
 

  
Abstract — This paper provides procedures for constructing 

unbiased simultaneous prediction limits on the observations or 
functions of observations of all of k future samples using the 
results of a previous sample from the same underlying 
distribution belonging to invariant family.  The results have 
direct application in reliability theory, where the time until the 
first failure in a group of several items in service provides a 
measure of assurance regarding the operation of the items. The 
simultaneous prediction limits are required as specifications on 
future life for components, as warranty limits for the future 
performance of a specified number of systems with standby 
units, and in various other applications. Prediction limit is an 
important statistical tool in the area of quality control. The 
lower simultaneous prediction limits are often used as warranty 
criteria by manufacturers. The initial sample and k future 
samples are available, and the manufacturer wants to have a 
high assurance that all of the k future orders will be accepted. 
It is assumed throughout that k + 1 samples are obtained by 
taking random samples from the same population. In other 
words, the manufacturing process remains constant. The 
results in this paper are generalizations of the usual prediction 
limits on observations or functions of observations of only one 
future sample. In the paper, attention is restricted to invariant 
families of distributions. The technique used here emphasizes 
pivotal quantities relevant for obtaining ancillary statistics and 
is applicable whenever the statistical problem is invariant 
under a group of transformations that acts transitively on the 
parameter space. Applications of the proposed procedures are 
given for the two-parameter exponential and Weibull 
distributions. The exact prediction limits are found and 
illustrated with a numerical example. 
 

Index Terms — Future samples, observations, simultaneous 
prediction limits 
 

I. INTRODUCTION 

TATISTICAL intervals used by engineers and others 
include confidence intervals on a population parameter, 

such as the mean, and tolerance intervals. Confidence 
intervals give information about parameter of the population 
or a function of population parameters such as a percentile; 
tolerance intervals give information about a region which 
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contains a specified proportion of a population.  
Often one desires to construct from the results of a 

previous sample an interval which will have a high 
probability of containing the values of all of k future 
observations. For example, such an interval would be 
required in establishing limits on the values of some 
performance variable for a small shipment of equipment 
when the satisfactory performance of all units is to be 
guaranteed, or in setting acceptance limits on a specific lot 
of material, when acceptance requires the values of all items 
in a future sample to fall within the limits. An interval which 
contains the values of a specified number of future 
observations with a specified probability is known as a 
prediction interval. Such an interval need be distinguished 
both from a confidence interval on an unknown distribution 
parameter, and from a tolerance interval to contain the 
values of a specified proportion of the population. Research 
works on prediction intervals related to a single future 
statistic are abundant (see Hahn and Meeker [1], Patel [2], 
and references therein).  

In many situations of interest, it is desirable to construct 
lower simultaneous prediction limits that are exceeded with 
probability γ  by observations or functions of observations of 
all of k future samples, each consisting of m units. The 
prediction limits depend upon a previously available 
complete or type II censored sample from the same 
distribution. For instance, two situations where such limits 
are required are: 

1. A customer has placed an order for a product which has 
an underlying time-to-failure distribution. The terms of his 
purchase call for k monthly shipments. From each shipment 
the customer will select a random sample of m units and 
accept the shipment only if the smallest time to failure for 
this sample exceeds a specified lower limit. The 
manufacturer wishes to use the results of a previous sample 
of n units to calculate this limit so that the probability is γ  
that all k shipments will be accepted. It is assumed that the n 
past units and the km future units are random samples from 
the same population.  

2. A system consists of n identical components whose 
times to failure follow an underlying distribution. Initially 
one component is operating and the remaining n−1 
components are in a standby mode; a new component goes 
into operation as soon as the preceding component has 
failed. The system is said to fail when all n components have 
failed. Thus, the system time to failure is the total of the 
failure times for the n components. A simultaneous lower 
prediction limit to be exceeded with probability γ  by the 
system time to failure of all of k future systems is desired. 
This limit is to be calculated from the times to failure of n 
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previously tested components. Similar problems also arise in 
various product maintenance and servicing problems. 

Prediction limits can be of several forms. Hahn [3] dealt 
with simultaneous prediction limits on the standard 
deviations of all of the k future samples from a normal 
population. Hahn [4] considered the problem of obtaining 
simultaneous prediction limits on the means of all of k future 
samples from an exponential distribution. In addition, Hahn 
and Nelson [5] discussed such limits and their applications. 
Mann, Schafer, and Singpurwalla [6] gave an interval that 
contains, with probability γ, all m observations of a single 
future sample from the same population. Fertig and Mann 
[7] constructed prediction intervals to contain at least m − k 
+ 1 out of m future observations from a normal distribution 
with probability 1−β. They considered life-test data, and the 
performance variate of interest is the failure time of an item. 
Their lower prediction limit constitutes a “warranty period”. 

In this paper we give an expression for obtaining unbiased 
simultaneous prediction limits on order statistics of all of k 
future samples. In order to obtain the unbiased simultaneous 
prediction limits, attention is restricted to invariant families 
of distributions. In particular, the case is considered where a 
previously available complete or type II censored sample is 
from a continuous distribution with cumulative distribution 
function (cdf) F((x−µ)/σ) and probability density function 
(pdf) 1/σf((x−µ)/σ), where F(⋅ ) is known but both the 
location (µ) and scale (σ) parameters are unknown. For such 
family of distributions the decision problem remains 
invariant under a group of transformations (a subgroup of 
the full affine group) which takes µ  (the location parameter) 
and σ  (the scale) into cµ + b and cσ, respectively, where b 
lies in the range of µ,  c > 0. This group acts transitively on 
the parameter space and, consequently, the risk of any 
equivariant estimator is a constant. Among the class of such 
estimators there is therefore a “best” one. The effect of 
imposing the principle of invariance, in this case, is to 
reduce the class of all possible estimators to one. In the 
present paper we investigate this question for the problem of 
constructing the unbiased simultaneous prediction limits on 
order statistics in future samples.  

The technique used here emphasizes pivotal quantities 
relevant for obtaining ancillary statistics. It is a special case 
of the method of invariant embedding of sample statistics 
into a performance index [8-11] applicable whenever the 
statistical problem is invariant under a group of 
transformations which acts transitively on the parameter 
space (i.e., in problems where there is a unique best 
invariant procedure). The exact unbiased simultaneous 
prediction limits on order statistics of all of k future samples 
are obtained via the technique of invariant embedding and 
illustrated with numerical example. 

II.  MATHEMATICAL PRELIMINARIES 

The main theorem, which shows how to construct lower 
(upper) simultaneous prediction limit for the order statistics 
in all of k future samples when prediction limit for a single 
future sample is available, is given below. 

Theorem 1 (Lower (upper) simultaneous prediction limit 
under complete information).  Let  mj  “future”  observations 

) ..., ,( 1 jj mYY  represent the jth random sample from the cdf 

Fθ (.), where θ  is the parameter (in general, vector), j∈{1, 
..., k}, and let ),( jj mrY  denote the rjth order statistic in the jth 

sample of size mj.. Assume that all of k samples from the 
same cdf are independent. Then a lower simultaneous (1−α) 
prediction limit h on the rjth order statistics ),,( jj mrY  j=1, …, 

k, of all of k future samples may be obtained from 
 







 >>> hYhYhYP

kmkrmrmr jj ),(),()1,1(
 , ... , , ... ,θ  

 










































∑∑∑

−

=

−

=

−

=
=

k

k

j

j
r

i

r

i

r

i i

m

i

m

i

mk

k

j

j

 ...  ... ......
1

1
1

0

1

0

1

0

1

1

 

 

,1
  

),(),1(
α

θθ
−=






 >−







 >

×















Σ

Σ

ΣΣΣ+Σ

i

m

hYPhYP
mimi

    (1) 

where 

  ∑∑
=

ΣΣ ==
k

j
j

k

j
j mmii

11=

.      ,   (2) 

 

(Observe that an upper simultaneous α prediction limit h 
may be obtained from a lower simultaneous prediction limit 
by replacing 1−α by α.) 

Proof. 
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the joint probability can be written as 
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This ends the proof.   � 
Corollary 1.1. If rj= 1, ∀j=1(1)k, then 
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Theorem 2 (Lower (upper) unbiased simultaneous 
prediction limit under parametric uncertainty). Let (X1 ≤ ... ≤ 
Xr) be the r smallest observations in a random sample of size 
n from the cdf Fθ (.), where the θ  is the parameter (in 
general, vector), and let ) ..., ,( 1 jj mYY  be the jth random 

sample of mj “future” observations from the same cdf, j∈{1, 
..., k}. Assume that (k+1) samples are independent and the 
parameter θ  is unknown.  Let H=H(X1, ..., Xr) be any 
statistic based on the preliminary sample and let ),( jj mrY  

denote the rjth order statistic in the jth sample of size mj. 
Then an unbiased lower simultaneous (1−α) prediction limit 
H on the rjth order statistics ),,( jj mrY  j=1, …, k, of all of k 

future samples may be obtained from 
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Proof. For the proof we refer to Theorem 1.   � 
Corollary 2.1. If rj= 1, ∀j=1(1)k, then 
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Remark 1. In this paper, in order to find the unbiased 
lower simultaneous (1−α) prediction limit H on the rjth 
order statistics ),,( jj mrY  j=1, …, k, of all of k future samples, 

the technique of invariant embedding [8-11] is used. 

A. Left-Truncated Weibull Distribution 

Theorem 3 ((Lower (upper) unbiased prediction limit H 
for the lth order statistic Yl in a new (future) sample of m 
observations from  the left-truncated Weibull distribution on  

the basis of the preliminary data sample) Let X1 ≤ ... ≤ Xr be 
the first r ordered observations from the preliminary sample 
of size n from the left-truncated Weibull distribution with 
the pdf 
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where θ = (µ,σ,δ), δ is termed the shape parameter, σ is the 
scale parameter, and µ is the truncation parameter. It is 

assumed that the parameter δ is known. Then a lower 
unbiased (1−α) prediction limit H on the lth order statistic Yl 
from a set of m future ordered observations Y1 ≤ … ≤ Ym also 
from the distribution (9) is given by 
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(Observe that an upper unbiased α prediction limit H on the 
lth order statistic Yl may be obtained from a lower unbiased 
(1−α) prediction limit by replacing 1−α by α.)  

Proof. It can be justified by using the factorization 

theorem that ),( 1 SX δ  is a sufficient statistic for (µ,σ). We 

wish, on the basis of the sufficient statistic ),( 1 SX δ  for 

(µ,σ), to construct the predictive density function of the lth 
order statistic Yl from a set of m future ordered observations 
Y1 ≤ … ≤ Ym. By using the technique of invariant embedding 

[8-11] of ),( 1 SX δ , if X1≤Yl,  or ),( SYl
δ , if X1>Yl, into a 

pivotal quantity σµδ /)( −lY  or σµδ /)( 1 −X , respectively, 

we obtain an ancillary statistic  
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It follows from (14) that 
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This ends the proof.   � 
Corollary 3.1. If l = 1, then a lower (1−α) prediction limit 

H on the minimum Y1 of a set of m future ordered 
observations Y1 ≤ … ≤ Ym is given by 
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B. Two-parameter Exponential Distribution 

Theorem 4 (Lower (upper) unbiased prediction limit H for 
the lth order statistic Yl in a new (future) sample of m 
observations from the two-parameter exponential 
distribution on the basis of the preliminary data sample) Let 
X1 ≤ ... ≤ Xr be the first r ordered observations from the 
preliminary sample of size n from the two-parameter 
exponential distribution with the pdf 
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where θ = (µ,σ), σ is the scale parameter, and µ is the shift 
parameter. It is assumed that these parameters are unknown. 
Then a lower unbiased (1−α) prediction limit H on the lth 
order statistic Yl from a set of m future ordered observations 
Y1 ≤ … ≤ Ym also from the distribution (18) is given by 
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(Observe that an upper unbiased α prediction limit H on the 
lth order statistic Yl may be obtained from a lower unbiased 
(1−α) prediction limit by replacing 1−α by α.)  

Proof. For the proof we refer to Theorem 3.   � 
Corollary 4.1. If l = 1, then a lower (1−α) prediction limit 

H on the minimum Y1 of a set of m future ordered 
observations Y1 ≤ … ≤ Ym is given by 
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Remark 2.  Let us assume that the parent distributions are 
the two-parameter exponential  
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Let X be a random variable with the Pareto distribution (24), 
and define Y = lnX. Then Y becomes a random variable with 
the exponential distribution (23), where θ2 is replaced by 
lnθ2. Therefore it is enough to consider only the exponential 
distribution, because the results for the Pareto distribution 
are easily obtained from those for the exponential 
distribution. 

C. Two-parameter Weibull Distribution 

In this paper, the two-parameter Weibull distribution with 
the pdf 
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indexed by scale and shape parameters β and δ  is used as 
the underlying distribution of a random variable X in a 
sample of the lifetime data, where θ =(β,δ). We consider 
both parameters β, δ to be unknown. Let (X1, …, Xn) be a 
random sample from the two-parameter Weibull distribution 

(25), and let ,β
)

δ
)

be maximum likelihood estimates of β, δ 

computed on the basis of (X1, …, Xn). In terms of the 
Weibull variates, we have that 
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are pivotal quantities. Furthermore, let 
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It is readily verified that any n−2 of the Zi’s, say Zi, …, Zn-2 
form a set of n−2 functionally independent ancillary 
statistics. The appropriate conditional approach, first 
suggested by Fisher [12], is to consider the distributions of 
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V1, V2, V3 conditional on the observed value of Z(n) = (Zi, …, 
Zn). (For purposes of symmetry of notation we include all of 
Zi, …, Zn in expressions stated here; it can be shown that Zn, 
Zn-1, can be determined as functions of Zi, …, Zn-2 only.) 

Theorem 5. (Joint pdf of the pivotal quantities V1,V2 from 
the two-parameter Weibull distribution) Let (X1 ≤ ... ≤ Xr) be 
the first r ordered observations from a sample of size n from 
the two-parameter Weibull distribution (25). Then the joint 
pdf of the pivotal quantities V1,V2 conditional on fixed 
z(r)=(zi, …, zr) is given by 
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is the normalizing constant. 
Proof. The proof is omitted here.   � 
Theorem 6. (Lower (upper) unbiased prediction limit H 

for the lth order statistic Yl in a new (future) sample of m 
observations from the two-parameter Weibull distribution on 
the basis of the preliminary data sample) Let X1 ≤ ... ≤ Xr be 
the first r ordered observations from the preliminary sample 
of size n from the two-parameter Weibull distribution (25). 
Then a lower unbiased (1−α) prediction limit H on the lth 
order statistic Yl from a set of m future ordered observations 
Y1 ≤ … ≤ Ym also from the distribution (25) is given by 
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likelihood estimates for β and δ  based on the first r ordered 
observations (X1≤ ... ≤Xr) from a sample of size n from the 
two-parameter Weibull distribution (25). 
(Observe that an upper unbiased α prediction limit H on the 
lth order statistic Yl from a set of m future ordered 
observations Y1 ≤ … ≤ Ym may be obtained from a lower 
unbiased (1−α) prediction limit by replacing 1−α by α.) 

Proof. If there is a random sample of m ordered 
observations Y1 ≤ … ≤ Ym from the two-parameter Weibull 
distribution (25) with the pdf fθ(y) and cdf Fθ(y), then for the 
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Writing (33) as 
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where 
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we have from (28) and (34) that 
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Now v1 can be integrated out of (36) in a straightforward 
way to give (31). This completes the proof.   �  

Corollary 6.1. If l=1, then 
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III.  NUMERICAL EXAMPLE 

An industrial firm has the policy to replace a certain 
device, used at several locations in its plant, at the end of 24-
month intervals. It doesn’t want too many of these items to 
fail before being replaced. Shipments of a lot of devices are 
made to each of three firms. Each firm selects a random 
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sample of 5 items and accepts his shipment if no failures 
occur before a specified lifetime has accumulated. The 
manufacturer wishes to take a random sample and to 
calculate the lower prediction limit so that all shipments will 
be accepted with a probability of 0.95. The resulting 
lifetimes (rounded off to the nearest month) of an initial 
sample of size 15 from a population of such devices are 
given in Table 1. 
  

TABLE I 
THE RESULTING LIFETIMES (IN NUMBER OF MONTH INTERVALS) 

Observations 

Xi x1 x2 x3 x4 x5 x6 x7 

Lifetime 8 9 10 12 14 17 20 
x8 x9 x10 x11 x12 x13 x14 x15 

25 29 30 35 40 47 54 62 

 
Goodness-of-fit testing. It is assumed that 
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where the parameters µ and σ are unknown; (δ=0.87). Thus, 
for this example, r = n = 15, k = 3, m = 5, 1−α = 0.95, 

1.61 =δX , and  S = 170.8. It can be shown that the 
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are i.i.d. U(0,1) rv’s (Nechval et al. [13]). We assess the 
statistical significance of departures from the left-truncated 
Weibull model by performing the Kolmogorov-Smirnov 
goodness-of-fit test. We use the K statistic (Muller et al. 
[14]). The rejection region for the α level of significance is 

{ K ≥ Kn;α}.  The percentage points for Kn;α were given by 
Muller et al. [14]. For this example,  
 

 K = 0.220 <  Kn=13;α=0.05 = 0.361. (40) 
 

Thus, there is not evidence to rule out the left-truncated 
Weibull model. It follows from (8) and (17), for  
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Thus, the manufacturer has 95% assurance that no failures 

will occur in each shipment before H = 5 month intervals. 

IV.  CONCLUSION AND FUTURE WORK 

In this paper we propose the technique of constructing 
unbiased simultaneous prediction limits on observations or 
functions of observations in all of k future samples under 
parametric uncertainty of the underlying distribution. These 
unbiased simultaneous prediction limits are based on a 
previously available complete or type II censored sample 
from the same distribution. We present an equation for this 
type of unbiased simultaneous prediction limits which holds 
for any distribution and any statistic from the previous sample 
when a prediction limit for a single future sample is 
available. The exact prediction limits are found and 
illustrated with a numerical example. The methodology 
described here can be extended in several different 
directions to handle various problems that arise in practice. 
We have illustrated the proposed methodology for the two-
parameter exponential and Weibull distributions. 
Application to other distributions could follow directly. 
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