An Improved Bound on Weak Independence Number of a Graph

R.S.Bhat, Member, IAENG, S.S.Kamath and Surekha

Abstract— A vertex v in a graph G = (V, X) is said to be weak if $d(v) \le d(u)$ for every u adjacent to v in G. A set $S \subseteq V$ is said to be weak if every vertex in S is a weak vertex in G. A weak set which is independent is called a weak independent set (WIS). The weak independence number $w\beta_0(G)$ is the maximum cardinality of a WIS. We proved that $w\beta_0(G) \le p - \delta$. This bound is further refined in this paper and we characterize the graphs for which the new bound is attained.

Index Terms— Weak Degree , Weak Independence Number, Weak Domination.

I. INTRODUCTION

F or standard terminologies we refer [2]. The domination parameters are well studied in [5]. The strong domination is introduced by E.Sampathkumar and L. Pushpalatha [12] and further studied in [1], [3], [4] and [11]. Varieties of strong domination are studied in [7], [8], [9] and [10]. The strong (weak) independence numbers and vertex coverings are discussed in [6]. A vertex v in a graph G = (V, X) is said to be strong if $d(v) \ge d(u)$ (similarly weak if $d(v) \leq d(u)$ for every u adjacent to v in G. A set $S \subseteq V$ is said to be *strong* (*weak*) if every vertex in S is a strong (weak) vertex in G. A strong (weak) set which is independent is called a strong independent set [SIS] (weak independent set [WIS]). The strong (weak) independence *number* $s\beta_0(G)(w\beta_0(G))$ is the maximum cardinality of a SIS (WIS). For an edge x = uv, v strongly (weakly) covers the edge x if $d(v) \ge d(u)$ ($d(v) \le d(u)$) in G. A set $S \subseteq V$ is a strong vertex cover [SVC] (weak vertex *cover* [WVC]) if every edge in G is strongly (weakly) covered by some vertex in S. The strong (weak) vertex covering number $s\alpha_0(G)(w\alpha_0(G))$ is the minimum cardinality of a SVC (WVC).

The following results appear in [6].

Theorem 1. For any isolate free graph G = (V, X) with p vertices,

$$s\alpha_0 + w\beta_0 = p$$

$$s\beta_0 + w\alpha_0 = p$$

Received 23rd Oct.2012; Revised 8th Dec.2012

Surekha, Associate Professor, Department of Mathematics. Milagres College, Kalliuanpur, Udupi, India.

(email:surekharbhat@gmail.com)

Theorem 2. For any connected graph G with p vertices,

$$w\beta_0(G) \le p - \delta$$

The following new degree concepts are defined in [7]. For any vertex $v \in V, N(V) = \{u \in V | u \text{ is adjacent to } v\}$. $N_s(v) = \{u \in N(v) | d(v) \ge d(u)\}$ and $N_w(v)\{u \in N(v) | d(v) \le d(u)\}$. Then degree of v denoted as d(v) = |N(v)|, strong degree of v is $d_s(v) = |N_s(v)|$ and weak degree of v is $d_w(v) = |N_w(v)|$. We then have the following new graph parameters – maximum strong degree $\Delta_s(G)$, minimum strong degree $\delta_s(G)$, maximum weak degree $\Delta_w(G)$ and minimum weak degree $\delta_w(G)$. It is proved in [7] that if v is a weak vertex then $d(v) = d_w(v)$ and if v is a strong vertex then $d(v) = d_s(v)$.

Theorem 3 [7]. For any graph G,

$$\delta_s(G), \delta_w(G) \le \delta(G) \le \Delta_w(G) \le \Delta_s(G) = \Delta(G)$$

II. AN IMPROVED BOUND ON WEAK
INDEPENDENCE NUMBER

We improve the upper bound obtained in Theorem 2 using another graph parameter, maximum weak degree Δ_w of a graph defined above.

Proposition 4. For any connected graph G with p vertices and maximum weak degree Δ_w ,

$$w\beta_0(G) \le p - \Delta_w \tag{1}$$

Proof. Let *D* be any maximum WIS and V_{Δ_w} be the set of all maximum weak degree vertices in *G*. Then there are two possibilities.

Case (i). $D \cap V_{\Delta_W} \neq \emptyset$. Let $v \in D \cap V_{\Delta_W}$. Since *D* is independent $D \cap N_w(v) \neq \emptyset$. Therefore we have $D \subseteq V - N_w(v)$. Hence the result follows.

Case (ii). $D \cap V_{\Delta_w} = \emptyset$. Then there exists a vertex $v \in V_{\Delta_w}$ such that $v \notin D$. Let $u \in N_w(v)$ then $d(u) \ge d(v)$. Suppose $u \in D$. Since *D* is a WIS, every vertex in *D* is a weak vertex. Thus *u* is also a weak vertex and hence $d(u) \le d(v)$. Therefore d(v) = d(u). Now, since *u* is a weak vertex, we have $d(u) = d_w(u)$. But then $d_w(u) = d(u) = d(v) \ge d_w(v)$. If $d_w(u) > d_w(v)$ we get a contradiction to the statement that v is a maximum weak degree vertex. On the other hand if $d_w(u) = d_w(v)$, then

R.S.Bhat, Associate Professor, Department of Mathematics, Manipal Institute of Technology, Manipal, India, Pin 576104.

⁽email: <u>rs.bhat@manipal.edu</u>; ravishankar.bhats@gmail.com), Phone: 09591506318.

S.S.Kamath, Associate Professor, Department of Mathematics, National Institute of Technology Karnataka, Surathkal, India, Pin 574 025. (email: shyam.kamath@gmail.com)

Proceedings of the World Congress on Engineering 2013 Vol I, WCE 2013, July 3 - 5, 2013, London, U.K.

we get a contradiction to the statement that $D \cap V_{\Delta_w} = \emptyset$. Hence we conclude that $u \notin D$. Since *u* is arbitrary we have $u \notin D$ for every $u \in N_w(v)$. This implies that $D \subseteq V - N_w[v]$. Hence $w\beta_0 \le p - (\Delta_w + 1) .$

Since $\Delta_w \ge \delta$ the above bound is a better bound than the bound obtained in Theorem 2. For the graph, in Fig. 1, $w\beta_0 = 6 = 10 - 4 = p - \Delta_w$. Also for any complete bipartite graph $K_{m,n}$ the above bound is attained.

Fig. 1. A graph for which $w\beta_0 = p - \Delta_w$

From the case (ii) of Proposition 4, the above upper bound is further reduced by one.

Corollary 4.1 Let G be a connected graph with p vertices, maximum weak degree Δ_w . Let D be the maximum weak independent set and Δ_w be the set of all maximum weak degree vertices in G. If $D \cap V_{\Delta_w} = \emptyset$ then

$$w\beta_0 \le p - (\Delta_w + 1).$$

For the graph shown in the Fig. 2, $\Delta_w = 3$ and *v* is the vertex with maximum weak degree and attains the bound $w\beta_0 = 5 = 9 - (3 + 1) = p - (\Delta_w + 1)$. Observe that in this case $\cap V_{\Delta_w} = \emptyset$.

Fig. 2. A graph for which $w\beta_0 = p - (\Delta_w + 1)$

Proposition 5. Let G be any graph. V_{Δ_W} and S be the set of all maximum weak degree vertices in G. Further, W be any maximum independent set of vertices in $\langle V_{\Delta_W} \rangle$ and let $w\beta_0 = p - \Delta_W$. Then there exists a $w\beta_0$ set D such that $D \cap V_{\Delta_W} \neq \emptyset$.

Proof. Let $w\beta_0 = p - \Delta_w$. Then there exists a $w\beta_o$ set *D* such that $D \cap V_{\Delta_w} \neq \emptyset$ for otherwise as in the proof of

ISBN: 978-988-19251-0-7 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online) case (ii) of Proposition 4, we get $w\beta_0 \le p - (\Delta_w + 1) a contradiction. If <math>W_1$ is a maximum WIS in *G* such that $d(u) < \Delta_w$ for every $u \in W_1$ then $D = W \cup W_1$ is a $w\beta_0$ set. Since $W_1 \cap V_{\Delta_w} = \emptyset$ we have $D \cap V_{\Delta_w} = W$.

We now characterize the graphs for which $w\beta_0 = p - \Delta_w$.

Proposition 6. For any connected graph G with p vertices $w\beta_0 = p - \Delta_w$ if and only if $V - N_w(v)$ is a WIS for every $v \in W$.

Proof. Let $w\beta_0 = p - \Delta_w$. Then from the Proposition 5, there exists a $w\beta_0$ set *D* such that $D \cap V_{\Delta_w} = W \neq \emptyset$. Let $v \in W$. If $V - N_w(v)$ is not a weak independent set then there are at least two vertices which are adjacent in $V - N_w(v)$ and hence we can remove one of the two vertices which are adjacent. But then $w\beta_0 \leq p - (\Delta_w + 1) - a contradiction.$

Conversely, let $V - N_w(v)$ is a WIS and D be a maximum WIS of G. Then $w\beta_0 = |D| \ge |V - N_w(v)|$. Further since $v \in W$, as in Proposition 4, $D \subseteq V - N_w(v)$. Hence $w\beta_0 = |D| \le |V - N_w(v)|$. Thus we have $w\beta_0 = p - \Delta_w$.

When $\Delta_w = \delta$ the above bound becomes $w\beta_0 = p - \delta$. We have already characterized the graphs for which $w\beta_0 = p - \delta$ and $s\beta_0 = p - \Delta$ in [6] and we quote those results for our reference.

Theorem 7 [6]. Let G be a connected graph with $p \ge 2$ vertices. Then $w\beta_0 = p - \delta$ if and only if the vertex set of G can be partitioned into two sets V_1 and V_2 satisfying the following conditions.

(i) V_1 is a WIS. (ii) every vertex in V_1 is adjacent to every vertex in V_1 .

Theorem 8 [6]. For any connected graph G with $p \ge 2$ vertices, $s\beta_0 = p - \Delta$, if and only if the vertex set of G can be partitioned in to two sets V_1 and V_2 satisfying the following conditions.

(i) V_1 is a SIS. (ii) there exists a vertex $v \in V_1$ such that $N(v) = V_2$.

We now characterize the graphs for which $w\beta_0 = p - \Delta_w$ when $\Delta_w > \delta$. Since the proof is similar to the proof of Theorem 8, we state the theorem without proof.

Theorem 9. Let G be a connected graph with $p \ge 2$ vertices. Then $w\beta_0 = p - \Delta_w$ if and only if the vertex set of G can be partitioned into two sets V_1 and V_2 satisfying the following conditions.

(i) V_1 is a WIS. (ii) there exists a vertex $v \in V_1$ such that $N(v) = V_2$.

In the next result we get a bound for the number of edges when the weak independence number is known.

Theorem 10. Let G(p, q) be a simple connected graph with weak independence number $w\beta_0 = k$. Let $\Delta_w > \delta$ so that $\Delta_w - \delta = r$ where r is a positive integer. Then,

 $q \leq \frac{(p+k-1)(p-k)-2r}{2}$. Further this bound is sharp.

Proceedings of the World Congress on Engineering 2013 Vol I, WCE 2013, July 3 - 5, 2013, London, U.K.

Proof. Let $w\beta_0 = k$ and W be the $w\beta_0$ - set. Since $w\beta_0 =$ $p - \Delta_w$, we have $\Delta_w \le p - k$. As $\Delta_w > \delta$, to have maximum edges W must contain only one vertex of minimum degree δ and the remaining vertices in W are of maximum weak degree Δ_w . Hence there are at most k-1vertices of degree Δ_w and one vertex of degree δ . Since W is a WIS the vertices in V - W can be of maximum degree. Hence there can be at most δ vertices of degree p-1 and the remaining $(\Delta_w - \delta)$ vertices can be at most of degree p - 1. Hence $2q \le (k - 1)\Delta_w + \delta + \delta(p - 1) + \delta(p - 1)$ $(\Delta_w - \delta)(p-2)$. Since $\Delta_w \le p - k$ and $\delta \le p - k - r$ $2q \le (k-1)(p-k) + (p-k-r) + (p-k-r$ have we 2r. Then the result follows.

Let $G = K_{p-k} + \overline{K_k}$ with $V = V_1 \cup V_2$ where $|V_1| = k$ and $|V_2| = p - k$. Identify any one vertex v in V_1 and remove any r edges incident on v. The new graph G' so obtained attains the upper bound in the Theorem 10. The graph G' obtained from $G = K_4 + \overline{K_6}$ shown in the

Fig.1, satisfies
$$q = \frac{(p+k-1)(p-k)-2r}{2} = \frac{(15\times4)-4}{2} = 28.$$

The above theorem suggests a better upper bound for $w\beta_0$ in terms of order and size of the graph.

Corollary 10.1. Let G(p, q) be a simple connected graph. Then,

$$w\beta_0 \le \frac{1}{2} \sqrt{p(p-1) - 2q - 2r + \frac{1}{4}}$$

Proof. From Theorem 10, $q \leq \frac{(p+k-1)(p-k)-2r}{2}$. On simplification we get a quadratic equation in *k*. Solving this equation for *k*, we get the desired bound.

ACKNOWLEDGMENT

The authors thank the unknown referee for their valuable suggestions for improving the overall presentation of the paper.

References

- G.S. Domke, J.H. Hattingh, L.R. Marcus, Elna Ungener, "On Parameters Related to Strong and Weak Domination in Graphs", *Discrete Mathematics*, vol. 258, pp.1-11, 2002.
- [2] F. Harary, Graph Theory. Addison Wesley, 1969.
- [3] J.H. Hattingh and M.A. Henning, "On Strong Domination in Graphs," *Journal. Combin. Math. Combin.Comput.* vol. 26, pp. 33-42, 1998.
- [4] J.H. Hattingh and R.C. Laskar, "On Weak Domination in Graphs," Ars Combinatoria, vol. 49, pp. 205-216, 1998.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, Inc., N.Y., 1999
- [6] S.S. Kamath and R.S. Bhat, "On Strong / Weak Independent Sets and Vertex Coverings of a Graph," *Discrete Mathematics*, vol. 307, pp.1136 – 1145, Dec. 2007.
- [7] R.S.Bhat, S.S.Kamath and Surekha, "A Bound On Weak Domination Number Using Strong (Weak) Degree Concepts in Graphs," *Journal* of International Academy of Physical Sciences, vol. 15, no.11, pp. 1-15, Sept. 2011.
- [8] R.S. Bhat, S.S. Kamath and Surekha, "Strong / Weak Edge Vertex Domination Number of a Graph," *International Journal of Mathematical Sciences*, vol.11 (3-4), pp 433- 444, July.2012.
 [9] R.S. Bhat, S.S. Kamath and Surekha, "Strong / Weak Edge - Edge
- [9] R.S. Bhat, S.S. Kamath and Surekha, "Strong / Weak Edge Edge Domination Number of a Graph," *Applied Mathematical Sciences*, vol. 6, no. 111, pp. 5525 – 5531, May.2012.

- [10] R.S. Bhat, S.S. Kamath and Surekha, "Strong / Weak Matchings and Edge Coverings of a Graph," *International Journal of Mathematics* and Computer Applications Research, vol.2, no. 3, 85-91, Sep. 2012.
- and Computer Applications Research, vol.2, no. 3, 85-91, Sep. 2012.
 [11] D. Routenbach, "Domination and Degree," Ph.D thesis, Shaker Verlag, 1998.
- [12] E. Sampathkumar and L.Pushpalatha, "Strong Weak Domination and Domination Balance in a Graph," *Discrete Mathematics*, vol. 161, pp 235-242, 1996.