
 
 

 

 
Abstract— This paper is devoted to the consideration of 

possible solution for the analysis of stress-strain state of 
anisotropic massif containing the deep located diagonal mines 
of arbitrary profile under the propagation of elastic 
longitudinal and shift waves. The special case of generalized 
plane deformation is considered at this paper to get solutions 
for different located mines (drifts, crosscuts and diagonal 
mines). The cases of the first and second fundamental problems 
are formulated in the given paper as well as rigorous 
mathematical solutions based on theory of cylindrical function 
are demonstrated. 

  
Index Terms—anisotropic (transtropic) massif, generalized 

plane deformation, deep founded mines, drifts, crosscuts, 
diagonal mines, diffraction, PP-wave, SV-wave, SH-wave.  
 

I. INTRODUCTION 

Underground structures, the longitudinal axis of which 
makes an arbitrary angle with the extending line of the massif 
isotropy plane, find wide application in the area of the capital 
mining. For example, close to bole mine development crosses 
sloping rock layers in different directions: highway traffic 
tunnels are usually randomly oriented with respect to the 
elements of bedding surfaces of the rock stratification. 

Anisotropic (or simplified transversal-isotropic) model of 
the folded-layered massif with tilted plane-parallel layers 
near the underground structures allows you to consider the 
horizontal mines, depending on the spatial orientation, 
namely , the rock drifts (are developed across the line of 
spread), crosscuts and so-called diagonal mines, which 
occupy an intermediate position between the drifts and 
crosscuts. [1] 

Diagonal mines by definition contain as limiting cases of 
drifts and crosscuts. A detailed analysis of the stress state of 
such rock mining provides a framework to assess the stability 
and strength of the drifts and crosscuts at the case of 
deflection of their longitudinal axis from its position in 
relation of the bedding of rock layers. Design scheme of the 
diagonal mines is the most generalized scheme for 
determining the dynamic stress in the massif around the 
underground structures because the wave propagation is not 
always directed strictly along or transverse to the longitudinal 
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axis of the underground structures that is usually taken into 
consideration by researchers. Moreover, such design scheme 
allows us to consider different cases of the waves 
propagation. 

II. PROBLEM STATEMENT  

Since the rock massif around the underground structures 
can be modeled by anisotropic (in simplified cases - 
transversely isotropic) medium, for consideration of the 
elastic properties of such medium we can use the generalized 
Hooke's law [2]. 

Let us write the generalized Hooke's law equations for the 
massif with diagonal cavities (simulating the mines) in the 
coordinate system 321 '' xxOx  which has the axis 3'Ox  

deflected by angle   from 3Ox (in the main coordinate 

system 321 xxOx ) (see figure 1). On the figure 1 we can 

demonstrate the scheme of plane harmonic waves 
propagation within transversal-isotropic (annotated as 
transtropic) massif containing cavities that are deeply located 
a-cross the spreading of inclined isotropy plane under the 
generalized deformation conditions. 

In order to make it clear the generalized plane deformation 
conditions let us suppose that the proper external forces do 
not vary along the longitudinal axis of the mines. The 
cross-sections of diagonal mines have the curvature. The 
homogeneity of the mechanical properties of the considered 
massif together with the assumption of infinite extent of the 
mines (or cavities) causes the similar distortion of 
cross-sections of diagonal mines throughout their length. 
Therefore, the displacements will be dependent only from the 
coordinates of their cross-sectional plane, namely, 
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32
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2 xxuu  , ),( '
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3

'
3 xxuu  . These conditions give us 

the plane deformation conditions and allow considering all 
suggestions of the plane deformation theory [1,2]. 

Under these conditions the generalized Hook’s law 
equations for transtropic massif with inclined plane of 
isotropy containing the diagonal mines (cavities, or holes) 
may have the following view [1,2]: 
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Figure 1- Rock massif with diagonal mines under 
the actions of elastic waves 

 
Here the elastic coefficients jiij cc   besides the five 

adjusted elastic constants – Young's modulus and Poisson's 
ratio for transtropic medium  - 1E , 2E , 1 , 2  , 2G  -  

depend on angle   of inclined isotropy plane and angle   

of mine's axis deflection from the line of isotropy  plane 
spreading.   

Specified coefficients may be considered as adjusted 
coefficients along the diagonal cavity axis:  
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Coefficients ijb  mentioned above in the expressions (1), 

(2) can be extracted from the source [1,2,3]. 
By using physical equations of the stress-strain state and 

kinematic Cauchy relations the motion equations  in the case 
of generalized plane deformation  may be presented in the 
types with operators (by similarity with [4,5]):  
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,202
1      is a circular frequency. 

Let us suppose that lS ( Ll ,1 ) are areas of the cavities 

cross-sections, and 
L

l
lSS

1

2
0


  is an area of multilinked 

medium (transtropic massif) cross-section. By the center of 
each cavity let us associate the local dimensionless 

coordinate system ( lx1 , lx2 ) ( Ll ,1 ), 

( 10x , 20x )=( Rx /1 , Rx /2 ), where R is a certain linear size 

(by similarity with researches in [5]).   
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Horizontal mines with radius lR ( Ll ,1 ) are spread 

along the axis 3Ox  and have cross-section with the contour 

lГ .  We assume that the exterior of the unit circle using the 

function  )(~
l  is displayed on the exterior of the boundary 

contour lГ of the lS ( Ll ,1 ) area[6]:  

lll Rz  )(~                    (6) 

This function transforms the circular shape of the cavities 
cross-sectors. For non-circular shape of cross-sectors we can 
use the next expression (following by [6]): 
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We assume that inside the transtropic massif in the cross 
section plane of the cavities along the direction given by the 
unit vector ),( 21 nnn 


 the stationary elastic harmonic wave 

falls. The wave front is parallel to the axes of the cavities, the 
wave itself is polarized in the plane of the cavities cross 
section in case of consideration of elastic longitudinal (PP-) 
and shift (SV-, SH-) waves. 

Wave representation can be shaped by the following 
expression 

tieuu  *                   (7) 

where  *u is a wave amplitude that is described by the 

following (in case of the dividing the waves into types that is 
possible because of transtropic nature of massif [7]) : 
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Here   - wave frequency, ( PPk , SVk , SHk  )=( )1(k , 

)2(k , )3(k ) is a vector of wave numbers, ),( 21 nn are the 

direction cosines of the angle of wave incidence  that is an 
angle between axis 1Ox  and vector n


 (see figure 1). 

In the case of generalized plane deformation the diffraction 
field is characterized by the movement components 

 321 ,, uuuu p  , depending on the coordinates of the 

cavities cross sections [1,2]. 
Boundary value problem is formulated based on the 

motion equations (4), taking into account that the 
characteristics of the stress-strain state depends only on the 
coordinates of the points ( 1х , 2х ) in the cross section of the 

cavities. After simple transformations we can get the 
following expressions for deep founded mines that are based 
on non-zero operators from (4):  
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In case of the diffraction of longitudinal and shift waves in 
the cross sector planes of cavities, the differential equations 
(4) can be transformed into the matrix form:  
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Coefficients ijс  (i,j=1,6) in (11) are elastic  parameters 

that are defined by formulas (2), (3).   321 ,, uuuu p   is a 

vector of displacements in the reflected waves that is 
represented by relations to lR  - linear l’s cavity size.  

For the formulation of the problem we can consider the 
solution of the first and second main elasticity theory 
problems, that is the cases when the cavity contour is not 
supported by lining (case of free of loads contour) – the first 
problems, and the case of fixed non-deformable lining of the 
cavity contour – the second problem. In general, we can 
consider the mixed problem for different types of cavity 
boundary conditions. 

III. SOLUTION OF THE FIRST FUNDAMENTAL PROBLEM  

Suppose that the deep founded mines have contours with 

radius lR   ( Ll ,1 ) that are free from the outside loadings. 

In our terms above we formulate the first fundamental 
problem of elasticity theory. The boundary conditions on the 
contours lГ may be viewed as [2,8] 
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The initial conditions are represented as: 
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Here *
nn , *

 n  are the normal and tangential stresses on 

the planes with ),( 21 nn  normal that are  caused by falling 

stress-strain waves in  cross-sectors  of the cavities; *
3n *

3  

are tangential stresses on the plane with ),( 21 nn  normal that 

are influenced by falling shift SH-waves; nn ,  n , 3n , 

3  are relevant amplitude stress components at the 

reflected waves.  

For integrating the partial differential equations of the 
second form as (10) we can introduce the affine 
transformation by the following expressions (by analogy 
with [5,9-11]): 
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where 21  i  is a root of characteristic 

equation of the second form and 02   is a positive 

defined symmetric matrix. This root may be identified from 
the following transformations:   
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 is a Laplace operator’s vector derived on the 

vectors-variables }{ )(
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Thus the differential equation (10) can be reduced to 

Helmholtz equation with vector-coordinates  ( }{ )(
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as the following (by following the analogy with [5, 9-11]):  
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We can derive the displacements  321 ,, uuuu p   at the 

case of diffraction of longitudinal and shift waves and, in 
particular, when elastic coefficients   15c =0, 16c =0, 56c =0.  

Hence, we can represent the Helmholtz equation  (18) as the 
following  
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Now in accordance with principle of generalized 
superposition [4] we can get displacements 

 321 ,,}{ uuuuu i  as infinite series with unknown 

coefficients )(i
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of the first kind  [4,5,10,11] :  
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 By using theorems of cylindrical functions addition  [4], 
[5], we can get representations for displacements 
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Here 
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( )(i
lqR , )(i

lq ) are the coordinates of the point )(i
lO  in 

coordinate system ( )(i
qr , )(i

q ). 

In the expressions (20) as cylindrical function we consider 
cylindrical Hankel function of the first kind because the time 

dependency is given by factor tie   and solutions of the 
proposed task are characterized by a wave of going to 
infinity.  

Then, following the theorems of cylindrical functions 
addition,   the method of cylindrical functions decomposition, 
and the method of contour changing  [4,5,6] as well as by 
using contour representations for displacements and stresses 
and boundary conditions (15), (16), we can transform the 
solutions to the infinite system of linear algebraic equations 

related to unknown coefficients )(i
nlA , )(i

nls by using the 

method of equality of coefficients at equal degrees of the 

components lpie  :  
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where )(i
npl , )(i

npl , )(i
pl , )(i

npl , )(i
npl , )(i

pl  are complex 

potentials  that are calculated by analogy with [9-11]. 

IV. SOLUTION OF THE SECOND FUNDAMENTAL PROBLEM  

The second fundamental problem of elasticity theory in 
our considered case of elastic wave propagation within the 
rock anisotropic medium containing the diagonal mines can 
be formulated by analogy with the first fundamental problem. 

The boundary conditions in this case will include the 
expressions with displacements like 

0)( * 
lГii uu , 3,2,1i                       (22) 

The initial boundary conditions are considered as 

0|)( 0
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Furthermore we can define all mentioned above 
characteristics including complex potentials, special 
boundary solutions and etc., from the consideration of 
displacements at falling and reflected waves. The finished 
infinite system of linear algebraic equations related to 

unknown coefficients )(i
nlB , and )(i

nlt   may be represented as 

the following 
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 ,p .                            (24)      

Here )(i
nplQ , )(i

nplP , )(i
plQ  are complex potentials  that can be  

calculated by analogy with [9-11]. 

V. CONCLUSION 

The given systems (21) and (24) may be solved by 
reduction method. By the reason of complicated rigorous 
justification approaches of such systems we can show the 
convergence of the solution numerically. 

Further we can demonstrate the applications of the 
considered solutions for the different anisotropic rock 
massifs containing the diagonal mines. We can get the 
dependencies of stress-strain state of the massif  from the 
forms of cavities, their mutual influence, from the different 
physical, mechanical, and geometrical properties of the 
medium, falling waves, and cavities, as well as from location 
of cavities at the rock massif. 
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