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Abstract—This paper provides necessary conditions
of optimality, in the form of a maximum principle, for
optimal control problems of switching systems. Dy-
namics of the constituent processes take the form of
stochastic differential equations with control terms in
the drift and diffusion coefficients. The restrictions on
the transitions or switches between operating modes,
are described by collections of functional equality con-
straints
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1 Introduction

In general, a lot of real systems have abrupt changes in
their dynamics that result from causes such as connec-
tions or disconnections of some components and success
or failures in outcomes. These systems have stochastic
behaviour and have been modeled by the class of stochas-
tic differential equations [8, 24].

Change of the structure of the system means that at some
moment it may go over from one law of movement to an-
other. After changing the structure, the characteristics of
the initial condition of the system depends on its previ-
ous state. This situation joins them into a single system
with variable structure [6, 15].

A switching systems have the benefit of modeling dy-
namic phenomena with the continuous law of movement.
Recently, optimization problems for switching systems
have attracted a lot of theoretical and practical interest
[6, 9, 16, 17, 18, 21, 28, 29, 30].

Stochastic control problems have a variety of practical
applications in fields such as physics, biology, economics,
management sciences, etc. [1, 22]. The modern stochas-
tic optimal control theory has been developed along the
lines of Pontryagin’s maximum principle and Bellman’s
dynamic programming [20, 31]. The stochastic maxi-
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mum principle has been first considered by Kushner [25].
Earliest results on the extension of Pontryagin’s max-
imum principle to stochastic control problems are ob-
tained in [7, 10, 12, 23]. A general theory of stochastic
maximum principle based on random convex analysis was
given by Bismut [13]. Modern presentations of stochastic
maximum principle with backward stochastic differential
equations are considered in [14, 26, 27].

In this paper, backward stochastic differential equations
have been used to establish a maximum principle for
stochastic optimal control problems of switching systems.
Such kind of problems have been considered by the au-
thors in [2, 3, 5], where the optimal control problem
of switching systems for stochastic systems with uncon-
trolled diffusion coefficients are studied. The problems
with controlled diffusion coefficients without endpoint
constraints are considered in [4] .

In this paper, the optimal control problem of stochastic
switching systems with control terms in the drift and dif-
fusion coefficients and with endpoint constraints is con-
sidered. We obtain necessary condition of optimality in
the form of a maximum principle for such systems, where
the restrictions on transitions are described by equality
constraints.

The rest of the paper is organized as follows. The no-
tations, some basic definitions and the description of the
main problem are given in section 2. Section 3 is de-
voted to stochastic optimal control problem of switching
system with endpoint constraints. In this section we give
some important facts for our goal and establish necessary
condition of optimality for the case of controlled diffusion
coefficient.

2 Preliminaries and Statement of prob-
lem.

Throughout this paper, we use the following notations.
Let N be some positive constant, R"™ denotes the
n dimensional real vector space, |.| denotes the Eu-
clidean norm in R™ and E represents the mathemat-
ical expectation. Assume that w},w?,..,w} are in-
dependent Wiener processes, which generate filtration
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Ftl = 6(wé,tl,1,tl),l = W, 0 =t) < t1 < ... <
t, = T. Let (QF,P),l = 1,7 be a probability

space with filtration{ Fy,t € [0,T] }, where F; = |J F}.
=1

L% (a,b; R™) denotes the Space of all predictable pro-

cesses x4 (w) such that: Ef|mt )2 dt < 400, R™*Mis

the space of linear transformatlons from R™ to R™. Let

O, C R%, @, C R™,1l=1,r, be open sets.

Consider the following stochastic control system:

dxt =g (xtvuta )dt+fl (xtvuta )dwt7

te (tlfl,tl] =17
2, =o' (:vij_i,tzfl) l

6 LFl (tl 17tl1R

Il
N
5
8

utEUd_{u

)}1-3)

Elements of U), I = 1,7 are called admissible

controls. The problem is to find optimal in-
puts (ac 22, . am, ub u?, ..,u’") and switching sequence
ti,to, ety such that the cost functional :

t

W=Y B¢ @)+ [P ehidoa] @
=1

ti—1

is minimized on the decisions of the system (1)-(3), which
are generated by all admissible controls U = U! x U? x
.. x U" at conditions:

Eq (=}

) =0,1=T1,r (5)

Assume that the following requirements are satisfied:

L. Functions ¢, f',p', 1 = 1,r are twice continuously dif-
ferentiable with respect to x.

II.  Functions ¢, f'p', 1 = 1,r and all
their derivatives are  continuous in  (z,uw).
gk, gk, fgl;7 1 pl.are bounded and hold the condition:
(T4 |z])~ (|g (z,u, t)| + |gL (@, u, )| + | (@, u,t)| +

+|fglc (x,u,t)| + ’pl (x,u,t)| + |pi (x,u,t)‘) < N.

III.Functions ¢'(z) : R™ — R, 1 = 1,7 are twice contin-
uously differentiable and satisfy the condition:
| < N1+ |a)), | < N.

| (@)] + |¢% (@) |P2a ()

IV Functions ®!(z,t) : R™ x T — RY,l = 1,7 — 1 are
continuously differentiable with respect to (z,¢) and hold
the condition:

|®! (2, )] + | @ (2,8)] < N1+ |]).
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V Functions ¢! (z) : R™ x R' — R, 1 = 1,7 are twice
continuously differentiable and meet the condition:

¢ (,1)] + |a5 (2. 8)] < N(1+ Ja).

Consider the sets:

A*T2+1XHO XHA XHQJ, =1,r,

with the elements

i __ 1,2 i, 1 2 i
™ = (thtlativxtﬂzta"'axuu YU ey U )

Definition 1 The set of functions {xi =gt (t,wl)},
t € [ti—1,t], 1 = 1,r is said to be a solution of equa-
tions (1)-(2) with variable structure which corresponding
to an element 7" € A, if function ! € O; on the inter-
val [t;_1,1t;] satisfies the condition (2) on point ¢;, while
it is absolutely continuous on the interval [t;_1,t;] with
probability 1 and satisfies the equation (1) almost every-
where.

Definition 2 The element 7" € A, is said to be admis-
sible if the pairs (2}, u}), t € [ti—1,%], [ =T1,r are the
solutions of system (1)-(3) which satisfy the conditions

(5)-

Definition 3 Let A be the set of admissible elements.
The element 7" € A?, is said to be an optimal solution of
problem (1)-(5) if there exist admissible controls @', ¢t €
[ti—1,t] ,{ = 1,7 and solutions of system (1)-(2) such
that pairs(z},a!) , [ = 1,7 minimize the functional (4).

3 Main Result

To state the main result of this paper, we need to intro-
duce the following theorem is proved in [4].

Theorem 1 Suppose that, conditions I-IV hold and
= (th tla EE) t'r‘a L5 Loy g ey Lty ulv U'27 ) u'r‘) Is an op-
timal solution of problem (1)-(4). Then,

a) there exist random processes (3!, Bl) €
L%l (tlfl,tl; an) X L%l (tlfl,tl; anwm) and
(\I/i,Ki) S L%l (ti—1,t;; R™) x L%l (t1—1,ty; MM
which are the solutions of the following conjugate
equations:

dyl = —HL (WL ob ul t)dt + Bldw, t_1t <t;, 1=T1,r,

Z/}f:l = _(Pic(xé,,) +wél+1q)lz(xiptl)> l=1r-1,
¢£T = 7@;(33%T)ﬂ I=1,r;

(6)
dVl = [Hl (\Ili,xt,ut, )—l—Hl (Yl 2k ul,t)
fl*(act,ut, )Wl £l (xt,ut, )] dt + Kldwl,t € [t;_1,t)
qll}, - Sorx(xtl) + z/]tl+1 :E:E(‘Ttl’tl) l - 1 r—= 1
Uy = —¢h,(2))

(7)
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b) ae. 0 € [t;_1,ty] and V@l € U, 1 =T, ac. fulfills

the maximum principle:

H' (¢, xfy, u',0) — Hl(%v%v%v”*‘ ®)
+0. 5Auzfl*(x9,u9,9)\ll Ay fi(xh, uly,0) <0

¢) following transversality conditions hold.:

wiﬂfbl (mil,tl) =0,l=1,r—1,ac. 9)
Here H' (e, g, ug,t) = 1/&9 (@, us, t) +

+ Bef (we, ue, t) — Pl (@, ue, t) 5

Hl (\I/taxh Ut,t) = ‘Iltgl (mta Ut,t) + gl* (xhuht) \Ilt +

+ thl (xt7ut7t) + fl* (xhuht) Kt~

Then using the obtained result of the Theorem 1 and Eke-
land’s variational principle [19] the following theorem for
stochastic optimal control problem of switching systems
with constraints (5) is proved.

Theorem 2. Suppose that, conditions I-V hold and
77 = (bost1y ety Tpy s Ty ooy Ty, b, u?, o u”) is an
optimal solution of problem (1)- (5). Then,

a) there exist non-zero vectors (\g, A1, ..., \,) € R"!
and random processes (¢}, B1) € L%,(ti—1,t;; R™) x
L2, (ti—1, ti; RM™™) and (W, K}) € L%, (ti—1,t;; R™) %
L7, (tj—1,t;; RM*™ ) which are the solutions of the
conjugate equations:

d@[)é = —Halc(d)ivxffvuivt)dt + ﬁidw}h tl—ltlvl = 17""
wél = _@fv(xil) +¢il+1¢§;(xélatl)y l = 1,T - 17
T

Y = —Xowk(x) ) — IZ gl (x});
=1

(10)
d\I/l _[Hl (\I’fﬁxtvut’ )+Hl (wtvxwuévt)
+fl*(:vt,ut, t)wl £l (mt,ut, )] dt + Kldwl,t € [t;_1,1)
\I]é], = _SDCEI(‘(L.t]) + z/]tl+1 x:l)(xtl’tl) l - 1 r—= 1

T
i, = ~Aogi (@) = 20 N ()

(11)

b) ae. 0 € [t;_1,4] and Vil € U, 1 =1,r, a.c. fulfills
the maximum principle:

H' (¢, xp, u',0) — Hl(¢9,xo,u9,6)+ (12)
+0.5A, fl*(aze,ue, OWLA fH(zh,ub,0) <0
¢) following transversality conditions holds:
lefI)l (Jcil,tl) =0,a.c,l=1,r—-1 (13)

Proof. Fist we discuss the existence of uniquely so-
lutions of adjoint equations (10) and (11). In fact from
[10, 11, 26, 27|, the first-order adjoint processes (!, 5!)
and second order adjoint processes (¥4, K!) described in
a unique way by (10) and (11) respectively. Finally, we
obtain maximum principle in the case when and endpoint
constraints are imposed.
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For any natural j let’s introduce the following approxi-
mating functional for each [ = 1,7 :

1 () = SUBE )+ E [ o (ohoubot) . Bl (a,)) =

ti—1

min \/‘cé —1/j— EM' (2} ,ul ,t;) + ’qu(mér)F

l
c; ce

2

ty

where M' (z},u} ;) = lgﬁl(zél) + [ plah,ul, t)dt
ti—1

and € = { c:c<.J 0}, JO%minimal value of the functional

in the problem (1)-5).

Let V! = (UL, d) be space of controls obtained
by means of the following metric: d(ul,o!) =
(l®P) {(t,w) € [ti—1,t;] x Q: v} #ul}. For each | =

I,7 , the V! is a complete metric space [19].

It is easy to prove the following fact:

Lemma 1. Assume that conditions I-IV hold, ui’", l =
T,7 be the sequence of admissible controls from V7,
and xi’"be the sequence of corresponding trajectories of
the system (1)-(3). If the following condition is met:

2
=0,
l

where x; is a trajectory corresponding to an admissible
controls u} , [ =T1,7.

lim —al
n—oo

d(ub™ ul) — 0, then,

ti—1tl;

Due to continuity of the functionals IJI» vV — R™,
according to Ekeland’s variational principle, there are

controls such as; wub? : d(ul’ ul) < NG

Vul € V! the following is achieved: Ijl»(ul’j) < I]l-(ul) +

,/eéd(ul’j,ul),eé. = %

This 1nequahty means that for each ¢t €
) 1.j
(b1, ooty p? o al? g

lowing problem:

and for

(ti—1,t]
,uy?) is a solution of the fol-

Z(Il \/7E f 5ut,ut’1 >—>min
ti—1

dwt =g (‘Ttvuw )dt+f (xput )dwta =1
xifl P! (.Z‘tl,tl) l=1,r—1; xto = x9,

ul € U}

(14)
Function d(u,v) is determined in the following way:

0,u=
‘5(“’”):{ 1 57&3

Then according to the Theorem 1, it is obtained as fol-
lows: 4 4

1) there exist the random processes (¢i7, M) €
L2, (ti—1,ti; R™) x L%, (t—1,t;; R™>*™), which are solu-
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tions of the following system:
avy? = L ()72l up? ) di + 87 du,
tetin,t), l=1,r
"pwlf;j =—¢ (xtl ) + wtlﬂq)l (xt,j t),l=1r—1
Ui, = N, (mu) - Z X, (xtr) :
(15)

and the random processes U7/ e L2, (ti—1,t;; R™), K\ e
L%l (ti—1,t;; R™>*™), which are solutions of the following
system:

Ay’ = —[H. (W7, 2y g, t) + HL (b7 ahd bt
£ (i 7Ut’]af)\1’l’Jfl (b9 ul? t)] dt + K dw!
\I’é’;j = _Sam(xt, )—l—q/}t;{A(I)l (] L ), l=1,r—1,
Uy = gl (2 - z%%ﬂdn
(16)
R"™! meet the following

where non-zero (X, M, ..., M) €

requirement:

(ND M- A <Z —e+1/j+ B¢ (mtl ) +

=1

ty
l,g
Ef P (zy aut

,t)dt, Bq* ( ) s Eq" (xff)) /J3(17)

ti—1
: 2
2= (Sl f +
1=1
t1 2
Yla—-1/i-E|¢@)+ | p(%imi,t)dt] 1z
=1 ti—1
2) ae. t € [ti1,t)) and V@ € VLI = 1,7, ac. is
satisfied:
Hl( tjvx:lf]’aév *Hl< tjvxijaut]at)Jr
+O 5Aulfl*(xt7]aui ) l]A lf (xtdvut] t) < O
(18)
3) the following transversality conditions hold:
Yl ( ’J7tl) =0, l=T,r =1, ac (19
Since the following has existed ||(A), M, ..., ) H =1, then

according to conditions I-IV it is implied that

(A X s M) = (Mo, Al ooy A )if § — 0.

Let us introduce the following results which will be
needed in the future.

Lemma 2. Let 1}, be a solution of system (10), wi;j be a
solution of system (15). If d(ul?, ul) — 0, j — oo, then
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t X ty .
E [ oy —¢lPdt+E [ |87 — BlPdt —0,1=T,7,
t1—1 t

-1

Proof: Tt is clear thatVt € [t;—1,¢], [

d (v’ ) = -

1,r:

l Li o lg
1 (.

+(§J

According Tto’s formula, for Vs € [t,_1,t,] it is satisfied:

u? ) = HL (], @l t) | de
- ﬂé) dwy
~ By ~

Elyy? YL =

(xff 7utjat) It

2Ef [0 = ¢ill(gh

9% (xnuw )(wtd W) + fi*(xbu{ﬂt) (ﬁl ‘ - B +
(flr(ap? u t) — lWWL“JD@J— ;7

l(mt autdvt) +
par(xhuta )dt+Ef |ﬁ ﬂé|2dt

gm (‘rmutv ))1/%

Due to assumptions I-IV and using simple transforma-
tions, the following is obtained:

E|By7 — BiPdt + Elphi — L |* <
tr . tr . .
EN[ |7 — @l 2dt+ ENe [ |87 — BL[2dt + E |y —
S S

Hence, according to Gronwall inequality [20] it suggests
that:
Bly} -

¢i|2 S DeN(tT*S) a.e.in [tr—lat’r‘] (20)

where constant D is determined in the way below:

D = Ely,! — i

According to (10) and (15), it is obtained that: wi’rj —
wi,, , which leads to D — 0. Consequently, from (20) it
follows: LI — ol in L2, (t,_1,t,; R™) and 8L — BL in
L%, (tr—1,t,; R™>™). Then, Vt € [ti—1,t],1 =1,r—1
from the expression:

Elgy? — o, |* — By’ — ¢lf” =
t . .
2Ef (¢t’j wt)[( (xt v“t’Jvt) 91: (xtvut» ))¢t’J
gl (x}, ul, )(wtd Wp) + fr (af, ul, )(5{] j)‘f‘
(fl*(xt 7Ut’j>t) fr(@h, ug, t ))51&
+ pé(xé,ui,t) _pl (Ifﬁ 7ut7jvt) dt + Ef |ﬁt’] ﬁéItha
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by using simple transformations , in view of assumptions

I-IV the following is obtained:

t

E/w?f Pt 4 Byl — gL <

. 2 t . .
VI —i| dt+ENe [ 187 - BlJ2dt+Blu}) —v, .

Hence, according to Gronwall inequality, the following

result is achieved:
Byl — L2 < DeNti=s)ge. in [ti_1,t], l=1,r —1,

where constant D is determined as follows: D = EWLJ _
¥} |2, which leads to D — 0.

It is inferred that ¢! — ot inL%
BLin L%, (ti—1, t;; R™™).

(-1, ti; R )and 87 —

Lemma 2 is proved.

Lemma 3. Let \I/i’ljbe a solution of system (11), and ¥},
be a solution of system (16). Then

t .
UPdt+E [ Ky -

t .
E [ W — KL |2dt — 0
ti—1

Due to Ito’s formula from expressions (11) and (16) for
Vs € [tlfl,tl)i

E\\I/l”
2F f [whi —

v, 1? -
i[9

E|WLi — w12 <
1j 1, 1,
(it 7utjﬂt) gm (xtvutv ))\Il j+

g.L (xtaugat)(q/ ‘Ill)+Hl ( tJa‘rfﬁjaut];t)

H:lnz (wtawt,um )"‘HZ ( t’JwTivUtv ) Hl (1%7555:7”55715)

(fl*( t 7ut’]’t) fl*(xtaun )) KZJ

t )
+ 1 (@, ul, (K = KDdt + B [ K7 — K dt
S

Then with help simple transformations we obtain:

E/mwaWﬁ+Ewwf%Ps

t . t1 . .
EN[ ¥}/ — W}|2dt+ENe [ K7 — Ki[2dt + B|W,7 —
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w2

According to Gronwall inequality a.e. in [t;_1,%) we

have:

E|whi —wl 2 < DemNti—s)

were the constant D defined as:
t
D =By —wl 24 ENg/ |KM — KL2dt

S

So that \Ili;j — ‘Ilfgr, hence, according to assumptions I-

IV and expressions (11), (15) we obtain : ¥/ — Wl in
L2, (tr—1,t.; R") if j — oc.

Then according to sufficient smallness of e follows, that
D — 0 . Consequently: ¥/ — Wl in L3 (ti—1,ti; R™)
and K}7 — KL in L2,(t_1,t; R™) = Tr—1 .
Lemma 3 is proved.

It follows from Lemma 2 and Lemma 3 that it can be
proceeded to the limit in systems (15) , (16) and the ful-
filments of (10),(11) are obtained. Following the similar
scheme by taking limit in (18) and (19) it is proved that
(12),(13) are true. Theorem 3 is proved.
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