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Abstract—There is a marked similarity between the open 

channel hydraulics and the high-speed gas dynamics. This paper 

introduces another new analogy between the two types of flows 

and shows that the Mach number varies by the gravity effect as 

in the Froude number. A transition from the subcritical to the 

supercritical condition is observed in an open channel flow over 

a hump. An analogous gravity effect is expected for a 

one-dimensional isentropic compressible flow of constant cross 

section with up and down.  The Mach number varies with the 

flow elevation as is observed in an open channel flow over a 

hump. The equation of continuity and the energy equation lead 

to the analogy and the compressible flow change with elevation 

is clarified. The analytical solutions and the jump conditions are 

derived for the compressible flow equivalent to those of 

hydraulics. The sonic condition is reached at the maximum flow 

elevation and the subsonic-supersonic transition is possible even 

for a flow of constant cross-sectional area. 

 
Index Terms—compressible flow, flow analogy , free surface , 

hydraulics, 

 

I. INTRODUCTION 

 

nalogy with compressible flow is well known for open 

channel flow  [1]. The open channel flows are equivalent 

to the gas flows of specific heat ratio 2 . An ideal 

horizontal open channel flow of varying width behaves as a 

Laval nozzle. Froude number Fr is obtained in an analytical 

form as a function of the width ratio to the critical condition 

*/ BB [2] (see also Appendix) as the Mach number M is 

calculated from the cross-sectional area ratio to the sonic 

condition */ AA  in a Laval nozzle. A horizontal open channel 

flow with bottom friction has an integrated analytical solution 

[3]. This type of flow is called the Fanno flow in gas dynamics, 

a one-dimensional compressible flow of constant 

cross-sectional area with friction. A hydraulic jump 

corresponds to a normal shock wave. Oblique shock waves 

and Prandtl-Mayer expansion waves are also observed in 

open channel flows. The shallow water flow pattern 

resembles a two-dimensional compressible flow.   

It is customary to neglect the gravity effect in aerodynamics 

and most of the compressible flow solutions are derived 

without the gravitational acceleration. But there is a 

spherically symmetric  astrophysical flow in gas 
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(a) Open channel flow over a hump   
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(b) One-dimensional compressible flow under gravity 

 

Fig.1 Flow Analogy 

 

dynamics [4] where the gravity plays an important role. In this 

paper, another analogy between open channel hydraulics and 

gas dynamics is introduced. For a one-dimensional isentropic 

compressible flow of constant cross sectional area with up and 

down under gravity, the solutions are identical with those of 

an open channel flow over a hump. Although the similarity 

appears unnoticed so far to the author’s knowledge, the 

analogy is a direct consequence of the governing equations. A 

possible experimental validation is also proposed. 

 

II. ANALOGY 

 

An open channel flow over a hump in Fig. 1(a) is found to 

be similar to a one-dimensional isentropic compressible flow 

of constant cross-sectional area with up and down shown in 

Fig.1(b) where g :constant gravitational acceleration, 

u :velocity, x :horizontal coordinate (arbitrary scale), 

y :flow depth, z :vertical coordinate(elevation), and r : gas 
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density. The flow changes from subcritical to supercritical 

beyond the peak at 1z both in Figs. 1(a) and (b).  

For the ideal open channel flow over a hump in Fig. 1(a), 

the continuity and the energy equations become 
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where *: critical (sonic) condition.  

The continuity and energy equations for the 

one-dimensional compressible flow of constant cross- 

sectional area in Fig.1 (b) are given by 
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where  1/2  ah : specific enthalpy with a : acoustic 

velocity. The similarity between Eqs. (1) -(4) suggests that a 

one-dimensional subsonic compressible flow of constant 

cross-sectional area can be accelerated to supersonic after the 

peak elevation as in the open channel flow.  

For an open channel flow over a hump,  Eqs. (1) and (2) are 

transformed as follow. 
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where c : shallow water wave velocity. 

For a one-dimensional isentropic compressible flow of 

constant cross-sectional area under gravity, Eqs. (3) and (4) 

are transformed as follow.  
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An ideal gas is assumed and the pressure p and the 

temperature T are determined by the isentropic relations from  
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Fig. 2 Mach number and Froude number vs. z  
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the density r in Eq. (9). Equations (6) and (7) are obtained for 

2  in Eqs. (9) and (10) where ga /2

*  is equivalent to *h .  

Equations (7) for Fr and Eq. (10) for M of air 4.1  is 

shown in Fig.2. Note that two solutions are almost identical in 

the subcritical region. 

 

III. JUMP CONDITIONS  

 

For a hydraulic jump at 1Fr  the energy loss is equal to the 

decrease in the critical elevation *z and expressed as follows 

[1]. 
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where 1: before jump and 2:after jump. 

   The total enthalpy Eq. (4) is conserved across a shock wave 

and 
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From the continuity equation Eq. (3) at two sonic conditions 

across a shock wave,  
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(a) Fr vs. x  

 
(b) Fr vs. z  

 

Fig.3 Open channel flow over a hump ( z in the figure 

for
*

*

y

zz 
) 

 

 

where 0102 / pp  is the stagnation pressure ratio across a 

normal shock wave [5]. 
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IV. RESULTS AND DISCUSSIONS 

 

Figure 3 shows a familiar result of an open channel flow 

over a hump. The solution of flow in Fig.3 can be expressed 

analytically [1], [6]-[8]. Although it appears almost the same 

as Fig.3, Fig.4 is the suggested novel analogical result of a 

one-dimensional isentropic compressible flow of constant 

cross-sectional area with up and down under gravity. The 

solid channel and pipe lines in Figs.3 (a) and 4(a) 

 
(a) M vs. x   

 
     (b) M vs. z  

 

Fig.4 One-dimensional isentropic compressible flow of 

constant cross-sectional area under gravity 
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  01  z represent the critical case at the maximum 

elevation. The broken channel and pipe lines in Figs.3 (a) and 

4(a)  5.01  z  are entirely subcritical and supercritical. 

Possible jumps are also plotted in Figs. 3 and 4 

at 21 Fr and 21 M , respectively. The flow depth */ yy and 

the density */ rr are shown in Figs.1 (a) and (b) for the same 

flow passages in Figs. 3 and 4 respectively. Figures 3(b) and 

4(b) show that the maximum elevation *z  at the critical and 

the sonic conditions decreases due to the loss generation 

across a hydraulic jump and a shock wave in Eqs. (11) and 

(12).  

From the engineering point of view, the density and the 

Mach number of a compressible flow in Fig.1 (b) hardly 

change under the earth gravity field because obviously 

18.9/300/ 22 ga  (see Eq. (10) ) and friction dominates. 

However, the mathematical resemblance is astounding and 
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the experimental verification of the analogy could be possible 

at low temperature where the acoustic velocity is small. 

Another possibility for the theory validation lies in the 

transonic region where the Mach number is sensitive to a 

small elevation change. 

 

V. CONCLUSION 

 

An open channel flow over a hump is analogous to a 

one-dimensional isentropic compressible flow of constant 

cross-sectional area with up and down under gravity. In theory, 

the one-dimensional isentropic compressible flow exceeds the 

sonic velocity even with a constant cross-sectional area under 

the gravity effect as in the open channel flow over a hump. 

The Mach number - elevation relation is derived and the 

shock condition is examined. The analogy is newly 

introduced to the author’s knowledge and the experimental 

validation could be possible at low acoustic velocity and/or 

transonic conditions. 

 
 

APPENDIX 

 

The Laval nozzle relation for compressible flow is given 

as follows. 
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where A : cross-sectional area . When the left-hand-side value 

of */ AA is given, Mach number M  is obtained numerically 

by iteration, i.e., no analytical form is available for M .  

For an ideal horizontal open channel flow of varying 

width, a similar relationship to Eq. (A1) is obtained as 

follows. 
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where B : channel width. So we may call this open channel 

with varying width as a hydraulic Laval nozzle where Fr is 

equivalent of M in Eq. (A1) and 2 . 

   Although Eq. (A1) has no analytical solution for M as a 

function of */ AA ,  Eq. (A2) can be solved for 

Fr analytically as follows [2]. 
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Equation (A5) is not a physically meaningful solution. These 

solutions give Froude number Fr directly from the section 

width */ BB . It is impossible in Eq. (A1) for gas flow. In many 

hydraulics text books, it is recommended to calculate 

Fr numerically from Eq. (2). But it is also possible to use the 

above Eqs. (A3) and (A4) to get Fr , although it is not popular 

so far. 
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Fig. A1 Hydraulic Laval nozzle - 

Horizontal open-channel flow with varying width 

 

(Froude number Fr can be calculated analytically and 

directly from channel width */ BB . Mach number M must be 

calculated numerically in Eq. (A1) of gas dynamics for  a 

given */ AA .) 
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