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Abstract— There are several works dedicated to the 

investigation of Volterra integro-differential equations. In 
addition, there are theoretical and practical representations of 
stable methods that have a high order of accuracy and 
extended stability regions; these representations were 
constructed using the minimum values of arithmetic 
operations. Here, hybrid methods are proposed for the 
construction of numerical methods with these properties; one 
of these hybrid methods is well known. We constructed 
concrete methods with orders of accuracy of 6p  and 

8p  using information pertaining to the solution of the 

considered problem with one and two mesh points, 
respectively. 
 

Index Terms— Volterra integro-differential equations, 
hybrid method, degree and stability, necessary and sufficient 
conditions, initial-value problem. 

 

I. INTRODUCTION 

T is well known that in the early XXth century, to solve 
some problems in the field of mechanics Vito Volterra 
had to solve integro-differential equations with variable 

boundaries. In the 1930s, Volterra showed that mathematical 
models for some seasonal diseases, e.g., influenza, are 
formulated as integral and differential equations (see [1, pp. 
22-34]); this work gave impetus to the development of 
approximate methods for solving integro-differential 
equations. One popular method for solving what are now 
known as Volterra integro-differential equations is the 
method of quadratures. Note that the quadrature method was 
first used by Volterra to solve integro-differential equations 
with variable boundaries. 
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Consider the following initial-value problem in Volterra 
integro-differential equations: 
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where )(xy  is a solution of the problem. The function 

)(xz  is defined as follows: 
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Obviously, if the function )(xz  is known, then problem (1) 

can be rewritten as: 
                        .)()),(,( 00 yxyxyxfy                   (3) 

Therefore, using the known quantities 121 ,...,, kyyy  and 

121 ,...,, kzzz  to solve problem (1) can be done by applying 

the k-step method with constant coefficients. Then, we have: 
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Here, ...),2,1,0(, mzy mm  are the approximate values of 

the function )(xy  and )(xz  for the points mhxxm  0 , 

...),2,1,0( m , where the parameter 0h  is the 

integration step, which is divided by the segment  Xx ,0  

into N  equal parts. It is easy to see that if there is a way to 

determine )0(  nz kn , then it should be used in formula 

(4). Furthermore, we can calculate the values of the function 
)(xy  of the mesh points )...,,2,1,0( kNnx kn  . In this 

case, solving problem (1) is equivalent to solving an initial-
value problem with ordinary differential and integral 
equations (see, e.g., [2] - [6]). Thus, by means of multistep 
methods with constant coefficients we can find the solution 
to problem (1). Note that solving integral equations can be 
accomplished with several different approximation methods 
(see, e.g., [7] - [9]). 

In the class of problems (1), the most basic research 
is on the following problem: 
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To solve problem (5) one can use the following multistep 
method (see, e.g., [10] or [11]): 
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This method is obtained by using a multistep method to 
solve both integral equation (2) and initial-value problem 
(5). Therefore, solving problem (1) can be accomplished 
with one of the approximate methods of ordinary differential 
equations by employing some combinations of the methods 
proposed for solving integral equations with variable 
boundaries. The order of accuracy of the stable methods, 
which is constructed by the scheme (6) - (7), does not 
exceed 2k ; this result was established by Dahlquiste 
(see [12]). Therefore, scientists have proposed various ways 
to construct stable methods with an order of accuracy 
greater than 2k . To this end, in work [13] a hybrid 
method that was first investigated by Gear and Butcher was 
applied to solve the problem (1) (see [14], [15]). However, 
in [11] the existence of stable forward jumping methods 
with a higher order of accuracy than 2k  was proven and 
a method to solve Volterra integral equations was proposed. 
We remark that in [16], stable hybrid methods with a higher 
order of accuracy than k2  were constructed, but in [17], a 
hybrid method was applied to extend Makroglou’s ideas for 
solving equation (2). Thus, we find that the numerical 
methods of ordinary differential equations can be applied to 
solve both integral equations of type (2) and initial-value 
problems with the form of (1). Note that if one wishes to 
solve Volterra integral equations using quadrature or other 
methods that are different from method (7), then one cannot 
exclusively use the methods of ordinary differential 
equations to solve problem (1). However, if the kernel of the 
integral is degenerate, i.e., if 
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then problem (1) can be reduced to a system of ordinary 
differential equations. Obviously, in this case problem (1) 
can be solved using the methods of ordinary differential 
equations. 

In this work, we constructed stable hybrid methods with a 
high order of accuracy that used information about the 
solution of problem (1) only minimally. The proposed work 
is a continuation of the investigations conducted in [16].  

Consider the application of the following method for 
solving problem (1): 
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from which we may obtain many well-known hybrid 
methods. In [18], method (9) is applied to solve problem (3), 
and it was proved that there exist stable methods of type (9) 
with degree 13  kp . 

II. THE APPLICATION OF THE GENERALISED HYBRID 

METHOD TO SOLVE PROBLEM (1) 

Among the numerical methods of both theoretical and 
practical interest are converging methods. It is known that 
stability is a necessary and sufficient condition for the 

convergence of multistep methods. Thus, we investigate the 
stable hybrid methods that are applied to solve problem (1). 
Usually, the study of multistep methods imposes certain 
restrictions on the coefficients (see, e.g., [12]). These 
constraints on the coefficients of method (9) can be written 
in the following form: 
A. The values of the variables ),...,1,0(,,, kiiiii   

are real numbers and 0k . 

B. The characteristic polynomials 
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of method (9) have no common multiplier that is not a 
constant. 
C. 0)1()1(    and 1p . 

Here, p  is the order of accuracy of method (9), which is 

defined in the following form: 
Definition 1. For a sufficiently smooth function )(xy , 

method (9) has the degree 0p  if the following holds:   
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 (10) 
Condition A is obvious. Therefore, we consider condition B 
and assume the converse. Then, the polynomials )( , 

)( , and )(  have a common multiplier, which we 

denote by )( . After taking into account the shift operator 

E ))()(( hxyxyE   , the finite-difference equation (9) 

can be rewritten as follows: 
.0)()()(  nnn yEhyEhyE           (11) 

Let us use the given assumptions to rewrite equation (11) in 
the following form: 
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Hence, we find that 
,0)()()( 111  nnn yEhyEhyE             (12) 

because const)( . Obviously, to have a unique 

solution of finite-difference equation (12), there should be 
no more than 1k  initial data. However, from the theory of 
finite-difference equations it is known that for a finite-
difference equation of order k  to have a unique solution, k  
initial data are required. However, the difference equations 
(12) and (9) are equivalent. Hence, difference equation (9) 
has a unique solution despite having no more than 1k  
initial data, which contradicts the above-mentioned theory. 
Consequently, the assumption that there is a common factor 
of the polynomials )( , )(  and )(  is incorrect. 

Now, consider the validity of condition C. Assume that 
method (9) converges. Then, as (9) approaches the limit and 
as 0h  we have: 
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Because 0)( xy , from equation (13) we have: 
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  0)1(  .                       (14) 

Equation (14) is a necessary condition for the convergence 
of the method defined by formula (9), and by using it we can 
write  

)()1()( 1   . 

Furthermore, by using (11) we obtain: 
.0)()())(( 11  nnjj yEhyEhyyE   (15) 

Here, by changing the value of variable j  from 0 to n  and 

summing the resulting equations, we obtain: 
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Then, as 0h , we have: 
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However, from problem (1) we can write: 

.))(,()()(
0

0 
x

x

dyfxyxy                (17) 

By comparing (16) and (17), it is clear that 
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It is easy to prove that due to the conditions 
),1()1()1(;0)1(    

1p . 

Now we must prove that 0)1()1(   . Assume 

otherwise. Then, from the conditions 0)1(   and 

0)1(   we obtain that 1  is a double root of the 

polynomial )( . 

Consider the homogeneous finite-difference equation 
,0... 01111   nnknkknk yyyy   

whose general solution can be written in the following form: 
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where ),...,2,1( kii   are the roots of the polynomial 

)( . Hence, as 0h  we know that my  because 

m . Thus, if 0)1()1(   , then the method does 

not converge. It follows that 0)1()1(  . If we use the 

conditions 
0)1(   and )1()1()1(    

in asymptotic relation (10), then we obtain that 
1p . 

Now, consider the application of method (9) to solve 
problem (1). To this end, we investigate the numerical 
solution of problem (1) by using the following methods: 
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To study method (19), we suggest that the kernel of the 
integral ),,( ysxK  is a continuous function that is defined 

in the region  byXxsxG  ,0  and that has 

continuous derivatives up to and including some order p . If 

in method (19) we take into account the properties of the 
function ),,( ysxK , then we have following (see, e.g., 

[17]): 
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Method (19) as a numerical method for solving Volterra 
integral equations is studied in [17]. We remark that method 
(18) is a generalisation of hybrid methods. In the past few 
years, scientists have thoroughly studied the application of 
hybrid methods to solving initial-value problems with 
ordinary differential equations and Volterra integro-
differential equations (see, e.g., [13] - [21]). Let us consider 
finding the coefficients in methods (9) and (19). 

It can be shown that by using the Taylor expansions 

),()(
!

)(

...)(
!2

)(
)()()(

1)(

2





pp
p

hOxy
p

ih

xy
ih

xyihxyihxy

(20)                   

),()(
)!1(

)(

...)(
!2

)(
)()()(

)(
1

2

pp
p

i

i
ii

hOxy
p

hl

xy
hl

xyhlxyhlxy








 (21)   

in asymptotic equation (10), we can obtain the necessary 
and sufficient conditions for equation (10), where 

nhxx  0  is the fixed point and 

)...,,2,1,0( kiil ii   . These conditions can be 

written in the form of systems of equations that consist of 
the following nonlinear equations: 
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It is easy to determine that system (22) for the values 
),...,1,0(0 kii   is linear and coincides with known 

systems that are used to determine the coefficients of the 
multistep method with constant coefficients. Furthermore, 

for the conditions 0...10  k , system (22) is 

nonlinear; by solving it, we determine the coefficients of 
method (9). In this system, the number of unknowns is equal 
to 44 k  and the number of equations is equal to 1p . 

Because system (22) is homogeneous, it always has a trivial 
solution, but to ensure that system (22) will have a solution 
that is different from zero, the condition 144  pk  

must hold. Thus, one can be write the following: 
24  kp . 

Note that if we take ),...,2,1,0(0 kii  , then the 

relationship between the degree and the order of method (9) 
will be as follows: 
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13  kp  . 

It is known that if we consider the case 
),...,2,1,0(0 kii  , then the degree of the stable 

method received from formula (9) satisfies the 
condition   222  kp  (see [12]). 

To determine the coefficients in method (19), consider a 
special case and let ),(),,( yxFysxK  . Then, from (2) 

we have 
 

.0)(),,( 0  xyxF                  (23) 

If we apply method (19) to solve problem (23), then we 
obtain: 
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First, from system (22) we determine the values of 

)...,,2,1,0(,ˆ,ˆ,ˆ kiiiii  , and then, by solving system 

(25) we find the coefficients of method (19). Note that in 
system (25), the number of equations is equal to 1k  and 
the number of unknowns is greater than 1k . 
Consequently, the solution of system (25) is not unique. 
Therefore, although the method of type (9) may be unique, 
the corresponding method of type (19) is not unique. This 
fact allows us to select some of the coefficients to construct 
the method with an extended region of stability. 

Consider special cases and let 1k . Then, by solving 
system (22) and using the solution in system (25), we obtain 
a few methods of degree 6p . One of them is the 

following: 
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where the corresponding method of type (19) in one variable 
can be written as: 
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Note that the method with degree 8p  for 2k  

is as follows: 
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where the value 1421 .  

For the sake of simplicity, let us consider the application 
of the following method: 
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This method will be used to solve problem (1); to use it, one 

must define the values of ,2/1 ny ,2/1 ny which can be 

done as follows: 
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By the formula 

2/11ˆ   nnn yhyy ,                        (31) 

we can find the variable 1ˆ ny . Then, we can determine 

2/3ny  by the following formula: 
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By using the next sequence of methods, one can solve 
initial-value problem (1). 

Step 1. Calculate 1ˆ ny  by formula (31). 

Step 2. Calculate   2/1ny  by formula (30). 

Step 3. Calculate 1ny  by formula (29). 

Step 4. Calculate  2/3ny  by formula (32). 

To illustrate these results, consider the following 
table. 

One may also consider and compare the results obtained 
by methods of type (9) with other known methods using the 
following model problems: 
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,))(exp(2)exp(1.1 2

0

2



 
yx

dttyxtxxyy
x

 

(the exact solution is xxy )( ). 
Number of 
example 

x  By the 
work of 

Gragg & 
Stetter 

(see[13]) 

By the 
work of 
Kohfeld

& 
Thomson 
(see[13]) 

By the 
method 

from 
[3] 

For 
hybrid 
method 

(29) 

I 
05,0h  

0.1 
0.5 
1.00 

1.3E-09 
5.2E-08 
1.5E-06 

3.5E-10 
2.8E-08 
1.4E-07 

 3.3E-10 
1.0E-08 
1.1E-06 

II 

32/1h  
 

1.031 
1.50 
2.0 

  Max 
error 

1.8E-07 
 

6.3E-09 
2.7E-07 
2.5E-08 

0)1(,21

,))(exp(
1

3

4
3))exp(4(.2 2

1

3



 
yx

dssys
x

xyy
x

 

(the exact solution is xxy ln)(  ). 

 Note that the received results are consistent with 
the theoretical results presented here. 

Remark. It is known that scientists have investigated the 
numerical solutions of ordinary differential equations 
because they wished to solve integral and integro-
differential equations by applying the methods of 
differential equations. For the sake of demonstration, 
suppose that the kernel is degenerate and has the following 
form: 

),()(),,( ysbxaysxK  .              (33) 

In this case, one can rewrite the problem as follows: 

,)(),()(),( 00 yxyxvxayxfy         (34) 
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.0)(),,()( 0  xvyxbxv                 (35) 

Thus, one can replace solving problem (1) with solving 
problems (34) and (35), which are initial-value problems 
that can be solved with ordinary differential equations. 

It is known that the problem encapsulated by (34) and 
(35) consists of two ODEs of the first order. Unfortunately, 
this simplification is not always correct. Indeed, by the 
derivative of (33) we obtain 

).,()()(
))(,(

yxbxaxxa
dx

xyxdf
y    

The above equation is an integro-differential equation. In 
the considered examples, the kernels have the form (33).   

Conclusion. In this paper, some information about 
solving integro-differential equations is given. We 
investigated solving an initial-value problem in the class of 
Volterra integro-differential equations using hybrid 
methods, and we began with the work of Makroglou (see 
[13]). Note that the constructed hybrid methods are 
symmetrical. However, asymmetric hybrid methods are 
usually more accurate than symmetric ones. We constructed 
an asymmetric stable hybrid method with degree 9p  for 

the case 2k . However, the application of this method to 
practical problems is more difficult than using symmetric 
methods. In a single article, it is not possible to investigate 
all aspects of this problem. We believe that the proposed 
method will have many applications in the future. Note that 
to apply (26) - (28) to solve certain problems, one can use 
block methods or methods of predictor-corrector. 
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