
 

 

Abstract—This work examines the identification of a 

mathematical model of the thermal performance of a building, 

based on experimental data available for direct measurement. 

The authors offer a new model structure with a reduced 

number of parameters. An identification method based on 

building an inverse dynamics model that uses exponential 

filtration is considered. The method makes it possible to 

estimate signals that cannot be measured directly: the signal 

of the general perturbation of the indoor air temperature and 

the signal of specific heat loss through the building envelope. 

A simulated example is given of identifying the thermal 

performance of a building based on test data using VisSim 

visual modeling software. 

The identification method offered in the article may be 

used in engineering calculations for designing automatic 

control systems and in predictive control algorithms for 

heating buildings. 

 

Index Terms—Building thermal conditions model, 

exponential filtration, heating of buildings, identification. 

 

I. INTRODUCTION 

NE of the main objectives in the development of urban 

engineering infrastructure in countries with moderate 

climates is to improve the energy efficiency of building 

heating systems [1], [2]. The modern approach to saving 

thermal energy when heating buildings and increasing the 

comfort of building users assumes the introduction of 

automatic control systems that use model predictive control 

methods [3]–[6]. Another important issue is the 

development and identification of a mathematical model for 

building heating parameters [7]–[10]. 

The indoor air temperature Тind of a building depends on 

its volume, building envelope type, the quantity of applied 

thermal energy Qsource, inner and external perturbing factors 

such as the outdoor air temperature Тout, solar radiation Jrad, 

wind Vwind, internal heat release Qint, and the building’s 

accumulated internal thermal energy Qacc (Fig. 1). 

However, the signals Тind, Qsource, and Тout presented in 

Fig. 1 can be measured quite easily in practice, while direct 
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measurement of Jrad, Vwind, Qint, and Qacc, which affect the 

temperature Тind, is actually problematic. 

Furthermore, it should be noted that the processes of heat 

transfer are distributed and generally described by partial 

differential equations [11]. However these equations are not 

convenient for use in the identification process in their 

given form, because they contain a large number of 

parameters which are very difficult to determine in practice. 

The following is a method to identify the thermal 

characteristics of a building, based on a reduced set of 

experimental data, which makes it suitable for practical use. 

II. A METHOD TO IDENTIFY 

THE THERMAL CHARACTERISTICS OF A BUILDING 

The initial (empirical) data for modeling the thermal 

performance of a building include the heating power 

applied to the building, the outdoor air temperature, and the 

indoor air temperature. The indoor air temperature Тind of a 

building, which is the average value of indoor temperatures 

in each room, accounting for differences in area, is 

calculated as follows: 
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where Si, Tind i stand for the area and temperature of the i-th 

room, respectively, t is time. Using the average temperature 

Tind permits us to estimate relatively fast perturbations – 

such as wind, solar radiation, or local heat sources, which 

affect the thermal performance of some rooms, for example, 

the rooms of one side of the building – for the entire 

building. We can then assume that the response time of the 

model’s output signal (indoor air temperature) to these 

perturbations is comparable to the time constants of the 

relatively slow processes of heat accumulation and heat loss 

through a building envelope with high heat capacity. 

Consequently, the concept of a general temperature 

perturbation, Tz, may be introduced, characterizing the 
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Fig. 1.  Factors affecting the indoor air temperature. 
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effect of the factors mentioned above on the indoor air 

temperature. Therefore, the heat balance equation takes the 

following form: 
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where Tind
*(t) stands for the predicted value of the indoor 

air temperature (the prediction horizon is determined by the 

fluctuation of the indoor air temperature as a result of the 

perturbing factors (Fig. 1)); Tout(t) is the outdoor air 

temperature; Q0(t) stands for the heating power applied to 

the heating system; q0 represents the specific heat loss (per 

cubic meter); and V is the external volume of the building. 

Let us assume that the behavior of the indoor air 

temperature Tind(t) is described by a linear dynamic operator 

with a pure delay given by: 
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where τd is the pure delay time. 

A block diagram of a building thermal performance 

dynamics model composed in accordance with equations (2) 

and (3) is presented in Fig. 2. 

In the model presented in Fig.1, we will consider the 

values Q0(t), Tout(t), Tind(t) to be known, because they can be 

directly measured in practice. The unknown values are: 

– polynomial coefficients ai and bj (3); 

– delay time constant τd; 

– building specific heat loss q0; 

– general temperature perturbation Tz(t); 

– predicted value of the indoor air temperature Tind
*(t). 

The values of ai, bj, and τd can be determined from the 

building’s response to a stepwise change in the heating 

power Q0(t) using well-known methods, for example, 

Matlab’s Ident toolbox (MathWorks, Inc., USA). However, 

to reduce the effect of the perturbing factors Tout(t) and Tz(t) 

a series of experiments is conducted, and ai, bj, and τd are 

calculated according to the following equations: 
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where N is the number of experiments; k stands for a 

sequence number of an experiment; and ai,k , bj,k , and τd k 

represent the values obtained during the experiment. 

Next, let us assume that Tind
*(t) and Tind(t) are statistically 

unbiased signals and that Tz(t) is a signal with a mean of 

zero, then: 

 

     ind ind  ,t tM T t M T t   (5) 
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where Mt{•} is the time-mean operator. 

From Equations (2), (5), and (6), it follows that the 

specific heat loss through the building envelope can be 

calculated using: 
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It is evident from (2) that the general perturbation Tz can 

be determined by: 
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where Tind
*(t) is the predicted indoor air temperature. 

According to the model presented in Fig. 1, the predicted 

indoor air temperature can be determined by the following 

equation: 
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where L0
–1{•} stands for the inverse dynamics operator. 

From (3), the operator’s formal inverse is: 
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A block diagram of the operator’s formal inverse is 

presented in Fig. 3. 

Let us consider constructing the dynamics operator 

L0
–1{•} based on the exponential filtration method [12].  

Let a signal decomposition in polynomial basis be given 

as follows: 
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where λ is the retrospective interval, and gi(t) stands for the 

decomposition’s spectral components. 

Considering a prediction at time τd , (11) becomes: 
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Fig. 3.  Block diagram of the operator’s formal inverse. 
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Fig. 2.  Block diagram of the building thermal performance dynamics model. 
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According to the Newton binomial, we then obtain 
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where сk stands for the binomial coefficients. Substituting 

(13) in (12), we get the relationship for a signal: 
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which accounts for the prediction at time τd. 

Then we decompose the signal φ(t) in the polynomial 

basis: 
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Let us consider the decomposition of the signal φ(t) into 

the Taylor series: 
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Comparing the expressions (15) and (16) yields the 

following equation: 
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Equation (17) shows the relationship between the i-th 

derivative of the input signal φ(i)(t) and the corresponding 

spectral component gi(t).  

Hence, the output of the filter’s differential part, without 

accounting for the predictive component τd, will become: 
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Comparing the expressions (15) and (18), we conclude 

that obtaining an expression for the signal h(t) requires the 

following substitution in (14): 
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By applying (19) to (14), we determine the output of the 

differential component of the predictive filter: 
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As a result, we obtain the inverse operator structure 

given in Fig. 4. Here Φinp stands for the exponential filter of 

input signal moments; Р-1 is the inverse correlation 

coefficient matrix; А is the coefficient matrix for the 

differential component of the inverse operator; μ(t) = {μ0(t), 

μ1(t), …, μn(t)}
T represents the vector of input signals 

moments; and g(t) = {g0(t), g1(t), …, gn(t)}
Т stands for a 

vector of the decomposition’s coordinate functions. 

Signal projections {gi(t)} are determined based on the 

criterion of minimum exponential mean error in the input 

signal (11): 
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where Т is the time constant of the averaging filter. 

The solution is based on the minimum of function (21) 

along projections of gi(t): 
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The solution to problem (22) is a system of recurrence 

relations [13] 
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where Tind,k stands for the input signal at time tk ; Δt is the 

time sampling interval, and P = Q–1 represents a matrix of 

constant coefficient determined from the following 

relationships: 
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The block diagram of the identification system operating 

in real-time is presented in Fig. 5. Here P1 is described by 

(7), and P2 is described by (8). 
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Fig. 5.  Block diagram of a real-time identification system for signals q0 

and Tz(t). 
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Fig. 4.  Inverse operator structure. 
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Fig. 6.  Input signals. Dash-dotted line stands for Q0(t) [W]; dashed line stands for Tout(t) [°С]; solid line stands for Tz(t) [°C]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Specific heat loss. Dashed line stands for actual value (average); solid line stands for predicted value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  General temperature perturbation. Dashed line stands for actual value; solid line stands for predicted value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Indoor air temperature. Dashed line stands for actual value; solid line stands for predicted value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Estimation error for indoor air temperature. 
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Thus, the proposed method results in real-time 

identification of the unknown signals q0 and Tz(t) using the 

measured values of Q0(t), Tout(t) and Tind(t). 

III. A SIMULATED EXAMPLE 

Let us consider an example of identifying the thermal 

characteristics of a building based on the proposed method 

using VisSim visual simulation software (Visual Solutions, 

Inc., USA). 

Let us assume that operator L0(p) is as follows: 
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Let the parameters for the model presented in Fig. 1 take 

the following values: V = 7000 m3, q0 = 0.48 W/(m3 °С), 

Т1 = 6 hrs, Т2 = 3 hrs, τd = 2 hrs. 

Considering the cyclic nature of changes in outdoor air 

temperature, heat power, and the perturbing factors, let us 

use the harmonic test signals in Fig. 6 as the model’s input 

signals Tout(t) and Q0(t) as well as signal Tz(t), which will 

be defined later in the identification process. 

The graph of the corresponding variation in indoor air 

temperature Tind(t) for the model given in Fig. 2 with 

dynamics operator (25) is presented in Fig. 9 (solid line). 

The dynamics operator (25) is inverted based on the 

structure of the inverse operator presented in Fig. 4. The 

target signals q0 and Tz(t) are calculated according to the 

identification system’s block diagram, presented in Fig. 5.  

Fig. 7–10 present the modeling results. Fig. 7 shows 

graphs of the source- and calculated signals of specific heat 

loss of the building. As you can see from the graph, the 

estimation error for signal q0 does not exceed ±1%. 

Fig. 8–9 show similar graphs for the general temperature 

perturbation and the indoor air temperature. Fig. 10 

presents a graph of the estimation error for the indoor air 

temperature. As can be seen from the graph, the estimation 

error is about ±0.5 °С. 

IV. CONCLUSION 

The results obtained demonstrate the overall viability of 

the proposed method to identify a building’s thermal 

characteristics based on experimental data and the 

possibility of its practical application in automatic heating 

control systems. However, it should be noted that the model 

of a building’s thermal performance used in this work is 

highly simplified. In real-world automatic heating control 

systems, the proposed method may be applied to more 

complex dynamics models of buildings. This is the subject 

of our future research. 
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