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Abstract— Lattice Boltzmann method is accepted as an 
alternative method for classical computational fluid dynamic. 
It is used in this study to show wave propagation and reflection 
problem. This method is a good choice of simulating weak 
acoustic fluctuations. BGK approximation, D2Q9 lattice and 
bounce back boundary is used to see the behavior of a circular 
source with 10% higher density in magnitude in contrast with 
other domain. The code is validated with the classical lid-
driven cavity. An agreement with the previous works confirms 
the code in streaming, collision and boundary implementation. 
Four scenarios are considered to see the wave propagation and 
its behavior after collision with the solid boundaries. Density 
contours in different time steps represent the behavior of wave 
and the effect of blocks and walls. Existence of block in the 
medium ruptures the wave front and changes the shape of high 
and low density zones especially near walls and blocks.  
 

Index Terms—lattice Boltzmann method, wall and block, 
wave propagation, wave reflection 
 

I. INTRODUCTION 

ATTICE Boltzmann (LBM) is one of powerful methods 
in describing different physical phenomena.  Its origin 

returns to Lattice Gas Automata [1, 2]. A theoretical 
framework is valid for representing hydrodynamic systems 
through a systematic discretisation of the Boltzmann kinetic 
equation [3]. 

The LBM has been developed in recent years and 
nowadays considers as a reliable tool with simple 
formulation and implementation. Its application covers a 
wide range of problems [4]. It was first introduced as a 
numerical tool for the simulation of fluid flow. This method 
is a microscopic-based approach for simulation of fluid flow 
at the macroscopic scales.  The fast development of this 
method is mainly due to simple formulation in comparison 
to Navier-Stokes (NS) equations [4], the local nature of the 
streaming-collision operations and explicit formulation, 
which let to ease parallel processing of method [5]. 

During the past decade, applications of this method are 
extended to complex flows, multiphase flows, micro and 
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nanofluidics and turbulence which provide a new approach 
to these problems.  

So far, few works have been done on simulation of 
acoustics by implementing of this method. Recently some 
works have been started to analyze the linear and non-linear 
acoustic propagation. The lattice Boltzmann method gives 
behavior according to the wave equation, and so it can be 
used to simulate acoustics waves as weakly compressible 
flows with low Mach number can be simulated using LBM. 

Viggen [6] proposed point source method for the 
simulation of acoustic applications. He applied this point 
source to simulate cylindrical waves and plane waves, and 
compared his numerical result with analytic solutions of 
viscously damped cylindrical and plane waves. He 
concluded that the lattice Boltzmann method could be used 
for simulation of acoustics in complex flows, at ultrasound 
frequencies and very small spatial scales. Further acoustic 
waves can be introduced into this model provided the 
pressure variations remain small relative to the ambient 
pressure [7]. Ricote et al. [8] simulated propagation of 
acoustic plane wave. They indicated that the dissipation of 
acoustic wave obtained by this method agrees well with 
theoretical results. 

Buick et al. [9] used BGK lattice Boltzmann model for 
simulating non-linear propagative acoustic waves. They 
showed that the lattice Boltzmann model is useful approach 
for simulating non-linear acoustical phenomena. Their 
simulations limited to progressive waves in an unbound 
media.  

The action of the walls significantly influences the 
acoustics, hence in this study the effects of wall and blocks 
have been considered by using LBM. 

 

II. GOVERNING EQUATIONS AND NUMERICAL METHOD 

Classical computational fluid dynamics approach uses 
numerical solutions of partial differential equations called 
Navier-Stokes which derived from applying conservation 
laws. These equations can be solved by discretising time and 
space using methods like finite difference, finite volume and 
finite element to calculate macroscopic values like velocity 
and density.  

Lattice Boltzmann method discretises the fluid as 
particles with certain positions and velocities that are 
allowed to move in specific directions. These particles are 
represented by distribution functions calculated by solving 
the lattice Boltzmann equation (1): 

 

Lattice Boltzmann Modeling of Wave 
Propagation and Reflection in the Presence of 

Walls and Blocks 
Maysam Saidi, Hassan Basirat Tabrizi, Member, IAENG, and Reza Sepahi Samian 

L

Proceedings of the World Congress on Engineering 2013 Vol III, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



 

( , ) 1
. ( , ) [ ( , ) ( , )]eqk

k k k k

f x t
c f x t f x t f x t

t 


    


  (1) 

 
where subscript k  represents the direction which the 
distribution function kf  streams with speed of kc  and 

should be solved in each time step,   is the relaxation time 

toward the equilibrium distribution function of eq
kf , and 

superscript “eq” refers to the equilibrium density 
distribution function. Further the equilibrium distribution 
function can be calculated as (2): 
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The kinematic viscosity for a square lattice can be 

obtained by (3): 
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where c  is the speed of sound and equals to 
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in which 0T  is the average temperature and R  is the 

universal gas constant. 
There are different lattices, which are used to simulate 

problems. In the proposed simulation, D2Q9 is 
implemented. This is commonly used lattice for 2D 
problems. This lattice and directions numbering are shown 
in Fig. 1. Each cell contains 9 velocities include one in rest 
(0), four in Cartesian (1, 2, 3, 4) and four in diagonal (5, 6, 
7, 8) directions.   

In Eq. (2) k  represents the weights of different 

directions which are 0 4 / 9  , 1,2,3,4 1 / 9  , and 

5,6,7,8 1 / 36  .  

Particle velocity has been discretised as Eq. (5): 
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The macroscopic properties of the gas can be computed 

as 
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Fig. 1. D2Q9 lattice  

 
Since the boundary conditions is an important issue in 

the lattice-Boltzmann method. The unknown distribution 
functions at solid boundaries are computed after streaming 
step based on the Standard Bounce-Back (SBB) boundary 
condition. In the SBB, the incoming particle distribution 
function reflects back at the solid boundary after the 
streaming step [4]. 

 

III. RESULTS AND DISCUSSION 

The LBM code is written and validated using lid driven 
cavity problem with Reynolds number of 1000. The 
101×101 lattices in a square cavity with a moving lid and 
three fixed walls shows a good agreement with previous 
works [10-13].  

The streamlines are presented in Fig. 2. There are two 
secondary vortexes in lower right and left and one primary 
vortex in the center. Center positions of these three vortexes 
are reported on Table I. As a consequence of this table the 
difference of present work and Ghia et al. [10] in the center 
position of primary, lower left and lower right are 0.6, 5 and 
2.1 percents, respectively. 

 
 

 
 

Fig. 2. Streamlines of lid-driven cavity at Re=1000 
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TABLE I 
COMPARISON OF THREE VORTEXES COORDINATION 

OF  LID-DRIVEN CAVITY AT RE=1000 (FIG. 2) 

 
Primary 
Vortex 

Lower left 
Vortex 

Lower right
Vortex 

X Y X Y X Y 

Present work 0.5310 0.5663 0.0818 0.0782 0.8631 0.1117

Ghia [10] 0.5313 0.5625 0.0859 0.0781 0.8594 0.1094

Schreiber [11] 0.5286 0.5643 0.0857 0.0714 0.8643 0.1071

Venka [12] 0.5438 0.5625 0.0750 0.0813 0.8625 0.1063

Hou [13] 0.5333 0.5647 0.0902 0.0784 0.8667 0.1137

 
Lattice Boltzmann method is weakly compressible 

approximation of incompressible Navier-Stokes equations. 
Its error is of order of Ma2 and can be neglected in pressure 
or density gradient of 10% [14]. In this study, a square with 
401×401 nodes in D2Q9 lattice is used. The domain is at 
rest with the density of 1. A circle source with diameter of 
100 nodes and density of 1.1 is on position of (100,200) at 
start time of simulation. The relaxation time is assumed to 
be 1. The geometry and initial source is illustrated in Fig.3. 

 

 
Fig. 3. Circular source in a square domain at initial time 
( 1.1, 1)

black white
     

 
In order to see the propagation of the source and its 

interaction with solid boundaries four different scenarios are 
tested. The first test is simulated with no block and 
subsequently a 40×40 square rotated block at (300,200). At 
the third scenario, a 40×40 square block at (300,200) and the 
last scenario is three 40×40 square blocks which are 
positioned at (300,200), (200,100) and (200,300).  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Contour of density in scenario (1) at time step: a) 100, b) 250, c) 
350, d) 500 
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(c) 

 
(d) 

 
(d) 

 
(d) 

Fig. 5. Contour of density in scenario (2) at time 
step: a) 100, b) 250, c) 350, d) 500 

Fig. 6. Contour of density in scenario (3) at time 
step: a) 100, b) 250, c) 350, d) 500 

Fig. 7. Contour of density in scenario (4) at time 
step: a) 100, b) 250, c) 350, d) 500 

 

The wave propagates with time. Density contours of 
domain are presented in Fig. 4 to 7 in time steps of 100, 250, 
350 and 500 (a, b, c, d). In Fig. 4-a to 7-a which are at time 
step of 100 the left side of the wave front touches the left 
wall and reflects back. High-density zone can be observed in 
this region. They are same in four scenarios and blocks 
don’t affect the wave yet. In Fig. 5-b to 7-b the right side of 
the wave front touches blocks. The reflection and density 
increasing can be seen after interaction of density wave and 

the solid. These solid blocks cause disturbance in the 
propagation of the wave. Two blocks in the centerline of 
domain in Fig. 7-b create discontinuity in the wave front 
(high-density zone). Low-density zone after the high density 
wave front propagates. Its left is in the center of the left wall 
in Fig. 4-b to 7-b and its right is in chase the right high 
density wave. The low-density zone is not continuous 
because of high-density zones reflections from left, top and 
bottom walls in time steps of 250 and 350 (b, c). The right 
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high density wave reaches to and reflects from the blocks on 
(300,200) in Fig. 5-b to 7-b and right wall in Fig. 4-d to 7-d 
and is recognizable with its high density value in contours. 
Its left front decomposes to two high-density zones and 
reflects from the left wall to right side. They are in the 
centerline of domain at time step 500. A low-density zone in 
the left side of these two high-density zones can be seen. 
The shape of this low-density zone is more circular in Fig. 
7-d than other scenarios because of the existence of two 
blocks on centerline, which prevent two high-density zones 
to pass rightward. The other difference which can be 
observed on the right wall is the shape of high density 
regions at time step 500. Although there are two sections in 
Fig. 4-d but positioning a block in Fig. 5-d and 6-d makes 
them three sections. In Fig. 7-d two regions of these high 
density zones are weakened because of two centerline 
blocks effect. 

 

IV. CONCLUSION 

Lattice Boltzmann method was used to study the wave 
propagation in a domain and its interaction with solid 
boundaries including blocks and walls. A numerical code 
was developed based on streaming and collision. The code 
was validated with a lid-driven square cavity with reported 
works and indicated a good agreement. Effect of position 
and shape of the blocks on the wave propagation were 
presented with contours. Comparison showed that effect of 
blocks on the right wave front is obvious also the tails of the 
wave fronts which were low density zones were affected by 
blocks. Therefore, Lattice Boltzmann modeling of wave 
propagation and reflection has the ability to simulate weakly 
compressible flows like acoustic waves. 
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