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Abstract—A cohesive zone model of crack propagation in
linear visco-elastic materials with non-linear history-dependent
rupture criterion is presented. The viscoelaticity is described
by a linear Volterra integral operator in time. The stresses
on the cohesive zone satisfy the history dependent rupture
criterion, given by a non-linear Abel-type integral operator. The
crack starts propagating when the crack tip opening reaches a
prescribed critical value. A numerical algorithm for computing
the evolution of the crack and cohesive zone in time is discussed
along with some numerical results.

Index Terms—Keywords: Abel integral equation, viscoel-
sticity, cohesive zone, history dependent fracture, nonlinear
fracture

I. INTRODUCTION

THE cohesive zone, CZ, in a material is the area between
two separating but still sufficiently close surfaces ahead

of the crack tip, see the shaded region in Figure 1. The co-
hesive forces present at the cohesive zones pull the cohesive
zone faces together. The external load applied to the body,
on the contrary, causes the crack faces and CZ faces to move
further apart and the crack to propagate.
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Fig. 1. Cohesive zone

Our aim is to find the time evolution of the CZ before
the crack starts propagating, the delay time, after which
the crack will start to propagate, and further time evolution
of the crack and the CZ. When the crack propagates, the
cohesive forces vanish at the points where the cohesive zone
opening reaches a critical value and these points become the
crack surface points, while the new material points, where
the history-dependent normalised equivalent stress reaches a
critical value, join the cohesive zone. So, the CZ is practically
attached to the crack tip ahead of the crack and moves with
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the crack, keeping the normalised equivalent stress finite in
the body.

One of the most popular CZ models for elasto-perfectly
plastic materials is the Dugdale-Leonov-Panasyuk (DLP)
(1959-1960) model, see [1], [2]. In the DLP model, the
maximal normal stress in the cohesive zones is constant and
equals to the material yield stress, σ = σy . This model,
and several of its modifications, have been widely used in
nonlinear fracture mechanics. Another popular CZ model is
the Barenblatt (1962) model.

The 3 main components needed to implement CZ models
of the DLP-type are: (i) the constitutive equations in the bulk
of the material; (ii) the constitutive equations in the cohesive
zone; (iii) the criteria for the cohesive zone to break and the
crack to propagate.

II. PROBLEM FORMULATION

The model presented in this paper is an extension of
the DLP model to linear visco-elastic materials with non-
linear history-dependent constitutive equations in the cohe-
sive zone. To this end, we will replace the DLP cohesive
zone stress condition, σ = σy , with the condition

Λ(σ̂; t̂) = 1, (1)

where

Λ(σ̂; t̂) =

(
β

bσβ0

∫ t̂

0

|σ̂(τ̂)|β(t̂− τ̂)
β
b−1dτ̂

) 1
β

(2)

is the normalised history-dependent equivalent stress, |σ̂|
is the maximum of the principal stresses, and t̂ denotes
time. The parameters σ0 and b are material constants in the
assumed power-type relation

t̂∞(σ̂) =

(
σ̂

σ0

)−b
between the rupture time t̂∞(σ̂) and the constant uniaxial
tensile stress applied to a body without cracks. The parameter
β is a material constant in the nonlinear accumulation rule
for durability under variable load, see [3].

Note that relations (1)-(2) were implemented in [4] and
[5] to solve a similar crack propagation problem without
cohesive zone; i.e. it was assumed that when condition (1)
is reached at a point, this point becomes part of the crack.
However, such approach appeared to be inapplicable for
b ≥ 2. In this paper, a cohesive zone approach is developed
instead, in order to cover the larger range of b values relevant
to structural materials. In the CZ approach, when condition
(1) is reached at a point, this point becomes part of the
cohesive zone.

Let the problem geometry be as in Figure 1, i.e, the crack
occupies the interval [−â(t̂), â(t̂)] and the cohesive zone
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occupies the intervals [−ĉ(t̂),−â(t̂)] and [â(t̂), ĉ(t̂)] in an
infinite plane loaded at infinity by traction q̂ in the direction
normal to the crack, which is constant in x̂, applied at the
time t̂ = 0 and kept constant in time thereafter. The initial
CZ tip coordinate and crack tip coordinate are prescribed,
ĉ(0) = â(0) = â0, while the functions ĉ(t̂) and â(t̂) for time
t̂ > 0 are to be found.

The cohesive zone condition (1)-(2) at a point x̂ on the
cohesive zone can be rewritten as∫ t̂

t̂c(x̂)

σ̂β(x̂, τ̂)

(t̂− τ̂)1−
β
b

dτ̂ =
bσβ0
β
−
∫ t̂c(x̂)

0

σ̂β(x̂, τ̂)

(t̂− τ̂)1−
β
b

dτ̂ , (3)

for t̂ ≥ t̂c(x̂) and â(t̂) ≤ |x̂| ≤ ĉ(t̂).
Here, t̂c(x̂) denotes the time when the point x̂ becomes

part of the cohesive zone. Equation (3) is an inhomogeneous
nonlinear Volterra integral equation of the Abel type with
unknown function σ̂(x̂, t̂) for t̂ ≥ t̂c(x̂).

We will first consider the case when the bulk of the mate-
rial is linearly elastic and then convert the obtained solution
to the case of linear visco-elastic materials using the so-called
Volterra principle. Applying the results by Muskhelishvili
(see [6], Section 120), we have for the stresses ahead of the
cohesive zone in the elastic material,

σ̂(x̂, t̂) =

x̂√
x̂2 − ĉ2(t̂)

q̂ − 2

π

∫ ĉ(t̂)

â(t̂)

√
ĉ2(t̂)− ξ̂2

x̂2 − ξ̂2
σ̂(ξ̂, t̂)dξ̂

 , (4)

for t̂ ≤ t̂c(x̂) and |x̂| > ĉ(t̂). As one can see from (4), σ̂(x̂, t̂)
has generally a square root singularity as x̂ tends to ĉ.

A sufficient condition for the normalised equivalent stress,
Λ, to be bounded at the cohesive zone tip is that the
stress intensity factor, K̂, is zero at the cohesive zone tip.

Multiplying the stress in equation (4) by
√
x̂− ĉ(t̂) and

taking the limit as x̂ tends to ĉ(t̂) yields

K̂(t̂) =

√
ĉ(t̂)

2

q̂ − 2

π

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)√
ĉ2(t̂)− ξ̂2

dξ̂

 .
To simplify the equations, we will employ the normalisa-

tions

t =
t̂

t̂∞
, x =

x̂

â0
, a(t) =

â(t t̂∞)

â0
,

c(t) =
ĉ(t t̂∞)

â0
, σ(x, t) =

σ̂(x â0, t t̂∞)

q̂
,

K(c, t) =
K̂(c â0, t t̂∞)

q̂
√
â0

. (5)

Here t̂∞ = t̂∞(q̂) =

(
q̂

σ0

)−b
denotes the fracture time for

an infinite plane without a crack under the same load, q̂.
Thus, after the normalisation, we state the following

principle equations for the considered problem:
(a) the cohesive zone condition (1) in the form∫ t

tc(x)

σ(x, τ)
β

(t− τ)1−
β
b

dτ =
b

β
−
∫ tc(x)

0

σβ(x, τ)

(t− τ)1−
β
b

dτ (6)

for a(t) ≤ |x| ≤ c(t);

(b) the expression for the stress ahead of the cohesive zone:

σ(x, t) =
x√

x2 − c2(t)
·(

1− 2

π

∫ c(t)

a(t)

√
c2(t)− ξ2
x2 − ξ2 σ(ξ, t)dξ

)
for |x| > c(t); (7)

(c) the zero stress intensity factor, K(c, t) = 0, where

K(c, t) =

√
c(t)√
2
−
√

2c(t)

π

∫ c(t)

a(t)

σ(ξ, t)√
c2(t)− ξ2

dξ. (8)

III. COHESIVE ZONE GROWTH FOR A STATIONARY
CRACK

In this section we will consider the stationary stage, before
the crack starts propagating, i.e., a(t) = a(0) = 1, and thus
only the cohesive zone grows with time. Our aim is to find
the cohesive zone tip position c(t) and the crack tip opening.

A. Numerical Method

Let us introduce a time mesh with nodes ti = ih, for
i = 0, 1, 2, 3, ...n, where h is the time-step size. At each
time step ti, we use the secant method to find the roots,
c(ti) = ci, of the equation K(ci, ti) = 0, as follows:

1) Take 2 initial approximations, (ci)1 and (ci)2, for c(ti).
2) Obtain K1 = K((ci)1, ti) and K2 = K((ci)2, ti)

using equation (8). Note that:
• In order to evaluate the integral in (8),∫ c(ti)

a(0)

1√
c2(ti)− ξ2

σ(ξ, ti)dξ, (9)

we linearly interpolate σ(ξ, ti) on the cohesive
zone between ξ = c(tk) and ξ = c(tk+1), where
k = 0, 1, 2, ...i− 1.

• On the other hand, to find σ(ξ, ti), at each ξ =
c(tk), we use the Abel integral equation (6). First,
we evaluate the integral∫ tk

0

σβ(c(tk), τ)(t− τ)
β
b−1dτ

in the right hand side of equation (6) by piecewise
linearly interpolating the function σβ(c(tk), τ) be-
tween τ = tj and τ = tj+1 for j = 0, 1, 2, ...k−1.
Then we use the analytical solution of a gener-
alised Abel type integral equation to solve the
integral equation (6).

• To this end, in turn, we need to find σβ(c(tk), tj)
for tj < tk from equation (7) (since c(tk) >
c(tj)), where the integral∫ c(tj)

a(0)

√
c2(t)− ξ2

c(tk)2 − ξ2 σ(ξ, tj)dξ

is calculated similarly to integral (9). This means
we piecewise linearly interpolate σ(ξ, tj) between
ξ = c(tm) and ξ = c(tm+1) for m = 0, 1, ...j− 1.

3) Find the next approximation for ci using

(ci)3 =
K2(ci)1 −K1(ci)2

K2 −K1
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4) If |(ci)3 − (ci)1| < ε or |(ci)3 − (ci)2| < ε allocate
c(ti) = c3 and go to the step t = ti+1; otherwise, go
to the next item. Here ε is some tolerance.

5) Taking the new (ci)2 as (ci)3 return to item 2 until
convergence is reached.

We have used ε = 10−8 as the tolerance value. All
programming was implemented in MATLAB. Using this
scheme, we obtained the evolution of the cohesive zone tip
position as well as the stress distribution on the cohesive
zone.

B. Numerical Results

The graphs presented in Fig. 2 show the results obtained
for a stationary crack with b = 4 and β = b/2 = 2 for
various mesh sizes.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

t

c(
t)

 (
lo

g 
sc

al
e)

 

 

n=25
n=50
n=100
n=200
n=400
n=800

Fig. 2. CZ tip position vs time for b = 4, β = 2, and different meshes

The graph in Fig. 3 is a closer look at the graphs in Fig. 2.
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Fig. 3. CZ tip position vs time for b = 4, β = 2 and different meshes,
zoomed

The graphs in Figs. 4 and 5 show the results obtained for
3 different values of the parameter β.
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Fig. 4. CZ tip position vs time for b = 4 and different β (non-propagating
crack)
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Fig. 5. CZ tip position vs time for b = 4 and different β (non-propagating
crack), zoomed

Figure 6 shows the stress behaviour with respect to time
at the point x = c(0.6), i.e., tc(x) = 0.6.
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Fig. 6. The stress σ(c(0.6), t) vs time for b = 4, n = 500

C. Crack Tip Opening in the Elastic Case

Using the representations by Muskhelishvili (see [6], Sec-
tion 120), it can be deduced that the normal displacement
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jump at a crack+CZ shore point x̂ is

[ûe(x̂, t̂)] = [û(q)e (x̂, t̂)] + [û(σ)e (x̂, t̂)]

where

[û(q)e (x̂, t̂)] =
4q̂(1− ν2)

E0

√
ĉ(t̂)2 − x̂2,

[û(σ)e (x̂, t̂)] =
4(1− ν2)

πE0

(∫ ĉ(t̂)

â(t̂)

σ(ξ̂, t̂)Γ(x̂, ξ̂; ĉ(t̂))dξ̂

)
,

Γ(x̂, ξ̂; ĉ) = ln

2ĉ2 − ξ̂2 − x̂2 − 2

√
(ĉ2 − x̂2)(ĉ2 − ξ̂2)

2ĉ2 − ξ̂2 − x̂2 + 2

√
(ĉ2 − x̂2)(ĉ2 − ξ̂2)

.
In the above expressions, E0 and ν denote Young’s modulus
of elasticity and Poisson’s ratio, respectively. We denote the
displacement jump at the crack tip, x̂ = â, for the elastic
material by

δ̂e(t̂) := [ûe(â(t̂), t̂)] =
(1− ν2)

E0

(
4q̂

√
ĉ2(t̂)− â2(t̂)

+
4

π

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)Γ(â(t̂), ξ̂, ĉ(t̂))dξ̂

)
. (10)

and call it the crack tip opening. Using the normalisation

[ue(x, t)] =
E0[ûe

(
x̂ â0, tt̂∞

)
]

â0q̂ (1− ν2)
, δe(t) =

E0δ̂(t t̂∞)

â0q̂(1− ν2)
,

(11)
we obtain

[ue(x, t)] = 4
√
c2(t)− x2 +

4

π

∫ c(t)

a(t)

σ(ξ, t)Γ(x, ξ; c(t))dξ, (12)

δe(t) = [ue(a(t), t)].

D. Crack Tip Opening in the Viscoelastic Case

To obtain the crack tip opening in the visco-elastic case,
we will implement the so-called Volterra principle, according
to which we have to replace the elastic constants E0 and
ν in the elastic solution by the corresponding viscoelastic
operators, to arrive at the viscoelastic solution. Although this
approach does not always bring a viscoelastic solution for the
problems with moving boundaries, it is possible to show, cf.
[7], that this approach leads to a viscoelastic solution for
the plane symmetric problems with a straight propagating
crack. This means that for the viscoelastic problem we can
directly use the results by Muskhelishvili for the stress repre-
sentation given in equation (4) since they do not include the
elastic constants at all. For simplicity, we will consider the
viscoelastic material with constant (purely elastic) Poisson’s
ratio. Then, to obtain the crack opening in the viscoelastic
case, we have to replace 1/E0 in (10) by the second kind
Volterra integral operator E−1 defined as

(
E−1σ̂

) (
t̂
)

=
σ̂
(
t̂
)

E0
−
∫ t̂

0

J̇
(
t̂− τ̂

)
σ (τ̂) dτ̂ ,

where the creep function J is known and J̇ is its derivative.
Hence the viscoelastic crack tip opening becomes

δ̂v
(
t̂
)

= [ûv(â(t̂), t̂)] =
(
E−1E0[ûe(â(t̂), ·)]

) (
t̂
)

=

(
δ̂e
(
t̂
)
− E0

∫ t̂

0

J̇
(
t̂− τ̂

)
[ûe(â(t̂), τ̂)]dτ̂

)
. (13)

In our numerical examples we use the creep function of a
standard linear solid (of the Kelvin-Voigt type), namely

J
(
t̂− τ̂

)
=

1

E0
+

1

E1

(
1− e−

E1
η (t̂−τ̂)

)
, (14)

J̇
(
t̂− τ̂

)
= −1

η
e−

E1
η (t̂−τ̂).

Here, η and E1 are material constants, η/E1 being the
relaxation time and η the viscosity of the polymer. Such
viscoelastic models satisfactorily model some polymers, e.g.
PMMA (also known as plexiglas).

For J in the form (14), equation (13) becomes

δ̂v
(
t̂
)

= [ûv(â(t̂), t̂)] =(
δ̂e
(
t̂
)

+
E0

η

∫ t̂

0

e−
E1
η (t̂−τ̂)[ûe(â(t̂), τ̂)]dτ̂

)
. (15)

Employing the normalised parameters

δv(t) =
E0δ̂v

(
tt̂∞
)

â0q̂ (1− ν2)
, A0 =

E0t̂∞
η

, A1 =
E1t̂∞
η

, (16)

equation (15) reduces to the following expression for the
normalised crack tip opening in the viscoelastic case,

δv(t) = [uv(a(t), t)] =(
δe(t) +A0

∫ t

tc(a(t))

e−A1(t−τ)[ue(a(t), τ)]dτ

)
, (17)

where the lower limit of the integral is replaced with tc(a(t))
since [ue(x, τ)] = 0 when τ ≤ tc(x).

In the numerical examples we used values A0 = 2.8695
and A1 = 1.5736. The graphs in Figs. 7-9 show the
stationary crack tip opening evolution for b = 4 and different
β in the elastic and viscoelastic cases.
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Fig. 7. Crack tip opening vs time for b = 4, elastic case
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Fig. 8. Crack tip opening vs time for b = 4, viscoelastic case
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Fig. 9. Crack tip opening vs time for b = 4, β = 1

IV. CRACK PROPAGATION

We have, so far, assumed that the crack is stationary
and only the cohesive zone is growing ahead of the crack.
However, the crack will start to propagate when the crack tip
opening δ̂ reaches a critical value δ̂c, where δ̂c is considered
as a material constant. The crack and cohesive zone will not
necessarily grow at the same rate. The time instant, when the
crack tip opening reaches a critical value, will be referred to
as the fracture delay time and denoted by t̂d.

Similar to (5), (11) and (16), we employ the following
normalised parameters,

td =
t̂d

t̂∞
, δc =

δ̂cE0

â0q̂(1− ν2)
. (18)

The aim now is to find td, the crack tip coordinate a(t) and
the CZ tip coordinate c(t) for t > td.

A. Numerical Method

Considering uniformly spaced time steps, the crack tip
opening δ(ti) satisfies equation

δe(ti) = δc, ti ≥ td. (19)

for the purely elastic case and equation

δv(ti) = δc, ti ≥ td. (20)

for the viscoelastic case, where δv(ti) is given by (17).
We use the secant method to solve equation (19) (in the

elastic case) or (20) (in the viscoelastic case) for a(ti). To do
this, we need to know c(ti) at each iteration. It is obtained us-
ing the secant method to solve the equation K(c(ti), ti) = 0
for c(ti), where the stress intensity factor K(c, t) is given
by (8). Note that we choose previous cohesive zone tip
positions, c(tm), as initial approximations for a(ti) within
the secant algorithm. The advantage of doing this is that
we already know the stress history at these previous points
since they were computed in the previous time steps. Note
that tc(ai) (the time instant when ai became part of the
cohesive zone) is unknown for cases when ai 6= c(tm). Thus,
we linearly interpolate δe(tc(ai), ai) between δe(tm, ai) and
δe(tm+1, ai) where cm < ai < cm+1.

During implementation of the algorithm, we come across
the step, i, where ai will exceed ci−1, and for decreasing
cohesive zone length we will have ai > ci−1 in all the steps
which follow. Thus, for these steps, only 1 previous value
of c (namely ci−1) can be taken as an initial approximation
of ai. To this end, we will modify the algorithm by fixing
ai and computing the corresponding ti and ci by solving
equation (19) (in the elastic case) or (20) (in the viscoelastic
case) (setting the crack tip opening displacement equal to
the critical crack tip opening) and K(ci, ti) = 0 (setting the
stress intensity factor to 0) respectively.

B. Numerical results

We used in our calculations the value δc = 1.13 for the
normalised critical crack tip opening, cf. Appendix.

Let h = 1/5000 be the step size in the time mesh. For β =
b/4 = 1, we have 51 and 48 time steps before crack growth
begins in the elastic and the viscoelastic cases, respectively,
while td = 0.0102 for the elastic case and td = 0.0096 for
the viscoelastic case.

The graphs in Figs. 10 and 11 show coordinates of the
crack tip and the cohesive zone tip for both the elastic and
viscoelastic cases.
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Fig. 10. Length vs. time for b = 4, β = 1

The graphs in Fig. 12 show the behaviour of the cohesive
zone length with time. The graphs in Fig. 13 show the
evolution of CZ tip coordinate in time for 3 cases of β.
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Fig. 11. Length vs. time for b = 4, β = 1
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Fig. 12. CZ length vs. time for b = 4, β = 1
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Fig. 13. CZ tip coordinate vs. time for b = 4

V. CONCLUSIONS

The solution converges as the mesh becomes finer.
For the stationary crack stage, t < td, the cohesive

zone length is smaller for smaller β, for the same time
instant. We can see from Figure 6 that the stress reaches
a sharp maximum in coordinate at the cohesive zone tip
and monotonically decreases with the distance from the tip.
As expected, we have an increase, with time, of the crack

tip opening. Moreover, as β becomes smaller, the crack tip
opening increases more slowly with time. The obtained graph
of the crack tip opening displacement for the viscoelastic
case demonstrates that the crack opens at a higher rate than
in the elastic case. As a consequence, the fracture delay time
td is longer for the elastic case than for the viscoelastic one:
for b = 4 and β = 1, we obtained td = 0.0102 for the elastic
case and td = 0.0096 for the viscoelastic case.

For the growing crack stage, t > td, we can see from
Figure 10, that the crack growth rate increases, while the
cohesive zone length decreases with time. The time, when
the cohesive zone length becomes 0 seems to coincide with
the time when the crack length becomes infinite and can
be associated with the complete fracture of the body. The
graph of the cohesive zone length for the viscoelastic case
indicates that the fracture time is slightly smaller than that
for the purely elastic case. For example, for b = 4 and β = 1,
the normalised fracture time is tr = 0.0188 for the elastic
case and tr = 0.0186 for the viscoelastic one. It can be seen
from Figure 13 that as β decreases, the fracture time also
decreases.

APPENDIX

To give an idea on the parameter scales, we provide here
some material parameters for PMMA from [8] (pages 655-
657), [9], and [10]. Poisson’s ratio ν = 0.35; Young’s
modulus of elasticity E0 = 3100 MPa; relaxation time
η/E1 = 2.52 · 104 s; viscosity η = 4.3 · 107 MPa s; critical
crack tip opening: δ̂c = 0.0016mm. Then by (18), δc = 1.13
for q̂ =5MPa.

Some experimental data on the static creep rupture under
tensile stress for PMMA at the room temperature were re-
ported in [11]. Fitting these data to the power-type durability
curve t̂∞(σ̂) = (σ̂/σ0)−b will give values for b, σ0, t̂∞(q̂),
A0 and A1.
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