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Abstract—This paper presents a new aspect of harmonic 

decomposition method for elastic constant tensor of various 

anisotropic materials. Some misprints found in literature are 

corrected. This procedure derived here, is applied to 

anisotropic engineering materials possessing different elastic 

symmetries. In order to gain insight about these applications, 

numerical illustrations are presented for anisotropic 

engineering materials. A new description of norm in terms of 

harmonic tensors is introduced instead of well-known form of 

norm. This case is a significant innovation for specifying the 

anisotropy degree of any engineering materials to have opinion 

about the mechanical and elastic properties of these materials.  

 
Index Terms—elasticconstanttensor,harmonic 

decomposition method, anisotropic engineering materials, 

norm concept, anisotropy degree. 

 

I. INTRODUCTION 

MATERIAL is said to be isotropic if its mechanical 

and elastic properties are the same in all directions. 

Anisotropic materials such as composites become 

the material of choice in a variety of engineering 

applications in the last century. Many materials are 

anisotropic and inhomogeneous due to the varying 

composition of their constituents. Polycrystalline materials 

generally show an elastic anisotropy due to texture and the 

anisotropy of single crystallites. Those materials are used in 

many applications in industry. Everyday passed, the number 

of anisotropic engineering materials is increasing by the 

addition of man-made anisotropic single crystals and 

technologically developed materials. In order to understand 

the physical properties of those materials, use of tensors by 

decomposing them is significant. Tensors are the most 

important mathematical entities to describe direction 

dependent physical properties of solids and the tensor 

components characterizing physical properties which must 

be specified without reference to any coordinate system. 

The anisotropic form of Hooke's law in linear elasticity is 

often written in indicial notation as  

      klijklij C                                                               (1) 
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Where ij  are components of stress tensor,  are 

components of infinitesimal strain tensor and ijklC   are the 

components of elasticity tensor and satisfy three important 

symmetry restrictions. These are 

klijijklijlkijkljiklijkl CCCCCC                  (2) 

     which follow from the symmetry of the stress tensor, 

the symmetry of the strain tensor and the elastic strain 

energy. These restrictions reduce the number of independent 

elastic constants ijklC from 81 to 21 (see for instance;[1]). 

The indices are abbreviated according to the replacement 

rule given in the following table: 
TABLE I 

UNITS FOR MAGNETIC PROPERTIES 

Four index 

notation 

11 22 33 23,32 13,31 12,21 

Double index 

notation 

1 2 3 4 5 6 

    There is a close relationship between irreducible and 

harmonic decomposition methods. Like irreducible 

decomposition, two scalars, two deviators and the nonor part 

are obtained in harmonic decomposition method in this 

work. In literature, irreducible decomposition method had 

been studied extensively. To name some; [2], [3] and quoted 

by [4]- [9] realized decomposition in which elastic constant 

tensor was decomposed into its irreducible parts. Reference 

[10] derived certain results for the irreducible tensors in 

their natural form. Reference [11] followed the technique of 

[10] and gave the reduction of a fourth rank cartesian tensor 

into irreducible parts under the three-dimensional rotation 

group. 

There are also other works for harmonic decomposition of 

tensors and harmonic representations. For instance, 

reference [12] proposed a representation of elastic constant 

tensor in terms of harmonic tensors. These are based on an 

isomorphism between the space of homogeneous harmonic 

polynomials of degree q and the space of totally symmetric 

tensors of order q. Furthermore according to [13], elastic 

constant tensor was decomposed with respect to general 

linear group and then orthogonal group O(3). Reference [14] 

followed [12] and developed the method. 

One of the aims of this work is to represent the elastic 

constant tensor in terms of harmonic tensors by developing 

the existing theory given in literature. This is done by 

decomposing the elastic constant tensor explicitly. For the 

first time in the literature, this decomposition process is 

applied to elastic constant of materials exhibiting anisotropic 
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elastic symmetries such as isotropy, transversely isotropy 

and orthotropy. Since critical and important engineering 

materials possess these symmetries. Numerical examples for 

them are also illustrated.  

Another aim is to establish a general norm concept and 

norm ratios for harmonic representation of anisotropic 

materials to investigate the elastic and mechanical properties 

of these materials by determining the anisotropy degree of 

each material.    

II. HARMONIC DECOMPOSITION OF ELASTIC CONSTANT 

TENSOR 

In harmonic decomposition, the action of )3(SO on a 

vector space is said to be irreducible when there are no 

proper invariant subspaces. It is deduced that there is a 

decomposition of the space of elastic constant tensors  

( E la) into a direct sum of orthogonal subspaces on 

which the action of )3(SO is irreducible. An important 

theorem of group representation theory can be summarized 

as: every space on which the group of rotations acts 

irreducibly is isomorphic through an )3(SO -invariant map 

with an appropriate space of harmonic polynomials. In view 

of isomorphism, there is a decomposition of E la into a 

direct sum of spaces of harmonic tensors. (See, for instance; 

[5]) Besides, there is an )3(SO  -invariant isomorphism 

between E la and the direct sum R   R   Dev   Dev 

H rm. 

Elastic constant tensor with fourth rank in three 

dimensions, can be written in the following form: 

C=S+A                                                                            (3) 

Symmetric part represented by S, is expressed as 

      
 

 
                                                         (4) 

Asymmetric part represented by A, is expressed as 

                  
 

 
      

 

 
      

 

 
                      (5) 

The total symmetric part can be rewritten in terms of H and 

Hij . 

            [                            

             ]   (                    ) (6) 

Similarly, the total asymmetric part can be obtained in terms 

of h and hij as 

                    
 

 
       

 

 
       

 

 
       

 

 
                

 

 
       

 

 
                                   (7) 

By adding (6) and (7) gives the harmonic representation of 

elastic constant tensor for anisotropic materials possessing 

triclinic symmetry, which is                                                     
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 The total scalar (isotropic) part (denoted by  ) of an 

elastic constant tensor (obtained from (8)) is                                                                                  

).3(
30

)(
)2(

15
ppqqpqpq

jkiljlik

pqpqppqq

klij
CCCCS 




     (9) 

  Furthermore the total deviatoric part or second rank 

traceless tensor is composed of  summation of  the linear 

combination of second order tensors (Hij and hij) given in 

(8), which is (denoted as D) 
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                                                                                          (10) 

From (8), harmonic part is  

 ijkmlmklmmklimjmijmmiljkikljijkl CCCCCCCH  )2()2[(3/)(  
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                                                                                          (11) 

Moreover, the results for elastic constant tensor 

decomposition are given by [2], [3] and quoted by [4]-[9] in 

which elastic constant tensor is decomposed into two scalar, 

two deviatoric and one nonor parts. These decompositions 

are the same as harmonic decomposition method since 

scalar, deviatoric and nonor parts are common and they are 

identical with those obtained from harmonic decomposition 

method, only difference here is notations used for scalar, 

traceless symmetric second rank tensors and nonor parts. 

According to these studies, decomposition of elastic 

constant tensor for anisotropic materials possessing triclinic 

symmetry is expressed as follows: 

,
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                                                                                          (12) 

From equation (8), total scalar part is 

).)(3(
30

1
)2(

15

1
jkiljlikppqqpqpqklijpqpqppqq CCCC      (13) 

The total deviatoric part is 

.iljkjkilikjljlikijklklij BBBBAA      (14) 

The components of deviatoric part are 

,21/)451215( pkpkijppkkijikjkijkkij CCCCA     (15) 

.21/)3296( pkpkijppkkijikjkijkkij CCCCB    (16) 

Finally harmonic part is the same as Hijkl
 
given in (11). 

Furthermore the decomposition of elastic constant tensor 

given in [5] and [6] contain misprints in components of 
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scalar part and total deviatoric part. In (13) and (14), these 

parts are corrected. 

A. For Isotropic Materials 

There are two independent components for isotropic 

elastic constant tensor. So it must have two harmonic 

decomposed parts. By considering the symmetry conditions 

in (2) and matrix structure of  isotropic symmetry, (9) is 

rearranged. In matrix form, the first and second scalar parts 

are represented as:   
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                                             (17) 

Where                   

The sum of the parts in (17) gives total scalar part for 

isotropic materials. 
B. For Transversely Isotropic Materials 

There are five irreducible parts for transversely isotropic 

materials which are two scalars and two deviators and a 

harmonic part. Since a transversely isotropic material has 

five independent components of elastic constant tensor. In 

matrix form, the first and second scalar parts are represented 

as:   
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       (18)          

 

Where                                 

                     

In matrix form, the first and second deviatoric parts are 

denoted as follows   
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                                                                                          (20) 

Where  b=-2C11 +C33-16C44+6C12+20C13,              

h=2/7(-C11+7C12+5C13-4C44)-8/35(-C11+7C12+5C13-4C44),  

i=2/7(-C11+3C12+5C13-4C44)-8/35(-C11+3C12+5C13-4C44),      

j=2/7(C33+10C13-8C44)-8/35(C33+10C13-8C44), 

k=-2/35(-C11+C33+3C12+15C13-12C44),  

l=-2/35(-C11+C33+3C12+15C13-12C44), 

m=-2/35 (-2C11 +6C12+10C13-8C44),    

n=1/7(-2C11+6C12+10C13-8C44),  

o=1/7 (-3C11+7C12+15C13+C33-12C44),   

p=1/7 (-C11+7C12+15C13+C33-12C44). 

The harmonic part for transversely isotropic materials in 

harmonic decomposition method. 

      
 

  
(                                
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Where                           
                               
                                         
            and                                                                                                                              

By summing up those five parts, elastic constant tensor 

for transversely isotropic material is obtained. 
C. For Orthotropic Materials 

There are nine independent components of elastic 

constant tensor. Since the maximum number of decomposed 

parts is five in harmonic method. There are five harmonic 

parts which are two scalars, two deviators and one harmonic 

parts for these type of  materials. In matrix form, the first 

and second scalar parts are denoted as:   
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Where                               
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In matrix form, the first and second deviatoric parts are 

obtained as:   
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Where b=C11+C22+C33-8C44-8C55-8C66+10C12+10C13+10C23,  

h=2/7(C11+5C12+5C13-4C66-4C55)-8/35(C11+5C12+5C13-4C66-4C55), 

i=2/7(C22+5C12+5C23-4C66-4C44)-8/35(C22+5C12+5C23-4C66-4C44),

j=2/7(C33+5C13+5C23-4C44-4C55)-8/35 (C33+5C13+5C23-4C44-4C55), 

k=-2/35(C22+C33+5C12+5C13+10C23-8C44-4C55-4C66), 

l=-2/35(C11+C33+5C12+10C13+5C23-4C44-8C55-4C66), 

m=-2/35.*(C11+C22+10C12+5C13+5C23-4C44-4C55-8C66), 

n=1/7(C11+10C12+5C13+5C23+C22-8C66-4C44-4C55), 

o=1/7 (C11+5C12+10C13+C33+5C23-4C66-4C44-8C55), 

p=1/7 (C22+5C12+5C13+10C23+C33-4C66-8C44-4C55). 

The corresponding harmonic part is 
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where                                

                                           
                                        
                                           
                                          
                                           
                                         
                                     
                                       
                                           

                     

Elastic constant tensor for orthorhombic material is 

obtained by adding those five parts.  

III. NUMERICAL ANALYSES 

This method can be carried out for various anisotropic 

materials such that fiber-reinforced composites, polysytrene 

and olivine, examples for isotropic, transversely isotropic 

and orthotropic materials.  Under specific couplings of the 

elastic constants of orthotropic media, a very important 

family of orthotropic materials degenerates into the class of 

either transversely isotropic or isotropic media. Most of the 

engineering composites, especially fiber-reinforced are 

transversely isotropic. Decomposition process is performed 

by simple computer programs written in MATLAB in order 

to ease the computations. All units are in Gpa( 
1010 dyn   

cm 
2

)  .  

A. Fiber-Reinforced Composites  

      In recent years fiber reinforced composite materials 

have been paid considerable attention due to the search for 

materials of light weight, great strength and stiffness. 

Consequently the determination of their mechanical 

properties i.e. stiffness effect, becomes important. 

Typical numerical examples for E-glass/epoxy fiber-

reinforced composite materials shown for two cases; the 

first case is a homogeneous material in which the properties 

of the fiber and resin are equal [15] and given data are 

                                                                                  (26)                                                                    

                                                                                 (27)                                                                

                                                                           (28)                                                              

                                                                          (29)                                                                     

where       are Poisson's ratio of fibers and matrix 

respectively and       are the shear modulus of fibers and 

matrix respectively. The structure of elastic constant tensor 

for isotropic case is: 

    

[
 
 
 
 
 
                     
                     
                     

          
          
          ]

 
 
 
 
 

           (30)                                                                     

 

For isotropic case, harmonic representation of elastic 

constant tensor:  

          (31)                                  

The second case is a non-homogeneous material. For a 

fiber-reinforced composite material in transversely isotropic 

media; where the fibers and matrix are not equal, volume of 

fibers are approximately 63%. 

                                                                                 (32)                                                                                                                                      

                                                                               (33)                                                                  

                                                                          (34)      
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                                                                           (35)                                                                    

The structure of elastic constant tensor for transversely 

isotropic case is: 

    

[
 
 
 
 
 
                
                
                
         
         
         ]

 
 
 
 
 

           (36)                                                                          

For transversely isotropic case, harmonic representation of 

elastic constant tensor:  

                               

                                                                                                     

           (37) 

B. Polystyrene [16] 

Polystyrene is an example for transversely isotropic 

material. The following matrix exhibits the matrix structure 

of elastic constant tensor for polystyrene. 


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




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00075.275.220.5

ijC

            (38)  

Harmonic representation of elastic constant tensor of 

polystyrene: 


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



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
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













288.100000

0288.10000

00288.1000

000577.200

0000577.20

00000577.2

000000

000000

000000

0007633.27633.27633.2

0007633.27633.27633.2

0007633.27633.27633.2
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











0076.000000

00038.00000

000038.0000

0000076.00095.00095.0

0000095.00038.00190.0

0000095.00190.00038.0

0767.000000

00383.00000

000383.0000

0003067.000

00001533.00

000001533.0

                                                                                                                                   

   

,

0057.000000

00229.00000

000229.0000

0000457.00229.00229.0

0000229.00171.00057.0

0000229.00057.00171.0
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
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          (39)  

C. Olivine [17] 

   As an example to orthotropic material, the elastic 

constant tensor of olivine is presented below. 



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




















4900000

0620000

0060000

0002725660

0005616066

0006066192

ijC

                                      (40) 

Harmonic representation for elastic constant tensor of 

Olivine: 


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





















































67.6300000
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00033.12700

000033.1270

0000033.127

000000

000000

000000

00033.6733.6733.67

00033.6733.6733.67

00033.6733.6733.67
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

305.000000

041.10000

0010.1000

000305.076.252.3
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              (41)                                                                                

Elastic constant data for transversely isotropic and 

orthotropic materials are given in Table II and III 

respectively. These data (except Canine femora [18]) are 

taken from [19]. 
TABLE II 

ELASTIC CONSTANT DATA FOR TRANSVERSELY ISOTROPIC  MATERIALS 

TABLE III 

ELASTIC CONSTANT DATA FOR ORTHOTROPIC MATERIALS 

 

Materials C11 C12 C13 C33 C44 

Polystrene 5.20 2.75 2.75 5.70 1.30 

Zinc(Zn) 165 31.1 50 61.8 39.6 

Tool 

steel(Normal)   

289 116 117 284 84.5 

Tool 

steel(Hardened)  

277 113 112 272 80.3 

Materials C11 C12 C13 C22 C23 C33 C44 C55 C66 

Pine 

(Softwood) 

1.24 0.74 0.76 17.1 0.94 1.79 1.18 0.079 0.91 

Olivinite 232 93 92 210 82 199 73.3 70.9 68.6 

Canine 
femora 

19 9.73 11.9 22.2 11.9 29.7 6.67 5.67 4.67 

Marble 119 51 52 110 47 104 29.7 30.7 32.6 
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IV. THE NORM, NORM RATIO AND ANISOTROPY DEGREE 

The norm concept for elastic constant tensor is described, 

norm and norm ratios as well as the measure of `nearness' of 

the nearest isotropic tensor are computed for several 

examples from various anisotropic materials exhibiting 

elastic symmetries such as transversely isotropic and 

orthotropic. These computations are used to compare and 

assess the anisotropy in various anisotropic materials by 

means of strength or magnitude and also determine the 

`nearness' of the nearest isotropic tensor for the materials 

with lower symmetry types. Norm is an invariant of the 

material. Generalizing the concept of the modulus of a 

vector, norm of a Cartesian tensor (or the modulus of a 

tensor) is defined as the square root of the contracted 

product over all indices with itself: 

2

1

}{ ...... ijklijkl CCCN                                              (42)                                                                                  

Denoting rank n Cartesian Cijkl…... by Cn the square of the       

norm is expressed as [10]: 

   ‖ ‖  ∑ ‖      ‖
 
 ∑             ∑     

     
    

     
                                  

                                                                                          (43) 
This definition is consistent with the reduction of the 

tensor in Cartesian formulation when all the irreducible 

parts are embedded in the original rank n tensor space. In 

this work, (43) is changed and rearranged by using harmonic 

tensors and it becomes 

   ∑    
    

  

∑    
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               (44) 

Due to this new concept of norm, following rules are 

suggested: 

Rule 1. It can be used as a parameter representing and 

comparing the overall effect of a certain property of 

anisotropic materials of the same or different symmetry. If 

the norm value of a material is large, it has more effective 

property than the other materials of the same symmetry 

type. It is known that the anisotropy of the materials, for 

instance the symmetry group of the material and the 

anisotropy of the measured property depicted in the same 

materials may be quite different. Obviously, the property, 

tensor must show, at least, the symmetry of the material. For 

example, a property, which is measured in a material, can 

almost be isotropic but the material symmetry group itself 

may have very few symmetry elements. For isotropic 

materials, the elastic constant tensor has two decomposed 

parts which are scalar parts, so the norm of the elastic 

constant tensor for isotropic materials depends only on the 

norm of the scalar parts, 

i.e.,       Hence, the ratio        for isotropic 

materials. For anisotropic materials, the elastic constant 

tensor additionally contains two deviator parts and one 

harmonic part, so      for the deviator parts and      for 

nonor part. Generalizing this to harmonic tensors to elastic 

constant tensor,      for scalar parts,      for deviator 

parts and      for harmonic part. Here these ratios of 

different harmonic parts represent the anisotropy of that 

particular decomposed part, they can also be used to assess 

the anisotropy degree of a material property as a whole, so 

two more rules are also suggested: 

Rule 2. When    is the largest among norms of the 

decomposed parts, if the norm ratio      is closer to one, 

the material property is closer to isotropic. 

Rule 3. When    is not the largest or not present, norm of 

the other parts can be used as a criterion. But in this case the 

situation is reverse; if the norm ratio is larger than the 

others, the material property is more anisotropic.  

The norm and norm ratios for transversely and 

orthorhombic materials are calculated in order to determine 

the effect of anisotropy in other words which one is more 

anisotropic or isotropic. The results for norm, norm ratios 

are summarized in Table IV and V. 
TABLE IV 

THE NORMS AND NORM RATIOS FOR TRANSVERSELY ISOTROPIC 

MATERIALS 

Materials Ns Nd Nh  N Ns/

N  

Nd/

N 

Nh/

N 

Polystyrene 10.5

61 

0.38

2 

0.06

18 

11.6

97 

0.91

1 

0.032

7 

0.052

8 

Zinc(Zn) 172.

01 

88.5

78 

12.1

50 

278.

97 

0.61

7 

0.318 0.044 

composite 41.5

58 

22.9

69 

12.7

82 

54.4

61 

0.75

1 

0.426 0.235 

Tool 

steel 

(Normal) 

556.

89 

0.73

5 

0.38

4 

592.

56 

0.94

0 

0.001 0.000

6 

Tool 

steel(Harde

ned) 

432.

45 

4.65

3 

1.46

1 

568.

13 

0.76

1 

0.008 0.003 

The larger ratio      and     , the more anisotropic 

property exist for a transversely isotropic material and in 

reverse manner, the smaller ratio      a transversely 

isotropic material possesses the more anisotropic property 

of norm ratio for the scalar part. From Table 4, normal tool 

steel is the most isotropic material with the largest      

ratio. Whereas Zinc is the most anisotropic material with 

the least value. Furthermore, it can be concluded that for 

the material of orthotropic media, with specific couplings, 

it can  be degenerate into either transversely isotropic or 

isotropic media and are able to study the overall stiffness 

effect by means of the norm; it is concluded that the E-

glass/epoxy undertaking the properties of fiber and matrix 

(homogeneous) to be equal is stronger than those when the 

properties of fibers and matrix are not equal (non-

homogeneous) which is already understood from the 

theory of mechanics and experiments. Using the norm 

concept, this method will enable us to reveal the effect of 

the fiber orientations and the material properties of fiber 

and matrix of the composite. 
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TABLE V 

THE NORMS AND NORM RATIOS FOR ORTHOTROPIC MATERIALS 

Considering the rules, from Table V, olivinite is the most 

isotropic material with the largest 
  

 
 ratio. Whereas pine is 

the most anisotropic material with the least value. 

V. CONCLUSIONS 

Harmonic decomposition method has many applications 

in different subjects of physics and engineering (atomic and 

molecular physics and the physics of condensed matter). In 

the mechanics of continuous media (for instance; in 

elasticity studies, the strain and the stress tensors are 

decomposed into spherical and deviatoric parts), the 

hydrostatic pressure is connected to the change of volume 

without change of shape through the bulk modulus whereas 

the change of shape is connected to the deviatoric part of the 

stress tensor through the shear modulus.  

For very valuable materials like diamond or quartz used 

in mining, it is difficult to measure its elastic constants 

because of its small samples. As another application for 

harmonic decomposition, it is possible to decide which type 

of symmetry a material has when the elastic constants are 

measured relative to an arbitrary coordinate system. A 

second rank symmetric tensor associated to the elastic 

constant tensor can be used to verify if the coordinate axes 

are the symmetry axes of the material and determine a 

symmetry coordinate system. So comprehending the 

decomposition method is considerable to understand the 

idea behind these decomposition methods as well as the 

physical properties of anisotropic materials. 

Furthermore, in this study, comparing the irreducible 

methods in literature with harmonic decomposition reveals 

the following major result: 

Components of scalar and deviatoric parts in irreducible 

method are not equal to those in harmonic decomposition 

method, so it proves that there is not a unique decomposition 

for both deviatoric and scalar parts, in other words total 

deviatoric and scalar parts can be decomposed into infinitely 

many independent components. This case also indicates that 

total scalar, deviatoric and nonor parts of elastic constant 

tensor obtained from irreducible decomposition methods are 

the same as those of harmonic decomposition method. 

Decomposition of elastic constant tensor into harmonic 

parts provides a deeper understanding about elastic and 

mechanical behavior of anisotropic materials. It also has 

more significant effects on many applications in different 

fields such as:comparing the anisotropic properties of 

materials, examining the material symmetry types in detail, 

determination of materials possessing same crystal 

symmetry type which are highly anisotropic or close to 

isotropy, understanding the mechanical and elastic 

behaviour of natural composites such as Bone and Wood 

types 
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Materia

ls 

Ns Nd Nh  N Ns/

N  

Nd/

N 

Nh/

N 

Olivine 373.42 133.9 32.91 410.46 0.91  0.33 0.080 

Pine  9.456 11.76 4.894 17.418 0.54 0.66 0.281 

Olivinite 426.091 25.22 16.89 447.55 0.95 0.06 0.038 

Canine 

femora  

45.902 8.352 1.076 50.894 0.90 0.16 0.021 

Marble 213.6 12.18 1.449 234.50 0.91 0.05 0.006 
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