathematical 

modeling framework through use of a MATLAB-GAMS 

interfacing software [11]. The specific NLP solver used is 

GAMS/CONOPT [12]. 

Some key advantages of GAMS [10], it is worthwhile 

mentioning, are the availability of a number of industry 

standard mathematical programming solvers, ability to 

warm-start successive solves, simplicity of modeling, a 

facility for large-size data structure manipulation and an 

automatic differentiation capability. GAMS and all of its 

solvers are freely accessible through the NEOS server over 

the internet [13]. 

The computing times were not reported since each NLP 

solve only took some seconds to furnish the result. 
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We consider a nine story portal frame in Fig 1, previously 

employed to investigate the influences of material softening 

behaviors and geometry nonlinearities [14,15]. 

We incorporate the uncertainties caused by interval 

external forces and material capacities, albeit still assuming 

small deformations and rigid perfectly plastic materials. The 

interval loads are applied only at the nodal points within a 

global axis system, where each nodal loading magnitude 

varies independently within its specified interval range. 

More specifically, the frame was subjected simultaneously 

to the interval vertical variable forces of [−6.6α,−5.4α] kN 

and various lateral variable loads, namely [0.9α,1.1α], 

[1.8α,2.2α] and [2.7α,3.3α] kN, as shown in Fig 1. 

 

[0.9α,1.1α]

[0.9α,1.1α]

[0.9α,1.1α]

[1.8α,2.2α]

[1.8α,2.2α]

[1.8α,2.2α]

[2.7α,3.3α]

[2.7α,3.3α]

[2.7α,3.3α]

10@2m = 20m

5
m

8
@

4
m
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 3

2
m

 
 

Fig 1.  Nine story portal frame. 
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Fig 2.  Piecewise linear hexagonal yield model. 

 

Material properties employed were rigid perfectly plastic 

steel sections: 400WC328 for all columns, Q2u = 1988 kNm, 

Q1u = 11704 kN; and 460UB82.1 for all beams, 

Q2u = 552 kNm, Q1u = 3150 kN, where Q2u and Q1u are 

flexural and axial plastic nominal capacities of each member 

end, respectively. Moreover, for each element the flexural 

capacities of two plastic hinges were assumed to be 

identical. For these hinges, a widely accepted (for a standard 

I-section) hexagonal piecewise linear yield locus [14] in 

Fig 2 was adopted throughout. 

The interval plastic capacities represent an interval size 

variation of [0.9,1.1] that still maintains a homothethic 

hexagonal yield shape of Fig 2. Obviously, a size variation 

of 1 denotes a nominal value. 

The frame structure was discretized into 126 elements, 

93 nodes, 261 degrees of freedom, 378 generalized 

stresses/strains and 1512 yield functions. 

Firstly, the NLP problem (12) was successfully solved 

within a single step to obtain the optimal maximum collapse 

limit of α  = 114.55. The corresponding collapse 

mechanism is displayed in Fig 3a. 

Then, the optimal minimum collapse limit of α  = 76.68 

was computed directly from the NLP problem (13). The 

collapse mechanism associated with this α  is depicted in 

Fig 3b. Incidentally, hinge dispositions of the two optimal 

solutions α  and α  are identical. 

The above results α  and α  are compared with those 

(approximately) found from 100,000 Monte Carlo 

simulations. The Monte Carlo runs reported α  = 99.06 and 

α  = 85.26. These values, to some extent, validate the 

accuracy of the proposed NLP approaches. Clearly, such 

simulation schemes provided a larger value of α  and at the 

same time a smaller value of α . 

 

(a) (b)

 
 

Fig 3.  Collapse mechanisms (a) maximum collapse limit and (b) minimum 

collapse limit; • denotes plastic hinge. 

 

Simply assuming nominal or average values of the 

interval applied loads and plastic capacities enabled the 

classical deterministic limit analysis problem (1) to be 

solved. The computations reported a collapse load solution 

of α = 93.72 that is some 18% less and 22% greater than the 
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two optimal α  and α , respectively. 

VI. CONCLUDING REMARKS 

Robust and efficient NLP approaches have been proposed 

to by-pass traditional, often computationally expensive, 

combinatorial search procedures in handling the influences 

of uncertain, nonprobabilistic but interval, inputs. In 

essence, the classical limit analysis approach for rigid 

perfectly plastic structures has been extended to 

accommodate interval applied loads and/or plastic 

capacities. 

In the presence of interval quantities, the paper has 

developed a pair of novel NLP techniques that can provide 

the optimal maximum collapse load limit in one case and the 

optimal minimum collapse load limit in the other. 

A number of numerical examples motivated by practical 

engineering structures, one of which has been provided in 

this paper, have been successfully processed using the 

proposed approaches. The computing efforts in obtaining 

each of the optimal bound solutions are as small as those 

required when processing a traditional deterministic limit 

analysis counterpart, thereby illustrating the efficiency of the 

developed schemes. The accuracy of the reported results has 

partially been validated by Monte Carlo simulated runs. 

The present methods can lead to useful extensions in 

incorporating other sources of uncertainties (which are 

difficult to handle) mainly related to nonlinear interval 

functions, such as geometric imperfections and nonlinear 

yield models. 
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