
 

 
Abstract—The need for optimum machining parameters has 

always been of great concern to the aerospace industry, as the 
economy of the process largely depends on selecting the best 
machining parameters for the machine. However, the 
additional challenge of being environmentally friendly in 
production while still being cost effective is now imperative. 
Metal cutting conditions do not always allow companies to 
reduce the carbon footprint easily. This is particularly 
pertinent when newer aerospace material such as Boron 
Carbide Particle Reinforced Aluminium Alloy (AMC220bc) is 
machined. This material falls under the category of a 
particulate reinforced Metal Matrix Composite (MMC), where 
the ceramic fibers disrupt the flow of electrons, resulting in a 
decrease in thermal conductivity causing the tool interface 
temperature to increase reducing tool life. This paper will 
determine the optimum sustainable machining parameters for 
this material.   
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I. INTRODUCTION 
ircraft parts by necessity should be made from 
lightweight, durable and fatigue resistant materials. 

Commonly used aerospace materials which have these 
qualities are Aluminium alloys, Titanium alloys and 
Stainless Steels - of which Titanium alloys and Stainless 
Steels unfortunately have high machinability rating with 
Aluminium alloys suffering from galling and smearing [1]. 
Machining notoriously creates waste compelling aerospace 
companies to reduce their impact on the environment and 
put in place appropriate waste disposal measures. This in 
turn is necessitating Life Cycle Analysis (LCA) to be part of 
all aerospace manufacturing. Companies now need to 
embrace the sustainable philosophy to reduce their carbon 
footprint, allowing them to improve their profitability. This 
requires that the best machining practices are used in an 
effort to reduce the total amount of greenhouse gas produced 
during machining. The total waste produced by machining 
consists of metal chips, tool tips and coolant costs if used. In 
addition to the obvious waste produced during metal cutting 
is the amount of greenhouse gas produced from the electrical 
power used by the machine tool [2]. The technique used for 
assessing the environmental aspect and potential impact 
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associated with machining is performed in accordance with 
the Environmental Management Life Cycle Assessment 
Principles and Framework ISO 14040 standard [3]. This 
analysis of the machining process identified that the best 
reduction on greenhouse gasses would be achieved from 
refining the metal cutting aspect of the process. In practice, 
many cutting parameters need to be considered, such as 
cutting force, feed rate, depth of cut, tool path, cutting 
power, surface finish and tool life [1]. Dry machining is 
obviously the most ecological form of metal cutting as there 
are no environmental issues for coolant use or disposal to 
consider. For this reason the machining tests were all carried 
out by dry cutting [4]. Machining conditions and parameters 
are seen to be vital in order to obtain high quality products 
with the lowest environmental impact, at the lowest cost. 
The challenge that the aerospace industry faces is how to 
find the optimum combination of cutting conditions in order 
to sustainably produce parts at a reduced cost to 
manufacture. To help achieve this goal Taguchi Method was 
used to establish the optimum cutting parameters to machine 
AMC220bc material. This method of statistical control 
allows the effect of many different machining parameters to 
be robustly tested on their machining performance. A three 
level L27 orthogonal array was selected where 0, 1 and 2 
represent the different levels of the three control parameters, 
cutting speed, feed rate and depth of cut. 

Analysis of the machining tests provided the deviation 
and nominal values of the three quality measurements used 
to determine the optimum sustainable machining parameters 
(length error, width error and surface roughness). Further 
analysis implemented the use of signal-to-noise ratios to 
differentiate the mean value of the experimental and nominal 
data of these quality measurements. A viable measure of 
detectability of a flaw is its signal-to-noise ratio (S/N). 
Signal-to-noise ratio measures how the signal from the 
defect compares to other background noise [5].  

The signal-to-noise ratio classifies quality into three 
distinct categories and the noise ratio differs with each 
category. The three different formulas are given below [6]; 
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The results from this formula suggest that the greater the 
magnitude of the signal-to-noise ratio, the better the result 
will be because it yields the best quality with least variance 
[7]. The signal-to-noise ratio for each of the quality 
measurements; surface roughness, length error and width 
error were calculated and the mean signal-to-noise ratio for 
each parameter was found and tabulated. The results were 
graphed to illustrate the relationship that exists between S/N 
ratio, and the input parameters at different levels. The 
gradient of the graph represented the strength of the 
relationship for each of the machining parameters.   

To help analyse the contribution of each variable and their 
interactions in terms of quality the Pareto ANOVA analysis 
is implemented. The Pareto ANOVA analysis was 
completed for each of the quality measures length error, 
width error and surface roughness. The Pareto ANOVA 
analysis identified which control parameter affected the 
quality of the machined workpiece. By using the Pareto 
principle only 20% of the total machining configuration is 
now needed to generate 80% of the benefit of completing all 
machining test configurations [8]. This method separates the 
total variation of the S/N ratios. Each of the measured 
quality characteristics length error, width error and surface 
roughness, has its own S/N values for each of the 27 
different tests. In order to obtain accurate result the S/N 
values are derived from an average value of 3 readings for 
each of the quality measurements.  

II. MACHINE TEST AND SET-UP 
Normally a Polycrystalline Diamond (PCD) tool tips is 

used to machine AMC220bc material as they operate at 
speeds up to 5000 m/min due to their hardness ~10000mHV 
and long life. However, uncoated carbide tool tips were used 
to exhibit the time needed for tool tips to exhibit wear for 
analysis. Measurement of the cutting forces and power 
allows for analysis of the cutting operation and optimisation 
of cutting parameters, as well as identifying wear of the tool 
tip. These important cutting forces were measured by a 
Kistler dynamometer which has a high natural frequency, 
and gives precise measurement. Fig. 1 shows the workpiece 
securely clamped onto the dynamometer. Dynoware28 
software was used to provide high-performance real-time 
graphics of the cutting forces, and is used for evaluation of 
the forces. 

 
 

 

Fig.  1. Work piece clamped onto dynamometer 

The end mill used a single tool tip to aid analysis of the 
cutting action shown in Fig. 2, which typically illustrating 
the intermittent engagement of the tool tip as it comes in 
contact with the material.  

 
Fig.  2. Typical cutting forces for end milling  

 
Real time machining power was measured by using a 

Yokogawa CW140 clamp on a power meter which was 
attached to the machines input power supply. The physical 
geometrical characteristics of the workpiece were precisely 
measured using a Discovery Model D-8 Coordinate 
Measuring Machine (CMM); the workpieces were split into 
3 levels of 9 respectively. Mitutoyo Surftest SJ-201 portable 
stylus type surface roughness tester was used to measure the 
surface quality of the workpieces. The ideal roughness 
represents the best possible finish which can be obtained for 
a given tool geometry, and feed rate. This can only be 
achieved if inaccuracies such as chatter are completely 
eliminated. Natural roughness is greatly influenced by the 
occurrence of a built up edge. The larger the built up edge, 
the rougher the surface produced, factors tending to reduce 
chip-tool friction and to eliminate or reduce the built up 
edge would yield an improved finish. 
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For this research there were 27 different combinations of 

cutting speed, feed rate and depth of cut used, each match up 
with a trial level in the L27 orthogonal array. The values of 
the combinations of control parameters that correspond to 
the L27 orthogonal array can be found from Table I. The best 
quality measurements will identify the optimal machining 
parameters for sustainable production. The Leadwell V30 
CNC milling machine was used to machine the workpieces, 
allowing easy changes to the machining parameters for the 
different tests. 
 

TABLE I 
 Control Parameters and their Levels 

Control 
Parameters Units Symbol 

Levels 
Level 0  Level 

1 
 Level 

2 
Cutting 
Speed 

m/min A 50 100 150 

Feed Rate mm/rev B 0.10 0.20 0.30 
Depth of Cut mm C 1.0 1.5 2.0 

III. RESULTS AND DISCUSSION 
The Signal to Noise ratio (S/N) Analysis and the Pareto 

Analysis of Variance (ANOVA) depicting how the 27 
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different combinations of machining parameters have an 
effect on quality aspects of the machined workpiece. 
Variations in cutting power for input parameters; cutting 
speed, feed rate and depth of cut are shown in Fig. 3 to Fig. 
8.  In these machining tests an unique combination of control 
parameters each have different combinations of different 
level values (0, 1, 2), and machining parameters A, B and C 
representing the cutting force, feed rate and depth of cut 
respectively. Table II shows the experimental results and 
their respective S/N ratios for length, width and surface 
roughness. For this research the ‘smaller the better’ category 
of the signal-to-noise ratio is chosen, which is shown as 
Equation 3. The results from this formula suggest that the 
greater the magnitude of the signal-to-noise ratio, the better 
the result will be because it yields the best quality with least 
variance. Fig. 11 shows that machining parameter with A 
(cutting speed) having the most significant effect on length 
error, followed by C (depth of cut) and then B (feed rate). 
The interaction between A×B also influences the machining 
process. The lowest depth of cut, C0, was the best depth of 
cut to achieve a low length error. Since the interaction of A x 
B was also significant, it can be seen that the optimum 
combination for factors A and B in order to achieve a low 
length error was A2B1. Therefore, the combination to help 
achieve low length error is A2B1C0; i.e., the highest level of 
cutting speed, medium level of feed rate and low level of 
depth of cut.   

The Pareto ANOVA analysis for length error given in 
Table III confirms that the parameter that significantly 
affects the mean length error is cutting speed (with 
percentage contribution, P = 27.84%). It is worth noting that 
the interactions A×B, (P = 27.74%) and A×C (P = 23.74%) 
were more than the main effects for factors B (P = 3.07%) 
and C (P = 5.13%). Fig. 12 shows that in term of individual 
effects, machining parameter A (cutting speed) had the most 
significant effect on width error, followed by C (depth of 
cut) and then B (feed rate). This stays true with the 
individual parameter effects on length error. However, when 
considering all effects, i.e. individual and interaction effects, 
the interaction between A×C (cutting speed and depth of 
cut) showed the greatest effect on width error. The medium 
level of feed rate, B1 (0.2 mm/rev), was the best feed rate to 
achieve a low width error. Since the interaction of A×C was 
also significant, it can be seen that the optimum combination 
for factors A and C in order to achieve a low width error was 
A1C2. Thus, the optimal combination to achieve the width 
error was A1B1C2; i.e., the medium level of cutting speed, 
medium level of feed rate and highest level of depth of cut. 

The Pareto ANOVA analysis for width error given in 
Table IV illustrates that the most significant machining 
parameter affecting the width error was the interaction 
between the cutting speed and depth of cut (A×C), (P = 
31.33%), followed by cutting speed A (P = 14.49%) and 
depth of cut C (P = 12.32). Also the total of all interaction 
effects is higher (P ≅ 66%) than the total of all individual 
effects (P ≅ 34). Fig. 13 shows that parameter B (feed rate) 
had the most significant effect on surface roughness, 
followed by A (cutting speed) and then C (depth of cut). The 
interaction between B×C also played a role in this machining 
process. The medium level of cutting speed, A1 (100 m/min), 
was the best cutting speed to achieve a low surface 
roughness. Since the interaction of B×C was also significant, 

showing that the optimum combination for factors B and C 
in order to achieve a low surface roughness was B2C0. 
Therefore, the optimal combination to achieve low surface 
roughness was A1B2C0; i.e., the medium level of cutting 
speed, highest level of feed rate and lowest level of depth of 
cut. The Pareto ANOVA analysis for surface roughness 
given in Table V confirms that the parameter that 
significantly affects the mean surface roughness is feed rate 
(with percentage contribution, P = 77.57%). All other 
effects, both individual and interaction, had a minimal effect 
on surface roughness. 

From the analysis of cutting power shown in Fig. 3 to Fig. 
8 it can clearly be seen that the feed rate and depth of cut 
have a minimal independent effect on the cutting power. 
However, combining the cutting speed and feed rate, or 
cutting speed and depth of cut increases the required power, 
showing that the main machining parameter that affects the 
amount of power required is cutting speed. The mean 
resultant cutting force in Fig. 9 and Fig. 10 shows that 
generally a lower depth of cut in combination with a low 
cutting speed and feed rate generates lower resultant cutting 
forces. However, feed rate changes the cutting force 
significantly and its dependence is non-linear. Increasing the 
cutting speed slightly is found to reduce the cutting force. 
Cutting speeds at low range tend to form a built-up edge, 
and disappears at high cutting speeds; the dependence on 
cutting speed diminishes. Depth of cut also changes the 
cutting force significantly and the dependence is linear. 
Varying the depth of cut and the feed rate, yields a method 
of controlling cutting force [9]. Machining with a positive 
tool orthogonal rake angle will decrease the cutting force but 
at the same time increase the possibility of destruction of the 
tool. Dimensional error can be affected by cutting speed in 
various ways including increasing thermal distortion, 
altering tool wear, elastic deformation of the work piece and 
formation of a built-up edge (BUE). 

The Pareto ANOVA analysis (Table III) and response 
graph from S/N ratio analysis (Fig. 10) for length error 
demonstrate that when cutting speed was increased from A0 
to A1, the length error increased, but when cutting speed is 
further increased from A1 to A2, the length error was 
decreased significantly. The Pareto ANOVA analysis (Table 
IV) and response graph from S/N ratio analysis (Fig. 12) for 
width error demonstrate that when cutting speed was 
increased from A0 to A1, the width error decreased, but 
when cutting speed is further increased from A1 to A2, the 
width error increased. Fig. 13, and also Table V show that a 
similar trend lies for the feed rate where, as the feed rate is 
increased from B0 to B1, the length and width errors 
decreases but when it is increased from B1 to B2 the length 
and width errors increase. Finally, when observing the depth 
of cut it can be seen that both the length and width errors 
increase from C0 to C1. When the depth of cut is increased 
from C1 to C2 however, the length error increases while the 
width error decreases. The response graph from S/N ratio 
analysis for surface roughness shows that the cutting speed 
has varying effect on surface roughness. When the cutting 
speed was changed from level 0 to level 1, the quality of the 
surface improved; whereas when speed was changed from 
level 1 to level 2, the quality of the surface deteriorated. 
When the depth of cut increased from level 0 to level 1, the 
surface roughness stayed fairly constant, but when the depth 
of cut was increased from level 1 to level 2, the surface 
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roughness increased. These effects of cutting speed and 
depth of cut stay true to the results obtained by [7]. This may 
have been caused by the plastic deformation of the machined 
surface from the built-up edge or from the material 
softening, especially at high temperature and due to dry 
machining [10]. Although the effects of cutting speed and 
depth of cut on surface roughness stay true to those found by 
Rafai and Islam [7], there lies a massive difference in results 
obtained for feed rate. This research however shows that as 
the feed rate increases in both increments, the surface 
roughness decreases respectively each time. This is due to 
the properties of the metal matrix composite as opposed to 
conventional steel alloys and carbide materials. The MMC 
allows for a better surface finish at a faster feed rate, 
therefore decreasing manufacturing time yet maintaining a 
better quality product. The results and analyses presented 
above demonstrate that in end milling of Boron Carbide 
Particle Reinforced Aluminium Alloy, the cutting 
parameters, such as cutting speed, feed rate and depth of cut, 
have significant influences on the quality of the workpiece, 
i.e. dimensional error in length and width, and surface 
roughness. However, the results also reveal that strong 
interaction exists between machining parameters. 

IV. CONCLUSION 
The experimental investigation has shown that cutting 

speed affects the power required to cut the material, while 
feed rate and depth of cut have minimal effects. Feed rate 
and depth of cut significantly affect cutting force, while 
cutting speed does minimally. The one machining parameter 
that seems to affect all three quality measures is feed rate; a 
fast cut minimises dimensional error and produces a better 
surface finish. Combining this knowledge with that found 
from the analysis of the control parameters on quality 
measurements, it was found that a high feed rate produces a 
good surface finish, while producing low dimensional errors. 

Making the optimum sustainable machining options for this 
material to be one of high cutting speed with high federate to 
maximise the material removal rate, showing that Boron 
Carbide Particle Reinforced Aluminium Alloy can be 
machined in a sustainable manner. The fact that the surface 
finish improves with an increase of feed rate is of interest, as 
this is the opposite found for traditional material being 
machined this which poses an opportunity for future 
research.  
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Fig.  3. Comparison of Cutting Power for different levels of cutting speed and feed rate vs. different levels of depth of cut 
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Fig.  4. Comparison of Cutting Power for different levels of cutting speed and depth of cut vs. different levels of feed rate 
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Fig.  5. Comparison of Cutting Power for different levels of feed rate and cutting speed vs. different levels of depth of cut 
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Fig.  6. Comparison of Cutting Power for different levels of feed rate and depth of cut vs. different levels of cutting speed 
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Fig.  7. Comparison of Cutting Power for different levels of depth of cut and feed rate vs. different levels of cutting speed 
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Fig.  8. Comparison of Cutting Power for different levels of depth of cut and cutting speed vs. different levels of feed rate 
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Fig.  9. Comparison of Mean Resultant Cutting Force for different levels of cutting speed and feed rate vs. different levels of depth of cut 

Proceedings of the World Congress on Engineering 2013 Vol III, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



 

 

0

50

100

150

200

250

B0 B1 B2 B0 B1 B2 B0 B1 B2

A0 A0 A0 A1 A1 A1 A2 A2 A2

M
ea

n 
Re

su
lt

an
t 

Cu
tt

in
g 

Fo
rc

e 
(N

)

C0

C1

C2

 
 

Fig.  10. Comparison of Mean Resultant Cutting Force for different levels of feed rate and cutting speed vs. levels of depth of cut 
 
 
 
 
 

TABLE II 
Experimental Results for Length error, Width Error, Surface Roughness and their corresponding S/N Ratios 

 Measured Parameters Calculated S/N ratio 

Ex.No. 
Length 
error 
(mm) 

Width 
error 
(mm) 

Surface 
roughness 

(µm) 

S/N ratio 
for Length 

error 

S/N ratio 
for Width 

error 

S/N ratio 
for 

Surface 
roughness 

1 0.34 0.34 5.64 9.40 9.48 -15.02 
2 0.21 0.19 3.14 13.45 14.61 -9.93 
3 0.30 0.18 2.64 10.34 14.78 -8.43 
4 0.22 0.20 1.55 13.03 14.08 -3.83 
5 0.21 0.18 1.64 13.43 14.72 -4.28 
6 0.30 0.17 2.23 10.38 15.58 -6.98 
7 0.23 0.12 1.15 12.96 18.25 -1.25 
8 0.35 0.61 1.34 9.12 4.28 -2.51 
9 0.19 0.17 1.93 14.26 15.49 -5.71 

10 0.21 0.20 2.17 13.47 14.07 -6.71 
11 0.24 0.18 2.19 12.24 14.70 -6.82 
12 0.29 0.19 2.80 10.64 14.26 -8.95 
13 0.23 0.20 1.47 12.87 14.14 -3.36 
14 0.24 0.14 1.65 12.32 17.16 -4.34 
15 0.34 0.09 1.41 9.47 21.18 -2.96 
16 0.26 0.18 1.15 11.60 15.07 -1.18 
17 0.36 0.10 1.84 8.83 20.03 -5.30 
18 0.21 0.13 1.39 13.46 17.61 -2.84 
19 0.17 0.16 3.48 15.32 15.88 -10.83 
20 0.21 0.17 2.72 13.36 15.21 -8.69 
21 0.29 0.18 2.50 10.71 14.98 -7.97 
22 0.18 0.17 1.57 14.83 15.65 -3.93 
23 0.17 0.58 1.67 15.24 4.77 -4.45 
24 0.22 0.06 2.21 13.20 24.68 -6.87 
25 0.27 0.14 1.32 11.30 17.04 -2.43 
26 0.20 0.36 1.30 13.96 8.84 -2.25 
27 0.19 0.63 1.31 14.21 3.95 -2.33 
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Fig.  11. Response graph for Length Error 

 
 
 

TABLE III 
Pareto ANOVA Analysis for Length Error 

A B AxB AxB C AxC AxC BxC BxC
106.37 108.94 110.34 107.33 114.78 111.53 106.91 103.16 121.12

104.91 114.78 112.68 110.13 111.96 112.07 111.02 121.71 107.96

122.15 109.70 110.40 115.96 106.69 109.82 115.49 108.55 104.34

548.69 60.60 10.67 116.52 101.16 8.24 110.61 546.67 467.87

27.84 3.07 0.54 5.91 5.13 0.42 5.61 27.74 23.74

27.84 55.57 79.31 85.22 90.83 95.97 99.04 99.58 100.00

Check on significant interaction
 A2B1C0

Sum at factor level 
Factor and interaction

0

 AxB two-way table 

Optimum combination of significant factor level 

1
2

Sum of squares of difference (S)
Contribution ratio (%)

Cumulative contribution

27.84 27.74

23.74

5.91 5.61 5.13
3.07

0.54 0.42

A AxB AxC AxB AxC C B AxB BxC
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Fig.  12. Response graph for Width Error  
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TABLE IV 
 Pareto ANOVA Analysis for Width Error 

A B AxB AxB C AxC AxC BxC BxC
121.28 127.97 136.69 121.18 133.66 123.68 137.32 134.02 113.14

148.22 141.96 117.24 143.16 114.32 120.50 135.22 125.45 156.32

121.00 120.57 136.56 126.15 142.51 146.32 117.96 131.03 121.04

1466.94 708.38 751.51 796.61 1247.24 1189.34 677.32 113.51 3171.13

14.49 7.00 7.42 7.87 12.32 11.75 6.69 1.12 31.33

31.33 45.82 58.14 69.89 77.76 85.19 92.19 98.88 100.00

Check on significant interaction
 A1B1C2

Sum at factor level 
Factor and interaction

0

 AxC two-way table  

Optimum combination of significant factor level 

1
2

Sum of squares of difference (S)
Contribution ratio (%)

Cumulative contribution

31.33

14.49
12.32 11.75

7.87 7.42 7.00 6.69

1.12

AxC A C BxC AxB AxB B AxC BxC
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Fig.  13. Response graph for Surface Roughness 

 
TABLE V 

Pareto ANOVA Analysis for Surface Roughness 

A B AxB AxB C AxC AxC BxC BxC
-57.94 -83.36 -57.96 -51.05 -48.54 -50.23 -53.72 -59.44 -56.52

-42.46 -41.01 -44.58 -51.91 -48.58 -45.16 -48.67 -47.44 -47.12

-49.76 -25.79 -47.63 -47.21 -53.04 -54.77 -47.78 -43.29 -46.53

359.87 5339.06 295.00 37.61 40.18 138.74 61.75 421.94 188.45

5.23 77.57 4.29 0.55 0.58 2.02 0.90 6.13 2.74

77.57 83.70 88.93 93.22 95.96 97.97 98.87 99.45 100.00

Check on significant interaction
 A1B2C0

BxC two-way table 

Optimum combination of significant factor level 

1
2

Sum of squares of difference (S)
Contribution ratio (%)

Cumulative contribution

Sum at factor level 
Factor and interaction

0

77.57

6.13 5.23 4.29 2.74 2.02 0.90 0.58 0.55

B BxC A AxB BxC AxC AxC C AxB
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