
 

 

 
Abstract— The efficiency of several preconditioned 

Conjugate Gradient (PCG) schemes for solving of large sparse 
linear systems arising from application of second order cone 
programming in computational plasticity problems is studied. 
Direct solvers fail to solve these linear systems in large sizes, such 
as three dimensional cases, due to their high storage and 
computational cost. This motivates using iterative methods. 
However, iterative solvers are not efficient without 
preconditioning techniques for difficult problems. In this paper, 
the effect of different incomplete factorization preconditioning 
techniques on the convergence behavior of the preconditioned 
Conjugate Gradient (PCG) method to solve these large sparse 
and usually ill-conditioned linear systems is investigated. 
Furthermore, numerical results of applying PCG to several 
sample systems are presented and discussed. Several suggestions 
are also made as potential research subjects in this field. 
 

Index Terms— incomplete factorization preconditioning, 
limit analysis, preconditioned conjugate gradient method, 
Interior Point Method  

I. INTRODUCTION 

The application of second order cone programming (SOCP) to 
solving optimization problems arising in Geomechanics has 
recently been of growing interest and significant advances 
have been made in this field. Some of the most important 
applications in Geomechanics include traditionally difficult 
problems in plasticity [12], [16], [17], limit and elastoplastic 
analysis [14] and most recently granular contact dynamics 
[13]. In this paper, we focus on the case of limit analysis. 
Upon formulating the original problem as SOCP, it can be 
solved by primal-dual interior point method (IPM) [2]. 
However, in each step of this method, a symmetric positive 
definite (SPD) linear system of equation needs to be solved. 
Due to their robustness and accuracy, the direct solvers have 
been traditionally used for this task [2], [26].  
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However, for large three dimensional problems direct 

solvers require prohibitively high storage and computational 
efforts. Therefore, the use of iterative solvers becomes 
imperative. But iterative schemes are often far from being 
accurate for highly ill-conditioned systems arising in IPM 
iterations. This motivates using appropriate preconditioners to 
enhance the efficiency of the iterative solution schemes. 

In our study, we use preconditioned Conjugate Gradient 
method (PCG) with several incomplete factorization 
preconditioning techniques and make a comparison of their 
effects on the robustness of PCG method.  

The structure of the paper is as follows: in section 2, the 
SOCP as well as its application to limit analysis is introduced. 
In section 3, PCG method with various incomplete 
factorization preconditioners are briefly discussed. Then 
numerical results of applying the PCG method are presented 
and discussed in section 4. Finally, conclusions and future 
work are given in section5. 

II. LIMIT ANALYSIS AS SOCP PROBLEM 

Conic programming in the field of plasticity is concerned 
with the following standard form of problems: 
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in which constant and variable loads are given by 
0

p  and p , 

respectively. denotes the load multiplier and TB is the 
discrete equilibrium operator. Also, σ  is the vector of the 
stresses and   denotes an admissible stress space.  

Krabbenhoft et al. [14] proposed a practical form of SOCP 
for limit analysis by casting the Mohr-Coulomb criterion 
under plane strain conditions as quadratic cone. The resulting 
optimization problem then reads: 
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where q  is the following quadratic cone 
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with   and c  denoting the friction angle and cohesion, 

respectively.  
The problems of the form (3) can be solved using primal-

dual interior point method [2]. In each step of this method, 
after some computationally cheap calculations, a system of 
linear equations of the general form 

                                  

                                 Au b ,                                     (5) 
 

in which A  is a large sparse and symmetric positive definite 
(SPD) matrix, needs to be solved in order to find the search 
direction. These systems have been traditionally solved by 
performing a Cholesky factorization.  

III. INCOMPLETE FACTORIZATION PRECONDITIONING 

TECHNIQUES 

As mentioned earlier, system (5) is problematic to solve by 
direct solvers for large three dimensional problems with 
millions of equation and unknowns involved. This necessitates 
exploiting efficient iterative schemes. Since the system is 
SPD, one of the most efficient iterative solvers can be PCG 
method preconditioned with incomplete Cholesky (IC) 
factorization techniques [3], [8], and [22].  IC factorization is 
done by the same procedure as the complete form. The only 
difference is that some of the fill-ins in the course of the 
factorization process are discarded. This leads to sparse factors 
which approximate exact Cholesky factors. Discarding new 
fill-ins is controlled by employing a dropping rule. In this 
way, a number of incomplete Cholesky factorization 
preconditioners can be constructed such as drop tolerance-
based IC, IC with fixed fill-in and double threshold IC. 

A. Drop tolerance-based incomplete Cholesky factorization 

One way to control the amount of fill-in allowed in the 
factorization process is to accept or discard new entries with 
regards to their absolute values. For this purpose, a drop 
tolerance 0  , which is a positive real number, is used and 

fill-ins in step 
thk can be controlled in the following manner: 
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in which ( )k

id and  ( )k

jd are the 
thi and thj diagonal elements 

of the matrix in step 
thk , respectively [20]. This class of 

incomplete factorization methods are studied widely and 
shown to be very reliable preconditioners provided the 
suitable drop tolerance is chosen [3], [6], [19], [22]. 

B. Incomplete Cholesky factorization with fixed fill-in 

Incomplete factorization with fixed fill-in was first 
introduced by Jones and Plassmann [10]. In their proposed 
algorithm, the fill-in is controlled by keeping a limited number 
of elements which have the largest absolute values in each row 
of the Cholesky factor. They set this fixed number of fill-ins 
for each row to be the number of nonzero elements in the 
same row of the triangular part of the original matrix. A 
similar strategy was used by Lin and More [15]. However, in 
their method, they let a fixed number of additional elements to 
be accepted in each row of the Cholesky factor. Again, the 
acceptance of fill-ins is based on their absolute value. By 
denoting this fixed number by  , this preconditioner is known 

as FFIC(  ) . Note that in the special case  = 0, the Jones 

and Plassmann’s preconditioner [10] is obtained. 

C. Double threshold incomplete Cholesky factorization 

The idea of using two different levels of dropping in the 
process of incomplete factorization is first proposed by Saad 
[21]. He designed a so called ILUT( ,  )  preconditioner 

with two thresholds  , which is a drop tolerance and  , 

which is in fact the maximum number of nonzero elements 
allowed in each row of the incomplete factors. This 
preconditioner was shown to be quite powerful for difficult 
problems [3], [21]. The same strategy can be employed for 
incomplete Cholesky factorization of SPD matrices to produce 
so-called ICT( ,  ) preconditioner.  

D.  Robust Incomplete Cholesky Factorization  

IC has been proved to exist for M-matrices [19] and also H-
matrices with positive diagonals [18]. However, it can fail for 
general SPD matrices due to pivot breakdowns; that is, 
occurring a zero or negative pivot during the factorization 
process. There are several remedies for this problem. 

One way is to apply a global shift to the diagonal of the 
matrix before starting the factorization. In this method which 
was proposed by Manteuffel [19], the original matrix A is 
replaced by 

A D ,                                        (7) 
 

where D  is the diagonal of A  and    is known as diagonal 
shifting parameter. Applying this diagonal shifting strategy 
with an appropriate shift parameter   to the diagonally scaled 

form the coefficient matrix which is 1/ 2 1/2 D AD  can be quite 
efficient and leads to very powerful preconditioners [7], [15], 
[23], and [24]. However, the process of choosing  is based 
on trial and error. 

Another strategy to achieve a stable factorization without 
any pivot breakdowns for general SPD matrices is to design a 
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modified incomplete factorization without modifying the 
original matrix. The most famous and widely used strategy in 
this category is the robust incomplete factorization presented 
by Ajiz and Jennings [1]. Their method, which is abbreviated 
as   AJRIC( ), is in fact a modified form of drop tolerance-
based IC factorization. It proceeds by adding the absolute 
value of each dropped element (or a factor of it [9]) to both 
corresponding diagonal elements of the matrix. This strategy 
leads to a breakdown-free IC factorization. Similar strategies 
can be found in [25]. 

In his renowned paper, Kaporin [11] presented a robust 
factorization for general SPD matrices which leads to a very 
efficient preconditioner. It is shown that the number of 
iterations of the CG solver can be significantly reduced. In this 
method, the SPD coefficient matrix is factorized as 

T T T U U U R R U , where U is an upper triangular matrix 
approximating the exact Cholesky factor, while R  is a strict 
upper triangular error matrix and contains very small 
elements. This strategy requires more computational effort 
compared to previously mentioned schemes. However the 
accuracy achieved in computed incomplete Cholesky factor 
has a dramatic effect on reducing the computational cost of 
preconditioned conjugate gradient method [4], [11].  

In the next section, we present the numerical results of 
applying some of the discussed incomplete Cholesky 
factorization preconditioners to PCG method in an attempt to 
solve the three sample systems of the form (5) arising from 
solving problem (3) by primal-dual interior point method.  

IV. NUMERICAL RESULTS 

In this section numerical results of applying PCG method 
preconditioned with different variants of IC preconditioners 
are presented and discussed. Our three samples systems which 
will be referred to as T_small, T_mid and T_large have 
different sizes as followed from their names.  

A summary of the features of the sample coefficient 
matrices, including the dimension of the matrix (DIM), the 
number of nonzero elements in the triangular part of the 
matrix (NNZ), the minimum (Min Eig) and maximum (Max 
Eig) magnitudes of eigenvalues and the condition number 
(CN) of the matrix (calculated by dividing the maximum 
eigenvalue by the minimum one) are presented in Table I. 

As seen from the Table I, all three sample matrices are very 
ill-conditioned. This suggests a weak performance of the 
iterative solvers without any preconditioning.  

In all PCG schemes designed, before applying the 
incomplete factorization, reverse Cuthill-McKee (RCM) 

reordering has been implemented to the coefficient matrix. 
This is because RCM has shown the best effect among all 
ordering schemes with regards to both computational cost and 
robustness of the incomplete Cholesky factorization 
preconditioners [5]. Also, the system has been scaled 
diagonally. It means the following system has been solved:  

 
1/2 1/2 1/2 1/2,T T    D PAP D y D Pb x P D y ,            (8) 

 
in which P  is the RCM permutation matrix and D  is the 
diagonal of A . In addition, in cases where the incomplete 
factorization process was not robust and failed due to pivot 
breakdown, a global diagonal shifting strategy was applied to 
the matrix and recorded. Furthermore, the following stopping 
criterion is used for all PCG method runs: 
 

1.0 7 ( )k ke
   
   r b u A ,            (9) 

 

in which 


b , k 
r and k 

u are the infinity norm of the 

right hand side vector, the current residual and solution 

vectors, respectively. Also, 


A denotes the infinity norm of 

the coefficient matrix, which is in fact the maximum of the 
row sums of the matrix. The maximum number of iterations is 
also set to be 5000 for all cases. In all following tables, the 
common notations used are as follows: 
PCN: condition number of the preconditioned matrix; 
P-Time: CPU time (in seconds) spent on building the 
preconditioner; 
CG-Time: CPU time (in seconds) spent on CG process until a 
stopping criterion is met;  
CG-Iter: the number of iterations performed by CG algorithm 
until convergence. 
Finally, the computations are all carried out on a desktop 
computer with 2.8 GHz dual-core Processor and 4 GB of 
RAM. 

A. Incomplete Cholesky factorization with fixed fill-in 

Tables II to IV show the convergence behavior of the PCG 
method preconditioned with FFIC(  ) for different values of 

 . In all cases of applying to our sample systems, the 

algorithm failed due to pivot breakdown. A global diagonal 
shifting strategy, therefore, has been employed. In other 
words, in a process of trial an error, a suitable shifting 
parameter as in (7) was used.  

 
 
 
 
 
 
 

TABLE I 
PROPERTIES OF SAMPLE MATRICES 

Matrix 
 
DIM 

 

 
NNZ 

 
Min Eig   Max Eig CN 

T_small 5973 62214 1.3e-4 4.3e+5 3.3e+9 
T_mid 165703 1757345 2.8e-6 9.7e+7 3.5e+13
T_large 329119 3584324 1.8e-6 4.5e+6 2.5e+12

 

TABLE II 
PCG PRECONDITIONED WITH FFIC APPLIED TO T_SMALL 

Fixed Fill-in 
Parameter 

PCN 
 

P-Time 

 
CG-Time 

 
CG-Iter

0 5.3e+4 3.906e-2 2.016 2367 
5 5.4e+4 4.812e-2 2.343 2323 
10 5.1e+4 5.214e-2 2.619 2330 
20 5.2e+4 5.985e-2 2.995 2314 
40 4.9e+4 7.182e-2 3.556 2351 

.
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Tables II to IV show that in some cases additional fill-ins 

lead to fewer number of CG iterations. This can be interpreted 
as the result of improvement in the condition number of the 
coefficient matrix. On the other hand, by allowing more fill-
ins, the preconditioner becomes less sparse and consequently 
the time of even fewer number of CG iterations grows. With 
regards to total time taken for both preconditioning and 
solving process, it seems beneficial to allow some fill-ins. 

B. Ajiz-Jennings’ Robust Incomplete Cholesky factorization  

This is one of the most popular versions of incomplete 
Cholesky factorization which is widely used in different 
engineering applications [3]. As mentioned in the previous 
section, it is a breakdown-free version of the incomplete 
Cholesky factorization with drop tolerance and for general 
SPD matrices. The convergence analysis of the PCG method 
preconditioned with AJRIC( ) for different values of the drop 
tolerance   applied to our three sample matrices are stated in 
Tables V to VII.  

 

 

 
The last three tables show that by choosing a smaller value 

for the drop tolerance, the expense of constructing the 
preconditioner increases since more fill-ins allowed in the 
incomplete factor. However, in most cases the number of 
iterations of CG method decreases for smaller drop tolerances, 
yet the preconditioner is less sparse and as a result the CG 
solver is more time consuming. Looking for a balance 
between these two features, one can suggest the values in the 
interval [1.0 2,1.0 3]e e  to be more appropriate in our 

application. 

C. Incomplete Cholesky factorization with double threshold  

In Tables VIII to X, the convergence behavior of the PCG 
method preconditioned with ICT( ,  ) is given for different 

values of  and  applied to our three different matrices. 

Again, the factorization breakdowns were encountered, so, 
like the case of FFIC(  ), a global diagonal shifting strategy 

has been utilized. 
It appears that the computation time taken by CG to solve 

the preconditioned system is far more dependent on the 
number of fixed fill-ins rather than on the drop tolerance since 
the fixed fill-in parameter determines the density of the 
preconditioner. The same comment can be given on the 
storage requirements of the preconditioner.  

 

 
 
 
 
 
 
 
 

TABLE III 
PCG PRECONDITIONED WITH FFIC APPLIED TO T_MID 

Fixed Fill-in 
Parameter 

PCN 
 

P-Time 
 

CG-Time 
 

CG-Iter

0 7.3e+4 4.082 82.406 2834 
5 7.2e+4 4.004 87.443 2805 
10 7.3e+4 5.111 100.121 2904 
20 7.1e+4 6.365 118.482 2909 
40 7.2e+4 8.591 152.290 2826 

.

TABLE IV 
PCG PRECONDITIONED WITH FFIC APPLIED TO T_LARGE 

Fixed Fill-in 
Parameter 

PCN 
 

P-Time 
 

CG-Time 
 

CG-Iter 

0 6.7e+4 8.648 172.538 2869 
5 6.6e+4 13.367 207.789 3178 
10 6.4e+4 14.273 204.274 2852 
20 6.4e+4 17.976 257.976 3027 
40 6.4e+4 22.738 307.403 2743 

TABLE V 
PCG PRECONDITIONED WITH AJRIC APPLIED TO T_SMALL 

Drop Tolerance 
 

PCN 
 

P-Time CG-Time CG-Iter 

1.0e-2 6.2e+4 4.296e-2 2.095 1500 
1.0e-3 6.5e+4 8.203e-2 2.305 1412
1.0e-4 6.5e+4 0.117 2.005 1390 
1.0e-5 6.4e+4 0.152 2.676 1348 

TABLE VI 
PCG PRECONDITIONED WITH AJRIC APPLIED TO T_MID 

Drop Tolerance 
 

PCN 
 

P-Time CG-Time CG-Iter 

1.0e-2 7.5e+4 2.339 60.975 1383 
1.0e-3 7.6e+4 4.332 51.542 1109
1.0e-4 7.6e+4 5.968 79.004 1133 
1.0e-5 7.6e+4 7.628 126.327 1301 

TABLE VII 
PCG PRECONDITIONED WITH AJRIC APPLIED TO T_LARGE 

Drop Tolerance 
 

PCN 
 

P-Time CG-Time CG-Iter 

1.0e-2 7.0e+4 5.968 133.704 1497 
1.0e-3 7.0e+4 11.699 136.302 1394
1.0e-4 6.9e+4 18.023 187.150 1381 
1.0e-5 6.9e+4 18.496 290.094 1402 

TABLE VIII 
PCG PRECONDITIONED BY ICT APPLIED TO T_SMALL 

Drop 
Tolerance 

Max Fill-in 
Parameter 

PCN 
 
P-Time 

 
CG-Time 

 
CG-Iter

1.0e-3 5 7.0e+4 1.562e-2 1.869 2418 
 10 6.4e+4 3.125e-2 1.743 2365 
 20 6.4e+4 3.125e-2 2.169 2317 

1.0e-4 5 7.0e+4 1.562e-2 1.630 2415 
 10 6.4e+4 2.734e-2 1.743 2355 
 20 6.3e+4 3.125e-2 2.169 2316 

1.0e-5 5 7.0e+4 1.562e-2 1.688 2420 
10 6.4e+4 3.125e-2 1.738 2360 

 20 6.3e+4 4.687e-2 2.132 2313 
1.0e-6 5 7.0e+4 3.125e-2 1.611 2408 

 10 6.4e+4 3.125e-2 1.776 2373 
 20 6.3e+4 4.687e-2 2.132 2309 
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However, in most cases, the drop tolerance has an obvious 

effect on improvement of the number of iterations of the CG 
method. According to these observations, the drop tolerance 
can be interpreted as a parameter responsible for the accuracy 
of the solution and the fixed fill-in number as a parameter to 
control the storage requirement and computational expense of 
the solver. 

D. Kaporin’s robust incomplete factorization 

The last incomplete factorization technique which was 
selected for numerical tests is the robust incomplete Cholesky 
second order stabilized factorization, denoted by RIC2S( ), 
with 0   being a truncation parameter, introduced by 
Kaporin in his celebrated paper [11]. Tables XI to XIII present 
the convergence analysis of PCG method preconditioned by 
RIC2S( )  for three different truncation thresholds applied on 
our three sample systems. 

Tables XI to XIII reveal that the number of iterations of the 
CG method dramatically falls by decreasing of the truncation 
parameter  . It is also noticeable that even though the density 
of the preconditioner increases with a smaller  and as a 
result the computational cost of each CG iteration grows, the 
reduction in CG iterations are so significant that the total time 
taken by CG solver drops in all cases. On the other hand, by 
exploiting a smaller truncation parameter, the cost of 
constructing the preconditioner goes up. 

 

 

 

V. CONCLUSION 

The effect of several most famous incomplete Cholesky 
factorization preconditioners on the PCG method employed 
to solve large sparse linear systems of equations arising in 
implementation of second order conic programming in limit 
analysis were investigated and compared in this paper. In 

most cases, allowing more fill-ins leads to a more accurate 
preconditioner and hence fewer number of CG iterations. 
However, as the preconditioner becomes denser, the time 
spent on each CG iteration grows. Therefore, in most cases, 
more fill-ins are not effective for CG in terms of 
computational time. Overall, although the Kaporin’s RIC2S is 
the most expensive preconditioner to built, it has the best 
effect on reducing the number of CG iterations and CG time 
and in our application it turns out to be the most efficient 
preconditioner for PCG solver providing the appropriate 
truncation parameter is chosen. 

Future work in this field would be devoted to the 
implementation of the optimized embedding of PCG in the 
primal-dual interior point solver for limit analysis. Ultimately, 
parallelization of the whole solution scheme in order to obtain 
better performance for large sparse linear systems using multi 
processor computers and graphics processing units (GPU) will 
be considered in the future.  
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