
 

  
Abstract—A transient phase field model is developed of 

droplets and bubbles in viscous fluids subject to an external 
electric field. The model is transient and fully three-dimensional. 
It is based on the explicit finite difference solution, enhanced by 
parallel computing, of the coupled nonlinear governing 
equations for the electric field, the fluid flow field and free 
surface deformation. The effect of mesh size and interfacial 
thickness on numerical accuracy and stability of the phase field 
modeling is studied. The phase field model is validated with the 
Taylor theory for the deformation of a single dielectric droplet 
in electric fields. Computed results show that the deformation of 
a leaky dielectric droplet undergoes various different 
deformation stages before reaching the equilibrium oblate 
shape, which is caused by the free charge relaxation near the 
fluid-fluid interface. Also, the deformation and rising speed of 
the bubble are affected by the applied electric field in both 
magnitude and direction. For a rising bubble in a horizontal 
electric field, it rises slowly as a result of a larger drag caused by 
electric-stretching along the horizontal electric field. In 
comparison with the vertical field, the indentation on the bubble 
base starts earlier but grows more slowly after an initial period. 
The bubble deformation and fluid flow structure in a horizontal 
field are three dimensional. 
 

Index Terms—phase field method, leaky dielectric model, 
electrohydrodynamics, two phase flow, fully 3D modeling 
 

I. INTRODUCTION 
nderstanding of the behavior of bubbles and droplets in 
electric fields is of great importance to a wide range of 

electrically-assisted thermal fluids systems. Studies on the 
behavior of fluids as affected by an external electric field, 
which falls into the category of electrohydrdynamics, started  
with Gilbert [1] in the 17th century, who observed the conical 
shape upon placing a charged rod above a sessile drop. This 
was followed by the work of Lord Rayleigh [2] on the 
deformation and the bursting of charged drops in electric 
fields. A poorly conducting liquid droplet in an electric field 
is known now to be better described within the framework of 
the leaky dielectrics [3], [4]. Over the last decade, there has  
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been considerable interest in the EHD flows because of its 
wide spread industrial applications, such as coating flows [5],  
transport of small liquid samples in microfluidics [6], various 
applications that use the concept of the lab-on-a-chip [7] and 
pattern formation in soft lithography [8]-[11]. 

As with other complex flow problems, only a limited 
number of the EHD flow problems within an idealized setting 
can be solved analytically. Numerical simulations often are 
required to obtain solutions for the flow systems involving 
two fluids with different properties. For these two phase flow 
problems, the presence of the free surface poses a numerical 
challenge, for which various methods have been developed. 
Some popular numerical solution schemes include the level 
set method [12], [13], the volume of fluid method [14]-[16], 
and the front tracking method [17]. The phase field method, 
which is based on the coarse-grain averaging concept from 
statistical mechanics, has recently emerged as a useful vehicle 
to study the two phase flow problems [18]-[20]. A salient 
feature of the phase field based approach lies in its treatment 
of a moving or free surface as a thin molecular diffuse layer, 
thereby enabling a nanoscaled description of the collective 
behavior of molecules within the interface layer. Thus, within 
the framework of the phase field modeling, a sharp fluid-fluid 
interface is represented by a narrow layer in which the fluids 
may mix. The tracking of the interface is realized by a 
conserved order parameter (or the phase field parameter) that 
varies continuously over the thin interfacial layer but 
otherwise mostly uniform in the bulk fluid phases [21].  

Computational modeling of two phase flows in electric 
fields has been reported in literature. Feng [22] calculated the 
equilibrium shape of a leaky dielectric droplet in an electric 
field by employing the Galerkin finite element method, 
coupled with the spine-parameterization of free surface 
boundaries. The scheme may work well for a 2D problem, but 
extension of it to 3D can be rather challenging. Sherwood [23] 
presented a boundary integral approach to model the large 
deformation of a droplet with finite conductivity in a creeping 
flow field. The model is capable of describing the drop 
breakup caused by either the electric stress or the mechanical 
stress due to the fluid motion. The EHD two phase flows have 
been studied recently using the level set and volume of fluid 
methods [24], and a front tracking/finite volume method [25], 
the latter also including various electrical property models 
(leaky dielectric, perfect dielectric, constant charged model) 
for the fluids. Recently, a phase field model was developed 
[26] for the 2D axisymmetric EHD flows. 

This paper presents a 3D phase field model for the EHD 
two phase flows involving bubbles or droplets in applied 
electric fields. While 2-D models have been used often, there 
appears to be little information available on 3D models based 
on the phase field approach for the EHD two phase flow 
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problems. The need for a 3D model cannot be 
overemphasized, because many electrically-assisted thermal 
fluids systems are fully three-dimensional. For example, an 
EHD patterning process recently developed for top-down 
nanofabrication of functional nanostructures involves the 
evolving free surfaces that are complex and three-dimensional 
in nature [11], [27]. Other cases such as the 
electro-coalescence of multiple droplets would also call for a 
full 3D representation. In what follows, the mathematical 
formulation and numerical development of the phase field 
model for the 3D EHD flows of leaky dielectric fluids are 
described.  The computed results of 3D EHD two flows are 
selected from the examples of a deforming liquid drop and a 
rising bubble in electric fields. 

II. MATHEMATICAL FORMULATIONS 

A. Phase field equations 
In phase field description, the free energy density is 

represented by the phase parameter C, and the form of energy 
f : [0, 1] → R is taken as 

( ) ( )2 21 21 1 1
2 4

f C C C Cξγα ξ γα−= ∇ + − ,        ΩT : =Ω ×(0,T)          (1) 
where Ω is a bounded domain in R3, with a Lipschitz 
boundary ∂Ω, and C is the phase parameter, with the values of 
C=1 and C=0 corresponding to the two distinctive phases. 
Also, in the above equation, γ stands for surface tension, ξ 
measures the interface thickness and 6 2α =  is a constant 
[28]. The first term in (1) accounts for the excess free energy 
due to the inhomogeneous distribution of the volume fraction 
in the interface region, whereas the second term represents the 
bulk energy density [29]. 

The Cahn-Hilliard equation with convection is employed 
here to describe the evolution of the phase field parameter C 
[20], 

( ) 0C u C M
t

φ∂
+ ⋅∇ − ∇ ⋅ ∇ =

∂
 ,                          ΩT                           (2) 

where u  represents the fluid velocity, φ = δf/δC the chemical 
potential, and M the phase field mobility.  

B. Electric field equations 
Within the framework of electrohydrodynamics, the 

Poisson equation may be used to describe the electric field 
distribution,  

( )( )0
e

r C Vε ε ρ∇ ⋅ ∇ = −                         ΩT                           (3) 

where ε0 is the permittivity of vacuum, εr(C) the dielectric 
constant, V the electric potential, and ρe the free charge 
density.  

The free charge conservation can be expressed as [30], 

( )( )
e

eu C E
t

ρ ρ σ∂
+ ⋅∇ = −∇ ⋅

∂



                 ΩT                          (4) 

where σ denotes the electrical conductivity, and E V= −∇


 is 
the electric strength. The second term on the left represents 
the transport of the free charges by convection, the term on the 
right stands for the transport by electromigration and the 
diffusion effect is neglected here [30]. 

Two limiting cases of (4) may be considered. First, if the 
time scale of charge relaxation 0 rtσ ε ε σ= is much smaller 
than the time scale of the flow tc = Lc/Uc (Lc being the length 
scale, and Uc the characteristic velocity), then (4) reduces to 

( )( ) 0C Vσ∇ ⋅ ∇ =                                  ΩT                          (5) 
Second, for poorly conductive materials, tσ>>tc. Thus, the free 

charge may be neglected and a pure dielectric model is 
sufficient to describe the electric field [25], [26]. For this 
limiting case, (4) becomes redundant, and (3) recovers to the 
Laplace equation.  

C. Fluid flow equations 
The flow field is described by the governing equations of 

mass and momentum conservation with momentum sources 
from the electric field and interfacial energy. Both phases are 
considered to be incompressible. Hence the mass 
conservation over the whole simulation domain, including 
both fluid phases and their interface, can be expressed as [28], 

0u∇ ⋅ =
                                              ΩT                          (6) 

In the EHD system, the electric force and the surface 
tension force on the interface should be added. The modified 
Navier-Stokes equation for variable density and viscosity can 
be written as 

( ) ( ) ( ) + e
uC C u u f f
t γρ ρ∂

+ ⋅∇ = ∇ ⋅ Π +
∂



   

              ΩT                     (7) 

where the stress tensor П, the electric force ef


due to the 
polarization charge and free charge, and  the surface tension 
force fγ



 are given by the following expressions, 
( )( ),

T
i jp C u uδ µΠ = − + ∇ + ∇

 

                                                     (8) 

( )2 2
0 0 , 0

1 1
2 2

e
e i j rf E E E E E Cε ε δ ρ ε ε = ∇ ⋅ ⊗ − = − ∇ 

 


  

                        (9) 

f cγ φ= ∇
                                                                            (10) 
In (7) - (10), ρ(C) represents the density of fluid, p the 
pressure, μ the viscosity, and φ  the chemical potential. 

D. Nondimensionalization 
The governing equations above may be 

nondimensionalized with the characteristic length Lc, the 
velocity Uc, and the time tc= Lc/Uc. Uc is determined by 
balancing the electrical force and viscous force, Uc=ε0E0

2Lc/µ 
[30]. The nondimensionalization process produces the 
following dimensionless systems parameters, 

0

0

c cU LRe ρ
µ

= ,   0 cUCa µ
γ

= ,     c cL UPe
M

ξ
γ

= ,    
c

Cn
L
ξ

= ,   
2

0 0r c
E

E LBo ε ε
γ

=    (11) 

The well-known Reynolds (Re) number describes the relative 
importance between the inertial and the viscous forces. The 
Capillary (Ca) number measures the relative magnitude of the 
viscous force over the interface tension force. The Peclet (Pe) 
number is the ratio of the convective and diffusive mass 
transport. The Cahn number, Cn, defines the ratio between the 
interface thickness over the characteristic length. The 
electrical Bond number (BoE) describes the ratio of the 
electric over the surface tension effect. The density, electrical 
permittivity, conductivity, and viscosity ratios of the two 
fluids are defined as λρ = ρ1/ρ2, λε = ε1/ε2, λσ = σ1/σ2 and λµ = 
µ1/µ2, respectively.  

E. Numerical method 
The above mathematical equations are discretized and solved 
numerically along with appropriate boundary conditions for 
specific problems given below. The finite difference scheme 
with the explicit time-matching [31] is used to discrete the 
equations. The first order terms are discretized by the 
upwinding scheme and all the variables are defined at the 
collocated mesh points [32]. To speed up the calculations, the 
code is enhanced by implementing a parallel computing 
algorithm. 
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After discretization, the Poisson equation (3) can be written 
in the form Ax=b, where A coefficient matrix, x the unknown, 
b the force vector, and is solved by the successive 
over-relaxation (SOR) method. The iteration follows the 
scheme: x(k+1)=(D+ωL)-1{ωb-[ωU+(ω-1)D]x(k)}, where D, L 
and U are the diagonal, lower and upper triangular 
sub-matrices decomposed from matrix A. To speed up the rate 
of convergence, the relaxation coefficient is set at ω>1. The 
Navier-Stokes equation (7) is solved by the standard 
projection method [31], where the resulting Poisson equation 
is solved also by the SOR method. The forth order finite 
difference scheme is employed to solve the Cahn-Hilliard 
equation (2). It worth noting that the material parameters 
εr(C), σ(C), ρ(C), and μ(C) may be taken as a linear function 
of phase parameter C within the interface region. Numerical 
experience suggests, however, that the harmonic interpolation 
gives a better, more consistent approximation, when a large 
difference in density across the interface exists [21],  

1 2 1

1 1 1 1=
2i i iρ ρ ρ+ +

 
+ 

 
                 ( )1 2 1

1
2i i iµ µ µ+ += +               (12)

 
III. RESULTS AND DISCUSSION  

A. Computational details 
Before the numerical results are presented, computational 

aspects concerning the numerical accuracy warrant some 
discussion. Here, the mesh sensitivity is considered first, for 
the purpose of which the case of the single leaky droplet 
deformation under the influence of the electric field is chosen. 
The electric field configuration and the computational domain 
are shown in Fig. 1. For the droplet of radius R, a domain of 
(6R×6R×6R) is chosen for computation. Since the 
deformation is symmetric about the planes of x=0 and z=0, a 
1/4 of the domain is needed (see Fig. 1b). For this problem, 
Lc=R. Other parameters for computations are: Re=1, Ca=0.2, 
Pe=1800, Cn=0.025, BoE=0.2, λρ=1, λε=2 and λµ=1. The 
computed results are listed in Table I for various meshes. For 
a coarse mesh, the computed results show the 
mesh-dependence. Progressive mesh refinement improves the 

numerical accuracy. As evident from Table I, a mesh of 
81×161×81 gives a reasonably good accuracy, which is thus 
used for the computations discussed below. Studies suggested 
that a spontaneous shrinkage of the drop occurs if the mesh is 
too coarse or the interface is too thick [33], [34]. This is also 
observed with the simulations in the present study. For the 
given parameters, with Cn=0.025 and a mesh of 81×161×81, 
the problem of artificial droplet shrinkage will not occur.  

The Cahn number Cn=ξ/Lc is the ratio of the interface 
thickness over the characteristic length, which for the present 
studies is the size of the droplet or bubble. Fig. 2 compares the 
results obtained for the cases of Cn = 0.025 and Cn = 0.05. A 
mesh of 81×161×81 was used. For Cn=0.025, the mesh 
corresponds to the interface cell width ξ/min{Δx, Δy, 
Δz}=0.67 and good results were obtained. For the case of 
Cn=0.05, the flow pattern inside the droplet changes from the 
anticlockwise to clockwise rotation. This is because the flow 
vortex forms to satisfy mass conservation in a thicker 
interface and the sharp interface assumption of the phase field 
model breaks down. It is noted that the interface thickness is a 
physical property of the fluid-fluid interface, which is 
obtained either by molecular simulations [35] or by 
experiments. These results in Fig. 2 suggest that for the phase 
field model to be valid, the droplet size needs to be 
sufficiently large in comparison with the thickness of the 
interface. 

B. Deformation of a single droplet (model validation) 
According to Taylor [4], if a droplet and its surrounding 

fluid are both leaky dielectrics, the droplet may deform into 
either a prolate or an oblate ellipsoid in a DC electric field. 
For the configuration shown in Fig. 1, an analytical 
expression can be obtained for the deformation of the droplet 
by the electric forces [4], [24]-[26], 

( )
( )

1 2 1 2 1 2
2

1 2

/ , / , /9
16 2 /

dE fL B BoD
L B

σ σ ε ε µ µ
σ σ

−
= =

+ +
                                    (13) 

where L and B are the lengths of the axes of the ellipsoid 
parallel and perpendicular to the applied electric field, and the 

 
Fig. 1. Schematic illustration of an EHD two phase flow problem: (a) a 
droplet in an electric field generated by two electrodes and (b) the 
computational domain. 

 

TABLE I. 
THE MESH SENSITIVITY OF LEAKY DROPLET DEFORMATION* 

Mesh Deformation (D) Error 

51×101×51 0.062658 12.7% 

61×121×61 0.070084 2.36% 

81×161×81 0.070191 2.21% 

91×181×91 0.071029 1.04% 

101×201×101 0.071779  
* The case 101×201×101 is used as a base for comparison 

 

 
Fig. 2. Dependency of fluid flow patterns on the interface thickness: (a) Cn=0.025 and (b) Cn=0.05. The cross section at z=0 is shown here. 

Proceedings of the World Congress on Engineering 2013 Vol III, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



 

subscripts 1 and 2 denote the droplet and the surrounding host 
fluid, respectively. The dimensionless parameters in (11) are 
scaled by the properties of the fluid 2, with Lc = R, the radius 
of the sphere. The function, ( )1 2 1 2 1 2/ , / , /df σ σ ε ε µ µ , is the 
discriminating function, 

( )
( )

2
1 21 1 1 1 1 1 1

2 2 2 2 2 2 2 1 2

2 33, , 1 2
5 1df

µ µσ ε µ σ ε σ ε
σ ε µ σ ε σ ε µ µ

+       
= + − + −        +       

                   (14) 

by which the droplet takes a spherical shape for fd=0, a prolate 
shape for fd <0 and an oblate shape for fd >0. 

The computational domain consists of a cube Ω = [0,l ]x 
[0,l ]x[0,l ] and the boundary conditions are the same as in 
[26], the difference being that here the 3D calculations are 
considered. Symmetric conditions are applied on the z=l/2 
and x=l/2 planes and as such only a quarter of the domain 
needs to be discretized. The boundary conditions are listed as 
follows, 

0V V=                       0u =
                      ( ){ } 0,y l T∈ ∂Ω = ×               

( )0 0 { 0} 0,V u y T= = ∈ ∂Ω = ×


             

( )0 0 { 0 0 } 0,
2 2

V l lu n x x z z T
n

∂
= = ∈ ∂Ω = ∪ = ∪ = ∪ = ×

∂
 




               

( )0 0 0 0,p C T
n n n

φ∂ ∂ ∂
= = = ∈∂Ω×

∂ ∂ ∂
  

                              

where ∂Ω is the boundary of computational domain. Initially 
the velocity is set to zero and the phase field is C=1 for the 
droplet and C=0 elsewhere. The discretized mesh used for 
calculations below was 81x161x81. The original radius of the 
droplet R=l/6, and it is also used as the characteristic length. 
The parameters used for the calculations are: Re=1, Ca=0.2, 
Pe=1800, Cn=0.025, BoE=0.2, λρ=1, λε=2, λµ=1 and l = 6R.

 
 

Fig. 3 compares the results obtained from the present 3D 
phase field calculations and from the analytical solution (13). 
As it is seen, for small deformations, the 3D numerical and the 

analytical solutions match very well. For large deformations, 
however, the numerical model deviates from the analytical 
solution. This is expected in that (13) is based on the linear 
perturbation analysis, which is valid only for small droplet 
deformations. 

C. Transient Behavior of Electrically-induced Droplet 
Deformation 

While the analytical solution is for a steady state 
deformation, the phase field model is fully 3D and transient, 
which allows us to capture the transient behavior of a droplet 
as it undergoes deformation. Information on the transient 
development of droplet deformation is of critical value in 
analyzing the underlying physics governing the 
electrohydrodynamics of a deforming droplet. One interesting 
case is presented in Fig. 4, where the final (or equilibrium) 
droplet shape is oblate. The droplet deformation for this case 
undergoes several different phases as the droplet deformation 
transits in time to reach the equilibrium from its initial 
condition. The transient development of the deformation 
experiences the follow stages: it starts with a spherical shape, 
evolves to a prolate ellipsoid, returns to spherical, and finally 
becomes oblate. The detailed flow velocity field, flow 
streamlines, droplet deformation and phase field are also 
plotted in Fig. 4 for three different droplet deformation stages. 
Detailed analysis of the simulation data reveals that this 
transition in deformed shapes is a result of electric charge 
interacting with the fluid flow field. At the onset of the 
deformation process, there is no free charge and, the whole 
system behaves like pure dielectric materials. The droplet 
deformation is dominated by the dielectric forces, which leads 
to a prolate ellipsoidal shape. This has been shown by both 
experimental measurements and theoretical analyses [24], 
[25]. As the time goes by, free charges start to accumulate at 
the droplet-fluid interface as demanded by (4), and the 
additional Coulomb force gradually comes into play, which 
acts to compress the droplet along the two poles. As a result, 
the droplet returns to a spherical shape, and then evolves 
continuously and eventually into the final oblate shape. It is 
important to stress that the transition will not occur if (5) were 
used to model the free charge distribution. This is because by 
(5) the free charge distribution is assumed to be established 
instantaneously and no charge relaxation will occur. 

D. Bubble deformation in electric fields 
The 3D phase field also can be applied to study the 

deformation behavior of a bubble in an electric field with a 
change of appropriate parameters. Simulations were carried 

 
Fig. 3. Comparison of the deformation D between the analytical solutions 
and the 3D phase field numerical results for BoE=0.2, λε=ε1/ε2=2 and 
λµ=µ1/µ2=1. 

 

 
Fig. 4. Transient development of droplet deformation, where the cross section at z=0 is shown rather the 3D shape along with the fluid flow field and 
phase field. The initially spherical shape is spherical (not shown). The deformation undergoes through the prolate first (a), then the spherical (b), and 
then eventually the oblate shape (c). The dimensionless time for (a-c) are t*=1.8, 8.46 and 360, respectively. The corresponding deformation parameters 
are: D=0.07, D≈0 and D=−0.29. The parameters are: Re=5.4, Ca=1.0, Pe=8000, Cn=0.025, BoE=1.0, λρ=1, λε=3, λµ=1 and λσ=0.5. The conductivity of 
droplet and surrounding liquid are 1.0×10-10 S/m and 2.0×10-10 S/m, respectively.  
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out for various conditions. Fig. 6 shows the dynamic 
development of a bubble as it rises up through a viscous fluid 
subject to a horizontal electric field (i.e. the electric field 
imposed in the x-direction). For this case, the electrical Bond 
number BoE=2.3 was chosen. Other parameters are Re=1, 
Ca=0.76, Pe=1.1, Cn=0.025, λρ=10-3, λε=1/3 and λµ=1/80. 
Electrical conductivity is not considered in this case. The 
bubble is seen to start rising up from the stationary with the 
initial shape of a sphere. While ascending upwards, it is being 
stretched out in the x direction by the applied electric force. 
The bubble deformation and fluid regime in this case are not 
axisymmetric anymore and the 3D model is required to 
simulate the process. Eventually the bubble evolves into a 
complex 3D shape as shown in Fig. 5. The deformation of the 
bubble and the fluid flow are viewed from different angels in 
Fig. 6. Other characters are also observed, such as the 
occurrence of indentation at the bottom and the deformation 
of the bubble into an oblate ellipsoidal cap eventually.  

Computations were also carried out for a rising bubble in a 
vertical electric field, in which case the bubble deforms into a 
prolate ellipsoid. Different from the case with a vertical 
electric field, the bubble with a horizontal electric field 
deforms into an oblate ellipsoid directly. Since the horizontal 
electric field tends to stretch the bubble into an oblate shape, it 
contributes to the formation of the indentation. Additional 

results show that the indentation occurs earlier than the case 
without an electric field. This is because it is easier for 
indentation to occur on an oblate than a prolate ellipsoid. In a 
longer time duration, however, the horizontal electric field 
impedes the further development of indentation. In the 
horizontal electric field, the bubble rises more slowly due to 
the high resistant drag force; meanwhile the jet flow 
underneath the bubble is weakened. As pointed out before, 
the development of indentation is caused by the jet flow, and 
the weak jet flow in turn leads to a slower indentation 
development. 

IV. CONCLUSIONS 
This paper has presented a phase field computational 

methodology for the numerical solution of 3D 
electrohydrodynamic two phase flow problems involving 
liquid drops or gas bubbles in electric fields. The 
mathematical formulation consists of a set of coupled 
nonlinear equations, including the Navier-Stokes equations 
for fluid motion, the convective Cahn-Hilliard equation for 
the phase field, and the charge conservation equation for the 
electric field distribution in pure and/or leaky dielectric 
fluids. These equations are discretized by the finite difference 
method along with the explicit time matching scheme, 
enhanced by parallel computing. The 3D model is validated 
by comparing with the Taylor model for a droplet 
deformation in an electric field.  It is found that while a leaky 
dielectric droplet deforms into an oblate ellipsoid as its final 
equilibrium shape in an electric field, the transient 
development in deformation entails the transition from the 
initial spherical to the prolate and then to the intermediate 
spherical and eventually the final oblate shape. For a rising 
bubble in an electric field, its ascending speed slows down as 
a result of stretching by the electric forces along the 
horizontal electric field. Compared with the vertical field, the 
indentation on the bubble base starts earlier but grows more 
slowly after an initial period. The bubble deformation and 
fluid flow structure in a horizontal field are three dimensional. 
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