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Abstract—A numerical scheme, based on the cubic B-spline
wavelets for solving fractional integro-differential equations
is presented. The fractional derivative of these wavelets are
utilized to reduce the fractional integro-differential equation to
system of algebraic equations. Numerical examples are provided
to demonstrate the accuracy and efficiency and simplicity of the
method.
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I. INTRODUCTION

THE objective of this paper is to introduce a comparative
study to examine the performance of the Galerkin

method via cubic B-spline wavelets in solving fractional
integro-differential equations of the type:

Dαy(t) = p(t)y(t) + f(t) +

∫ t

0

K(t, s)y(s)ds, (1)

0 ≤ t ≤ 1,

with initial condition

y(0) = y0, (2)

where the functions f, p : [0, 1] → R and K : [0, 1]×[0, 1] →
R are given and supposed to be sufficiently smooth and
0 < α ≤ 1.
The B-spline wavelets used in this work have compact
support, vanishing moments and also they are semi or-
thogonal. These properties causes many of the operational
matrix entries be very small compared with the largest ones.
Consequently, these elements can be set to zero with an
opportune threshold technique without significantly affecting
the solution.
The article is organized as follows: We begin by introducing
some necessary definitions and mathematical preliminaries of
the fractional calculus theory. Then cubic B-spline wavelets
and function approximation by them are purposed which are
required for establishing our results. Section 4 is devoted
to applying the fractional differential of cubic B-spline
scaling functions and wavelets for solving fractional integro-
differential equation. In Section 5 the proposed method is
applied to several examples. Also a conclusion is given in
Section 6.
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II. SOME PRELIMINARIES IN FRACTIONAL CALCULUS

In this section we briefly present some definitions and
results in fractional calculus for our subsequent discussion
[1]. The fractional calculus is the name for the theory of
integrals and derivatives of arbitrary order, which unifies and
generalizes the notions of integer-order differentiation and
n-fold integration [1]-[2]. There are various definitions of
fractional integration and differentiation, such as Grunwald-
Letnikov and Riemann-Liouville’s definitions.
The Riemann-Liouville derivative has certain disadvantages
when trying to model real-world phenomena with fractional
differential equations. The reason for adopting the Caputo
definition, as pointed by [3], is as follows: to solve differ-
ential equations (both classical and fractional), we need to
specify additional conditions in order to produce a unique
solution. For the case of the Caputo fractional differential
equations, these additional conditions are just the traditional
conditions, which are akin to those of classical differential
equations and are therefore familiar to us. In contrast, for
the Riemann-Liouville fractional differential equations, these
additional conditions constitute certain fractional derivatives
(and/or integrals) of the unknown solution at the initial point
x = 0, which are functions of x. These initial conditions are
not physical; furthermore, it is not clear how such quantities
are to be measured from experiment, say, so that they can
be appropriately assigned in an analysis. For more details
see [4]. Therefore, we shall introduce a modified fractional
differential operator Dα proposed by Caputo in his work on
the theory of viscoelasticity [5].
Definition: The Caputo definition of the fractional-order
derivative of function f : [a, b] → R is defined as:

Dαf(x) =
1

Γ(n− α)

∫ x

0

f (n)(t)

(x− t)α+1−n
dt, (3)

n− 1 < α ≤ n, n ∈ N

where α is the order of the derivative and n is the smallest
integer greater than α. For the Caputo derivative we have
[6]:

DαC = 0, (C is a constant),

Dαxβ = 0, β ∈ N, β < ⌈α⌉,

Dαxβ =
Γ(β + 1)

Γ(β + 1− α)
xβ−α,

β ∈ N, β ≥ ⌈α⌉ or β ∈ R−N0, β > ⌊α⌋,

where ⌈α⌉ denotes the smallest integer greater than or equal
to α and ⌊α⌋ denotes the largest integer less than or equal
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to α and N0 = 0, 1, 2, ....
For the Laplace transformation of f(x) we have:

L (Dαf(x)) = sαLf(x)−
n−1∑
j=0

sα−1−jf (j)(0). (4)

It is clear that for α ∈ N the Caputo differential operator
coincides with the usual differential operator of an integer
order. Similar to the integer-order differentiation, the Caputo
fractional differentiation is a linear operator:

Dα(λf(x) + µg(x)) = λDαf(x) + µDαg(x),

where λ and µ are constants. In the present work, the
fractional derivatives are considered in the Caputo sense.

III. CUBIC B-SPLINE SCALING AND WAVELET
FUNCTIONS

The general theory and basic concepts of the wavelet
theory and MRA are given in [7]-[12].
Wavelets and scaling functions are defined on the entire
real line so that they could be outside of the integration
domain. This behavior may require an explicit enforcement
of the boundary conditions. In order to avid this occurrence,
semiorthogonal compactly supported spline wavelets, con-
structed for the bounded interval [0, 1], have been taken into
account in this paper. These wavelets satisfy all the properties
verified by the usual wavelets on the real line.
Definition: Let m and n be two positive integers and

a = x−m+1 = . . . = x0 < . . . < xn = . . . = xn+m−1 = b,

be an equally spaced knots sequence. The functions

Bm,j,X(x) =
x− xj

xj+m−1 − xj
Bm−1,j,X(x)

+
xj+m − x

xj+m − xj+1
Bm−1,j,X(x),

j = −m+ 1, . . . , n− 1,

and
B1,j,X(x) =

{
1 x ∈ [xj , xj+1),
0 otherwise,

are called cardinal B-spline functions of order m ≥ 2 for the
knot sequence X = {xi}n+m−1

i=−m+1, and Supp [Bm,j,X(x)] =
[xj , xj+m]

∩
[a, b].

For the sake of simplicity , suppose

[a, b] = [0, n], xk = k, k = 0, ..., n.

The Bm,j,X = Bm(x − j), j = 0, ..., n − m,
are interior B-spline functions, while the remaining
Bm,j,X , j = −m+1, ...,−1 and j = n−m+1, ..., n−1 are
boundary B-spline functions, for the bounded interval [0, n].
Since the boundary B-spline functions at 0 are symmetric
reflections of those at n, it is sufficient to construct only the
first half functions by simply replacing x with n− x.
By considering the interval [a, b] = [0, 1], at any level
j ∈ Z+, the discretization step is 2−j and this generates
n = 2j number of segments in [0, 1] with knot sequence

X(j) =


x
(j)
−m+1 = ... = x

(j)
0 = 0,

x
(j)
k = k

2j k = 1, ..., n− 1,

x
(j)
n = ... = x

(j)
n+m−1 = 1.

Let j0 be the level for which

2j0 ≥ 2m− 1,

for each level j ≥ j0 the scaling functions of order m can
be defined as follows:

φ
(j)
m,k(x) =



Bm,j0,k(2
j−j0x)

k = −m+ 1, ...,−1

Bm,j0,2j−m−k(1− 2j−j0x)
k = 2j −m+ 1, ..., 2j − 1

Bm,j0,0(2
j−j0x− 2−j0k)

k = 0, ..., 2j −m.

And the two-scale relation for the m-order semi orthogonal
compactly supported B-wavelet functions are defined as
follows:

ψm,j,i−m =
2i+2m−2∑

k=i

qi,kBm,j,k−m , i = 1, ...,m− 1, (5)

ψm,j,i−m =
2i+2m−2∑
k=2i−m

qi,kBm,j,k−m , i = m, ..., n−m+ 1,

(6)

ψm,j,i−m =
n+i+m−1∑
k=2i−m

qi,kBm,j,k−m , i = n−m+ 2, ..., n,

(7)
where qi,k = qk−2i.
Hence, there are 2(m−1) boundary wavelets and (n−2m+
2) inner wavelets in the boundary interval [a, b]. Finally by
considering the level j with j ≥ j0 , the B-wavelet functions
in [0, 1] can be expressed as follows:

ψm,j,i(x) =



ψm,j0,i(2
j−j0x)

i = −m+ 1, ...,−1

ψm,2j−2m+1−i,i(1− 2j−j0x)
i = 2j − 2m+ 2, ..., 2j −m

ψm,j0,0(2
j−j0x− 2−j0i)

i = 0, ..., 2j − 2m+ 1.

(8)

The scaling functions φ(j)
m,k(x), occupy m segments and the

wavelet functions ψ(j)
m,i(x) occupy 2m− 1 segments.

Therefore the condition 2j ≥ 2m − 1, must be satisfied in
order to have at least one inner wavelet.
Cubic B-spline scaling function φ4(x) is given by:

φ4(x) =
1

6

4∑
k=0

(
4
k

)
(−1)k(x− k)3+ =


1
6x

3 x ∈ [0, 1)
1
6 (−3x3 + 12x2 − 12x+ 4) x ∈ [1, 2)
1
6 (3x

3 − 24x2 + 60x− 44) x ∈ [2, 3)
1
6 (4− x)3 x ∈ [3, 4)
0 otherwise,

(9)

where

xn+ =

{
xn , x > 0
0 , x ≤ 0.
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Fig. 1. Two scale relation of φ4(x)

And its two-scale dilation equation defined as follows:

φ4(x) =
4∑

k=0

1

8

(
4
k

)
φ4(2x− k). (10)

Fig 1 shows the two scale relation of cubic B-spline scaling
functions. In this section, the scaling functions used in this
work, for j0 = j = 3 and m = 4 , are reported :

Boundary scalings
Three left boundary cubic B-spline scaling functions are
constructed by the following formula:

φ
(3)
4,k(x) = φ4(8x− k).χ[0,1](x), (11)

k = −3,−2,−1,

and for other levels of j, we have:

φ
(j)
4,k(x) = φ

(3)
4,k(2

j−3x), (12)

k = −3,−2,−1, j = 4, 5, . . . ·

left and right boundary scaling functions are symmetric with
respect to 0, so right boundary scalings are constructed by:

φ
(3)
4,5(x) = φ

(3)
4,−1(1− x), (13)

φ
(3)
4,6(x) = φ

(3)
4,−2(1− x), (14)

φ
(3)
4,7 = φ

(3)
4,−3(1− x), (15)

and for other levels of j, we have:

φ
(j)
4,2j−k−3(x) = φ

(3)
4,k(2

j−3x), (16)

k = −3,−2,−1, j = 4, 5, . . . ·

Inner scalings
Five inner cubic B-spline scaling functions are constructed
by the following formula:

φ
(3)
4,k(x) = φ4(8x− k).χ[0,1](x), (17)

k = 0, 1, 2, 3, 4, 5,

and for other levels of j, we get:

φ
(j)
4,k(x) = φ

(3)
4,k(2

j−3x− k),

k = 0, 1, ..., 2j − 4, j = 4, 5, . . . · (18)

Two scale delation equation for cubic B-spline wavelet is
given by:

ψ4(x) =
10∑
k=0

(−1)k

8

4∑
l=0

(
4
l

)
φ8(k − l + 1)φ4(2x− k).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 2. Boundary and inner scaling functions
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-0.2

-0.1

0.0

0.1

0.2

Fig. 3. Boundary and inner wavelets

Other inner and boundary wavelets are made similarly by
equations 5-8 [13].

Figures 2 and 3 show the boundary and inner scaling and
wavelet functions for cubic B-spline wavelet.

A. Function approximation

A function f(x) defined over [0, 1] may be approximated
by cubic B-spline wavelets as:

f(x) =

2j0−1∑
i=−3

cj0,iφj0,i(x) +

∞∑
k=j0

2k−4∑
j=−3

dk,jψk,j(x), (19)

where φj0,i and ψk,j are scaling and wavelets functions,
respectively. If the infinite series in equation 19 is truncated,
then it can be written as:

f(x) ≃
i=2j0−1∑
i=−3

cj0,iφj0,i(x) +

ju∑
k=j0

2k−4∑
j=−3

dk,jψk,j(x),

or
f(x) ≃ CTΥ(x), (20)

where C and Υ are (2(ju+1) + 3) column vectors given by

C =
(
cj0,−3, ..., cj0,2j0−1, dj0,−3, ..., dju,2ju−4

)T
, (21)

Υ =
(
φj0,−3, ..., φj0,2j0−1, ψj0,−3, ..., ψju,2ju−4

)T
, (22)

with

cj0,i =

∫ 1

0

f(x)φ̃j0,i(x)dx , i = −3, ..., 2j0 − 1,

dk,j =

∫ 1

0

f(x)ψ̃k,j(x)dx

k = j0, ..., ju , j = −3, ..., 2ju − 4,

and φ̃j0,i and ψ̃k,j are dual functions of φj0,i, i =
−3, ..., 2j0 − 1 and ψk,j , j = j0, ..., ju, k = −3, ..., 2j − 4,
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respectively. These can be obtained by linear combinations
of φj0,i and ψk,j .
Let

φ(x) =
(
φ
(3)
4,−3(x), φ

(3)
4,−2(x), ..., φ

(3)
4,7(x)

)T
, (23)

ψ(x) =
(
ψ
(3)
4,−3(x), ..., ψ

(3)
4,4(x), ..., ψ

(ju)
4,2ju−4(x)

)T
, (24)

and ∫ 1

0

φ(x)φT (x)dx = P1, (25)

∫ 1

0

ψ(x)ψT (x)dx = P2, (26)

where P1 and P2 are 11× 11 and (2ju+1− 8)× (2ju+1− 8)
matrices, respectively. Suppose φ̃(x) and ψ̃(x) are the dual
functions of φ(x) and ψ(x), given by

φ̃(x) =
(
φ̃
(3)
4,−3(x), φ̃

(3)
4,−2(x), ..., φ̃

(3)
4,7(x)

)T
, (27)

ψ̃(x) =
(
ψ̃
(3)
4,−3(x), ..., ψ̃

(3)
4,4(x), ..., ψ̃

(ju)
4,2ju−4(x)

)T
. (28)

Using equations 23-24, 27 and equation 28 we have∫ 1

0

φ̃(x)φT (x)dx = I11,

∫ 1

0

ψ̃(x)ψT (x)dx = I2ju+1−8.

where I11 and I2ju+1−8 are 11×11 and (2ju+1−8)×(2ju+1−
8) identity matrices, respectively. So we get

φ̃ = P−1
1 φ, ψ̃ = P−1

2 ψ.

Thus, the dual function of Υ can be constructed as:

Υ̃(x) = P−1Υ(x),

where

P =

(
P1

P2

)
.

Now, we found a bound for wavelet coefficients.
Theorem 1: [13] We assume that f ∈ C4[0, 1] is represented
by cubic B-spline wavelets as 20, where ψ has 4 vanishing
moments, then

|dj,k| ≤ αβ
2−5j

4!
, (29)

where

α = max |f (4)(t)|t∈[0,1], β =

∫ 1

0

|x4ψ̃4(x)|dx.

Theorem 2: [13] Consider the previous theorem assume that
ej(x) be error of approximation in Vj , then

|ej(x)| = O(2−4j). (30)

As is shown in equation 30, the order of the error depends
on the level j. Obviously, for larger level of j, the error of
approximation will be smaller.

IV. NUMERICAL IMPLEMENTATION

Since all the boundary and inner B-spline scaling functions
and wavelets are composed by cardinal B-spline function of
order m = 4, if the analytical expressions of Dαφ4(x) , is
obtained, those of the boundary and inner B-spline scaling
functions and wavelets can be naturally achieved.
Theorem 3: For m ∈ N and m < α ≤ m+ 1, n > 0, x >
0, a > 0, b ≥ 0, if α ≤ n or α ∈ N , then:

Dα(ax− b)n+ = aα
Γ(n+ 1)

Γ(n+ 1− α)
(ax− b)n−α

+ . (31)

Proof: Let

f(x) = xn+, g(x) = f(ax− b) = (ax− b)n+,

then the Laplace transform of f(x) is:

F (s) =

∫ ∞

0

e−sxf(x)dx =
Γ(n+ 1)

sn+1
,

by the property of the Laplace transform, Laplace transform
of g(x) is:

G(s) =

∫ ∞

0

e−sxg(x)dx =
1

a
e−

b
a sF (

s

a
),

From the property of fractional derivative equation 6, we can
obtain:

L
(
Dα(ax− b)n+

)
= L (Dαg(x)) =

sαG(s)−
m∑
j=0

sα−1−jg(j)(0) =

an
Γ(n+ 1)

Γ(n+ 1− α)
L

[(
x− b

a

)n−α

+

]
=

aα
Γ(n+ 1)

Γ(n+ 1− α)
L
[
(ax− b)n−α

+

]
. (32)

From the uniqueness of Laplace transform, we get:

Dα(ax− b)n+ = aα
Γ(n+ 1)

Γ(n+ 1− α)
(ax− b)n−α

+ .

Now, we derive the analytical expression of Dαφ4(x).
Theorem 4:

Dαφ4(x) =
1

Γ(4− α)

4∑
k=0

(
4
k

)
(−1)k(x− k)3−α

+ . (33)

Proof: By substituting 9 in 31, proof is completed.
So by the fractional derivative of φ4(x) we can obtain
the fractional derivative of boundary scaling functions as
follows:

Dαφ
(3)
4,k(x) = Dαφ4(8x− k).χ[0,1](x) =(

8α

Γ(4− α)

4∑
i=0

(
4
i

)
(−1)i(8x− k − i)3−α

)
.χ[0,1](x),

(34)
K = −3,−2,−1.

And for other levels of j, we get:

Dαφ
(j)
4,k(x) = Dαφ

(3)
4,k(2

j−3x) =(
2jα

Γ(4− α)

4∑
i=0

(
4
i

)
(−1)i(2jx− k − i)3−α

)
.χ[0,1](x),

(35)
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K = −3,−2,−1, j = 4, 5, . . . .

By the symmetry property of B-spline scaling functions, the
fractional derivative of right boundary scaling functions are
constructed similarly:

Dαφ
(3)
4,k(x) = Dαφ

(3)
4,4−k(x). k = 5, 6, 7. (36)

Fractional derivative of inner scaling functions can be for-
mulated as follows:

Dαφ
(3)
4,k(x) = Dαφ4(8x− k).χ[0,1](x) =(

8α

Γ(4− α)

4∑
i=0

(
4
i

)
(−1)i(8x− k − i)3−α

)
.χ[0,1](x),

(37)

K = 0, 1, ..., 5.

And for other levels of j, we get:

Dαφ
(j)
4,k(x) = Dαφ

(3)
4,k(2

j−3x− k) =

(
2jα

Γ(4− α)

4∑
i=0

(
4
i

)
(−1)i(2jx− k − i)3−α

)
.χ[0,1](x),

(38)

K = 0, 1, . . . , 2j − 4, j = 4, 5, . . . .

The fractional derivative of B-spline wavelets are made
similarly. Therefore the fractional derivative of Υ(t) is as
follows:

DαΥ(t) =
(
Dαφj0,−3(t), ..., D

αψju,2ju−4(t)
)T
, (39)

Now for solving the equation 1, the fractional derivative
of unknown function is approximated by cubic B-spline
wavelets as:

Dαy(t) = Dα(CTΥ(t)) = CTDαΥ(t), (40)

substituting the current equation in equation 1, we have:

CTDαΥ(t) = CT p(t)Υ(t) + f(t) + CT

∫ t

0

K(t, s)Υ(t)dt,

(41)
To find the solution y(t), we collocate the equation 41 in

ti =
i

2ju+1 + 2
, i = 0, 1, . . . , 2ju+1 + 2,

so the fractional integro-differential equation transform to
some algebraic linear equation that can be solved by some
iteration method.
The limits of integrations in equation 41 range from zero to
one; the actual integration limits are much smaller because
of the finite supports of the semiorthogonal scaling functions
and wavelets. Moreover, a lot of integrals in equation 41
become zero due to the semiorthogonality and vanishing mo-
ments properties of the wavelet functions. So using cubic B-
spline wavelets, a sparse system of equations can be obtained
from fractional integro-differential equation. Therefore, by
using present method, we can economize in computational
time and memory requirement.

TABLE I
EXACT AND NUMERICAL SOLUTION OF EXAMPLE 1

xi ju = 4 ju = 5 Method of [14] Exact

0 0.00003 0.000000 0.00056 0

0.2 0.0080371 0.00800 0.008694 0.008

0.4 0.064024 0.064000 0.64098 0.064

0.6 0.216084 0.216000 0.216058 0.216

0.8 0.512043 0.512000 0.512583 0.512

1 1.000028 1.000000 1.000064 1

TABLE II
EXACT AND NUMERICAL SOLUTION OF EXAMPLE 2

xi ju = 4 ju = 5 Method of [14] Exact

0 0.000286 0.000000 0.000357 0.0

0.2 0.240010 0.240000 0.240035 0.24

0.4 0.560087 0.560000 0.560093 0.56

0.6 0.960053 0.960000 0.960026 0.96

0.8 1.440081 1.440000 1.440073 1.44

1 2.000617 2.000000 2.001013 2

V. ILLUSTRATIVE EXAMPLES

In this section, for showing the accuracy and efficiency of
the described method we present some examples.
Example 1: Consider the following fractional integro-
differential equation:

y(
3
4 )(t) =

(
− t

2et

5

)
y(t) +

6
4
√
t9

Γ(3.25)
+

∫ t

0

etsy(s)ds,

with the initial condition y(0) = 0 and the exact solution
y(t) = t3.
The solution for y(t) is obtained by the method in Section
5 at the octave level j0 = 3 and at the levels ju = 4 and
5. In Table I, we present exact and approximate solutions of
Example 1 in some arbitrary points. As proved perviously,
the error at the level ju = 5 is smaller than the error at
ju = 4.

Example 2: Consider the following fractional integro-
differential equation:

y(
1
2 )(t) = (cos(t)− sin(t)) y(t)+f(t)+

∫ t

0

tsin(s)y(s)ds,

with the initial condition y(0) = 0 and f(t) is chosen such
that the exact solution of equation is y(t) = t2 + t.
The solution for y(t) is obtained by the method in Section
5 at the octave level j0 = 3 and at the levels ju = 4 and 5.
In Table II, we present exact and approximate solutions of
Example 2 in some arbitrary points. As proved perviously,
the error at the level ju = 5 is smaller than the error at
ju = 4.

VI. CONCLUSION

In this work a new approach for solving fractional integro-
differential equation is purposed. Collocation method via cu-
bic B-spline wavelets are used to reduce the fractional integro
differential equation to soma algebraic equation. Because of
some properties of these wavelets such as semi orthogonality,
having compact support and vanishing moments, system of
equations are so spars. The approach can be extended to non-
linear fractional integral and integro-differential equations
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with little additional work. Further research along these lines
is under progress and will be reported in due time.

REFERENCES

[1] A. A. Kilbas, H. M. Srivastava and Juan. J. Trujillo, “Theory and
Applications of Fractional Differential Equations,” North Holland
Mathematics Studies, vol. 204, Elsevier Science, B.V., Amsterdam,
2006.

[2] S. Das, Functional Fractional Calculus for System Identification and
Controls, Springer, New York, 2008.

[3] S. Momani and M. A. Noor, “Numerical methods for fourth-order
fractional integro-differential equations,” Appl. Math. Comput., vol.
182, pp. 754-760, 2006.

[4] I. Podlubny, “Geometric and physical interpretation of fractional
integration and fractional differentiation,” Fract. Calculus Appl., Anal.
vol. 5, pp. 367-386, 2002.

[5] M. Caputo, “Linear models of dissipation whose Q is almost frequency
independent. Part II,” J. Roy Austral. Soc., vol. 13, pp. 529-539, 1967.

[6] K. Diethelm, N. J. Ford, A. D. Freed and Yu. Luchko, “Algorithms for
the fractional calculus: A selection of numerical methods,” Comput.
Methods Appl. Mech. Eng., vol. 194, pp. 743-773, 2005.

[7] C. Chui, An introduction to wavelets,New york: Academic press, 1992.
[8] I. Daubechies, Ten lectures on wavelets, Philadelpia, PA; SIAM, 1992.
[9] G. Strang and T. Nguyen, Wavelets and filter banks, Cambridge, MA:

Wellesley-Cambridge, 1997.
[10] L. Telesca, G. Hloupis, I. Nikolintaga and F. Vallianatos, “Temporal

patterns in southern Aegean seismicity revealed by the multiresolution
wavelet analysis,” Commun. Non. Sci. Num. Simul., vol. 12, pp. 1418-
1426, 2007.

[11] C. Chui, Wavelets: a mathematical tool for signal analysis, Philadelpia,
PA: SIAM, 1997.

[12] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation, IEEE Trans,” Pattern Anal. Mach. Intell., vol.
11, pp. 674-693, 1989.

[13] K. Maleknejad, K. Nouri and M. Nosrati Sahlan, “Convergence of
approximate solution of nonlinear Fredholm-Hammerstein integral
equations,” Commun. Nonlinear. Sci. Num. Simul., vol. 15, no. 6, pp.
1432-1443, 2010.

[14] E. A. Rawashdeh, “Numerical solution of fractional integro-differential
equations by collocation method,” Applied Mathematics and Compu-
tation, vol. 176, pp. 1-6, 2006.

Proceedings of the World Congress on Engineering 2013 Vol I, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013




