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Abstract—In the work we consider a model of difference
scheme for a numerical solution of Cauchy problem for first
order differential equation with the singularity at infinity. We
build a sequence of discrete operators for the difference scheme
and prove that the sequence is stable. Approximation and
convergence theorems for the approximative scheme are proved
on the solutions to the Cauchy problem.

Index Terms—difference scheme, stability, approximation
and convergence of approximative scheme.

I. INTRODUCTION

Systematic research of an initial value problems for the
ordinary differential equations with singularities of rather
independent variable or one of phase variables began in
the first half of last century. Though in applications such
problems began to arise rather long ago. Further the theory
and especially methods of the solution of problems with
some types of singularities have intensive development and
now are studied with sufficient completeness even for the
differential equations and systems of the highest orders [1-
9].

Problems with time parameter strives for some critical
values are of interest that naturally causes difficulties in
the solution [10-17]. Problems with such feature are a little
studied. At the same time rather often meet in various
applications [18]. We consider Cauchy problem on an infinite
interval. In the numerical solution it is important to construct
a constructive grid on this interval with finite number of
grid points. So, in the work one difference scheme for a
considered problem is offered and investigated.

II. CONSTRUCTION OF THE APPROXIMATE SCHEME

We consider Cauchy problem{
Ly ≡ y′ + υ(t)y = z(t), t > 0,
y(0) = α,

(1)

on functions of class Ḣυ .
Now we introduce some notation. By Cl = Cl(I)

(l = 0, 1, ...) we denote the space of l times continuously
differentiable on I = [0,∞) functions. By Ċl = Ċl(I)
(l = 0, 1, ...) we denote the space of all functions y ∈ Cl

such that
lim
t→∞

y(k)(t) = 0 (0 ≤ k < l).
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Denote by Ċ = Ċ0. Norm in Ċ is given by

‖y‖Ċ = sup
t≥0
|y(t)|.

The class Ḣυ we define as completion of the linear manifold

Ċ1Hυ =

y ∈ Ċ1 : ‖y‖22,υ =

∞∫
0

(
|y′′|2 + |υ2(t)y|2

)
dt <∞


with respect to the norm ‖·‖2,υ . We impose on weight
function υ(t) the following condition: υ(t) is continuous and
|υ(t)| > 0 on I = [0,∞) and

∞∫
0

|υ(t)|−2dt <∞. (2)

Note that the condition (2) specifies convergence rate y(x)→
0 (x→∞) for y ∈ Ḣυ . That is to say

Ḣυ ⊂ Ċ2.

Moreover,
L
(
Ḣυ

)
⊂ Ċ.

At first we will construct the approximate scheme for
the numerical solution of the equation (1). The following
definitions are given in [19].

Let X , F are Banach spaces, L(X,F ) be a space of all
continuous linear operators acting from X into F . Let A ∈
L(X,F ). By D(A) we denote the domain of operator A.
Definition 1. We say that sequence of the equations

Anx = fn (n ≥ 1) (3)

is an approximate scheme of the equation

Ay = f, (4)

if An ∈ L (Xn, Fn), Xn is in agreement with X by means
of operator Tn ∈ L(X,Xn), Fn is in agreement with F by
means of operator T ′n ∈ L(F, Fn).
We will write the equation (1) in an operator form (4), where
we will take

Ay = (y′ + υ(t)y, y(0)) . (5)

We consider the operator A in (5) as an operator from X =
Ḣυ into F = Ċ × R, where R = (−∞,∞). Norm for pair
f = (z, a) ∈ F is given by

‖f ;F‖ =
∥∥∥z; Ċ∥∥∥+ |a|.

To construct of approximate scheme (3) for problem (4),
(5) at the beginning we will consider a sampling operator

S : Ċ(I)→ c0,
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where c0 is a space of numerical sequences (xj)j≥0, which
converge to zero. Norm in c0 is given by

‖x‖c0 = sup
j≥0
|xj |.

We define characteristic measure with respect to the func-
tion υ4(t) as

µ(t) = sup
h>0

h : h3

t+h∫
t

υ4(ζ)dζ ≤ 1

 .

Function µ(t) is continuous, positive and bounded function
in I .
The following characteristic equality

h3

t+h∫
t

υ4(ζ)dζ = 1, if h = µ(t), (6)

takes place. Besides

µ(0) > 0, lim
t→∞

µ(t) = 0,

see [20]. Let M = sup
t≥0

µ(t). It is clear, that M <∞.We take

small enough ε, 0 < ε < 1. Then

∞ > Tε = inf
t>0
{t : µ(t) ≤ ε} > 0.

There is the following finite disjoint cover of interval [0, Tε)

[0, Tε) ⊂
m⋃
k=1

4k, tm < Tε,

by intervals

∆k = [tk, tk+1) (k = 1, 2, ...,m),

where we take tk+1 = tk+µk (k ≥ 1), µk = µ(tk) (t1 = 0).
Denote by t̄k = (tki)

n
i=1 a uniform grid on ∆k:

tki = tk0 + iδk, δk = µk/n, tk0 = tk−in,

(t10 = 0).

Let
∆ki = [tki−1, tki) (i = 1, ..., n).

We set

Sy = (ȳ, ỹ), ỹ = (ym+j)j≥1, ym+j = y(tm+j),

ȳ = (ȳ1, ..., ȳm), ȳk = (yki)ni=1, yki = y(tki).

Now we introduce some spaces. Let lm2 be a space of
vectors ā = (a1, ..., am) ∈ Rm with norm:

‖ā; lm2 ‖ =

 m∑
j=1

|aj |2
1/2

,

X̄k (k = 1, ...,m) be a space of vectors x̄k =
(xk1, ..., xkn) ∈ Rn with the spherical norm:

‖x̄k‖sph =

(
δk

n∑
i=1

x2
ki

)1/2

,

F̄k (k = 1, ...,m) be a space of vectors x̄k = (xk1, ..., xkn) ∈
Rn with norm:

‖x̄k‖c = max
1≤i≤n

|xki|.

Here Rk is k-dimensional arithmetical space.
Let Xn = X̄1 × X̄2 × ...× X̄m. And let

‖x;Xn‖ =

(
m∑
k=1

‖x̄k‖2sph

)1/2

, x = (x1, ..., xm) .

Let’s set for pair (x, a) ∈ Xn × R

‖(x, a)‖ = ‖x;Xn‖+ |a|.

Furthermore, let Fn = F̄1 × F̄2 × ... × F̄m be a space with
the following norm

‖x;Fn‖ = max
1≤k≤m

‖x̄k‖c .

Let’s put for (x, ā) ∈ Fn × lm2

‖(x, ā)‖ = ‖x;Fn‖+ ‖ā; lm2 ‖ .

Let Tn : X → Xn, T ′n : F → Fn are correlation operators
such that:

Tny = (ȳ1, ..., ȳm) , ȳk = T̄ky = (yk1, ..., ykn), (7)

yki = y(tki) (k = 1, ...,m);

T ′n(z, a) = Tnz.

In (7) X = Ḣυ , F = Ċ × R.
On n-th step we will consider approximate operator

An : Xn × R→ Fn × lm2 ,

defined by the following equalities:

An(x, a) = (Ā1x̄1, ..., Āmx̄m;G(x, a)), (8)

where(
Ākx̄k

)
i

=
xki − xki−1

δk
+ υkixki−1 (i = 1, 2, ..., n), (9)

xk0 = xk−1n, if 2 ≤ k ≤ m, x10 = 0, (10)

G(x, a) = (a, x20, ..., xm0); (11)

υki = υ(tki) (k = 1, ...,m). (12)

Further let P ′ : Rmn+m → Rmn, P ′′ : Rmn+m → Rm

are standard projectors. We define approximate scheme of
equation (1) as follows: on n-th step we set

P ′ (An(x, a)) = T ′n(z, a), (13)

P ′′ (An(x, a)) = G(x, a). (14)

III. PROPERTIES OF APPROXIMATE SCHEME

A. Stability

Let X , Y are Banach spaces. We say that X is embedded
into Y if X ⊂ Y and ∃K > 0 : ‖x‖Y ≤ K ‖x‖X for all
x ∈ X˙
We say that function υ(t) satisfies slow change condition
(with respect to the characteristic measure µ(t)) if there exist
0 < β1 < β2 <∞ such that

β1 |υ(t)| < |υ(ζ)| < β2 |υ(t)| whenever 0 < ζ − t ≤ µ(t).
(15)

Proceedings of the World Congress on Engineering 2013 Vol I, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



Example. Function υ(x) = (1 + x) esinx
2

(x ≥ 0) satisfies
condition (15). For h = µ(t)

1 = h3

x+h∫
x

υ4(t)dt ≥ e−4 (1 + x)4
h4.

It is easy to see that the condition (15) holds if β2 = e2(1 +
e), β1 = β−1

2 .
Let L2 = L2(I) be a Lebesgue space with norm

‖y‖2 =

 ∞∫
0

|y(t)|2dt

1/2

.

Statement 1. Let υ(t) satisfies condition (15). Then
1) Operator L in (1) belongs to L(Ḣυ, Ċ);
2) The space Ḣυ is embedded into L2.
Statement 2. Let υ(t) satisfies condition (15). Then
1) Tn ∈ L(Ḣυ, Xn).
2) T ′n ∈ L(F, Fn), where F = Ċ × R.
Statement 3. Let υ(t) satisfies the condition (15). Then the
estimate ∥∥∥ỹ(k)

∥∥∥
c0
≤ ċkεk+ 1

2 ‖y;Hυ‖ , k = 0, 1, (16)

holds for all functions y ∈ Ḣυ , where ċk > 0 does not
depend on y.

Essential role in convergence of (3) plays stability property
of this scheme.
Definition 2. We say that approximate scheme (3) is stable
if there exist a constant γ > 0 and integer n0 > 0 such that

‖Anx‖Fn
≥ γ ‖x‖Xn

(x ∈ D(An), n ≥ n0). (17)

Theorem 1. Let the condition (15) holds. Let An be an
operator defined by equalities (8)-(12). Then the approximate
scheme (13)-(14) with the right hand side fn = (z, x̄0) is
stable.

B. Approximation and convergence

Now we investigate a question about approximation and
convergence of the difference scheme (13)-(14) on solutions
to the problem (1).

It is well-known that the problem (1) for right hand side
z ∈ Ċ × R is uniquely solvable (see [21]).
Definition 3. We say that the difference scheme (13)-(14)
approximate the equation (1) on the solution y∗ if:

‖P ′An(Tny∗, y∗(0))− T ′n(z, y∗(0));Fn‖ → 0, n→∞.

Theorem 2. Let υ(t) satisfies the condition (15). Then:
1) The problem (1) has solution y∗ ∈ Ḣυ if and only if
z(t) ∈ Ċ.
2) The difference scheme (13)-(14) approximate the equation
(1) on y∗.

Let {x∗n}n≥1 be a sequence of solutions to the equation

P ′An(x, y∗(0)) = T ′n(z, y∗(0)).

We say that approximate scheme (13)-(14) convergent on
y∗ if

‖x∗n − Tny∗;Xn‖ → 0 as n→∞.

Theorem 3. Let υ(t) satisfies the condition (15). Then the
difference scheme (13)-(14) convergent on y∗.

All statements obtained in this work in fact follow from
the below reasoning and estimates.

Let W 2
2 (Ω) (Ω = (a, b), −∞ < a < b <∞) be a Sobolev

space with norm

∣∣y;W 2
2 (Ω)

∣∣ =

∫
Ω

(
|y′′|2 + |y|2

)
dx

1/2

.

The embedding

W 2
2 (Ω)→ Ck

(
Ω
)

(k = 0, 1), (18)

Ω = [a, b], holds. That is each z ∈ W 2
2 (Ω) is equivalent to

function y ∈ Ck
(
Ω
)
, and also

max
Ω

∣∣∣y(k)
∣∣∣ ≤ ck ∣∣y;W 2

2 (Ω)
∣∣ . (19)

See. [22]. ck (k = 0, 1) are exact constants of the embedding
(18) for Ω = (0, 1).

Let y ∈ Ḣυ . Function y may be considered as finite
function on I . It follows from (15) and characteristic equality
(6) that for all i = 1, 2, ..., n, k = 1, 2, ...,m

β1 ≤ µkυki =

µ3
k

∫
∆k

υ4
kidt

1/4

≤ β2. (20)

Note that
y ∈W 2

2 (∆k) (k ≥ 1) .

It is easy to obtain this through the estimate

∞ >

∫
∆k

(
|y′′|2 + |y|2 υ(x)4

)
dx ≥

≥ υ (tk)
υ (tk) + β

∫
∆k

(
|y′′|2 + |y|2

)
dx.

Now we can consider that y ∈ C1
(
∆k

)
. In addition

max
∆k

|y| ≤ c0µ3/2
k

∫
∆k

|y′′|2dζ + µ−4
k

∫
∆k

|y|2dζ

1/2

≤

≤ c̃0µ3/2
k

∫
∆k

|y′′|2dζ + |υ2(ζ)y(ζ)|2dζ

1/2

; (21)

max
∆k

|y(1)| ≤ c̃1µ1/2
k

∫
∆k

(
|y′′|2 + |υ2(ζ)y(ζ)|2

)
dζ

1/2

,

(22)
where c̃k =

(
1 + β8

)1/4
ck.

Let x → tk. Let us take ∆ = ∆k−1 if x → tk − 0,
∆ = ∆k+1 if x→ tk + 0. Then

|y (x)− y (tk)| =

∣∣∣∣∣∣
tk∫
x

y(k+1) (t) dt

∣∣∣∣∣∣ ≤ |x− tk| (c̃0 |y;Hυ|) ,

|y′ (t)− y′ (tk)| =

∣∣∣∣∣∣
tk∫
x

y
′′

(t) dt

∣∣∣∣∣∣ ≤ |x− tk|1/2 |y;Hυ| ,
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whence it follows that y, y′ are continuous also in a tk points.
Because of µk → 0 as k →∞ there exist limits

lim
x→∞

y (x) = 0, lim
x→∞

y′ (x) = 0,

as follows from (21) and (22). From (20) and (21) we obtain
(x ∈ ∆k)

|υ (x) y (x)| ≤ βυ (tk) max
∆k

|y| ≤
(
c̃0β

2 |y;Hυ|
)
µ

1/2
k .

Hence,
lim
x→∞

|υ (x) y (x)| = 0.
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