
 

  
Abstract—In this paper, we introduce an iterative scheme for 

finding a common element of the set solutions of quasi-
variational inclusion problems, fixed point problems, and 
generalized equilibrium problems in Hilbert spaces. Under 
suitable conditions, some strong convergence theorem for a 
sequence of nonexpansive mappings be proved. The results 
presented in this paper improve and extend the corresponding 
results announced by many others.      
 

Index Terms—Fixed point, quasi-variational inclusion, 
generalized equilibrium problems, minimization problems  
 
 

I. INTRODUCTION  
HIS paper  we always assume that H  is a real Hilbert 
space with the inner product ,⋅ ⋅  and the norm  .⋅  Let 

be a nonlinear mapping and let F  be a bifunction of C C×  
into ,  where   is the set of real numbers. The generalized 
equilibrium problem is to find a point x C∈  such that          
                           F(x, y) B(x), y x 0, y C.+ − ≥ ∀ ∈  (1.1)                                 
The set of solutions of (1.1) is denoted by GEP  (see in [3]). 
If B 0,= then (1.1) reduces to the equilibrium problem: to 
find x C∈  such that                                                                                
                                   F(x, y) 0, y C.≥ ∀ ∈                       (1.2) 
Let  A : H H→  be a single-valued nonlinear mapping and 

HM : H 2→  be a set-valued mapping. The quasi-variational 
inclusion problem (see in [9]), is to find x H∈  such that   
                                  f A(x) M(x).∈ +                           (1.3)   
The set of solutions of (1.3) is denoted by VI(H,A,M).  A 
special case of the problem (1.3) is to find an element 
x H∈ such that                                                                                                                                                                                         
                                 A(x) M(x),θ∈ +                            (1.4) 
where θ  is the zero vector in H.  If 

C
M δ= ∂  and 

[ )C : H 0,δ → +∞  is the indicator function of C,  that is 

                              C
0, x C

(x)
, x C.

∈
δ = −∞ ∉

                      (1.5) 

Then the quasi-variational inclusion problem (1.4) is 
equivalent the classical variational inequality problem, 
denoted by VI(C,A),  to find x H∈  such that             
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               A(x), v x 0, v C.− ≥ ∀ ∈                      (1.6) 
It is known that (1.4) provides a convenient framework 

for the unified study of optimal solutions in many 
optimization related areas including optimal control, 
equilibria and variational inequalities (see [1] and the 
references therein). 

Let S : H H→  be a nonlinear mapping. The mapping S  
is said to be contractive with coefficient k (0,1)∈  if  

                Sx Sy x y , x, y H.− ≤ α − ∀ ∈                   (1.7)          
The mapping S  is said to be nonexpansive if 

                 Sx Sy x y , x, y H.− ≤ − ∀ ∈                     (1.8) 
The fixed point set of S is denoted by F(S). For finding a 
common element of the set of fixed points of a nonexpansive 
mapping and of the set solutions to variational inequality 
(1.6), Iiduka and Takahashi [6], introduced the following 
iterative scheme. Starting with 1x x C= ∈  and define a 

sequence { }nx  by 

            n 1 n n C n n nx x (1 )SP (x Ax ),+ = α + − α − λ         (1.9) 

for all n N,∈  where { }nα  be a sequence in [0,1) and { }nλ  
be a sequence  in [a, b]. They proved that under certain 
appropriate conditions imposed on { }nα  and { }n ,λ  the 

sequence { }nx converges strongly to F(S) VI(C,A)P x.


 

Recently, Zhang et al. [14] introduced an iterative method 
for nonexpansive mapping and equilibrium problem (1.2) in 
a Hilbert space H : 

( ) ( ) ( )( ) ( )t C M, tx SP 1 t J I A T I B x , t 0,1 .
µλ= − − λ − µ ∈  

                                                                                       (1.10) 
Under suitable conditions, they proved that the sequence 
{ }nx generated by (1.10) converges strongly to the fixed 
point which is the unique solution of the quadratic 
minimization problem: 

2 2*
x F(S) VI(H,A,M) GEPx min x .∈ ∩ ∩=  

Motivated and inspired by Iiduka and Takahashi [6], Zhang 
et al. [14], Zhang et al. [13], Khongtham and Plubtieng [8], 
Plubtieng and Punpaeng [10], Noor and Noor [9], and Tan 
[7], we introduce an iterative scheme for finding a common 
element quasi-variational inclusion problems, fixed point 
problems, and generalized equilibrium problems in Hilbert 
spaces. We will present in the section III.  

II. PRELIMINARIES  
Let C  be a nonempty closed convex subset of H.  It is 

well known that 
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( ) ( )2 2 2 2x (1 )y x 1 y 1 x y ,γ + − γ = γ + − γ − γ − γ −  (2.1)                                                                                                                                                                  

for all x, y H∈  and [ ]0,1 .γ ∈  For any x H,∈  there exists a 

unique nearest point in C,  denote by CP x  such that 

Cx P x x y− ≤ −  for all y C.∈  Such a mapping CP is 
called the metric projection from H  into C.  We know that 

CP  is nonexpansive mapping, CP x C∈  and 

                  C Cx P x,P x y 0, x H, y C.− − ≥ ∀ ∈ ∈            (2.2) 
Recalled  that a mapping A : H H→  is called α −  

inverse strongly monotone (see [6],[4]), if there exists a 
positive α  such that  

         2Ax Ay, x y Ax Ay , x, y H.− − ≥ α − ∀ ∈       (2.3) 

It is well known that A is an ( )1/ α −  Lipschitz continuous 
and monotone mapping. Moreover, I A− λ  is a 
nonexpansive mapping, if 0 2< λ ≤ α  and I is the identity 
mapping on H (see [13]). 

Recalled that a set-valued mapping HM : H 2→  is called 
monotone if for all x, y H,f Mx,∈ ∈  and g My∈  imply 

x y, f g 0.− − ≥  A monotone mapping HM : H 2→ is 

maximal if and only if for ( ), ,x f H H∈ × x y, f g 0,− − ≥  

for every ( )y,g G(M)∈  implies f Mx.∈  The single- valued 

mapping M,J : H Hλ →  defined by 

                   ( ) 1
M,J (x) I M (x), x H−

λ = + λ ∀ ∈              (2.4) 
is called the resolvent operator associated with M,  where λ  
is any positive number and I  is the identity mapping. We 
know that the resolvent operator M,J λ  associated with M,  is 
a nonexpansive for all 0,λ >  that is, 

       M, M,J (x) J (y) x y , x, y H, 0,λ λ− ≤ − ∀ ∈ ∀λ >      (2.5) 

(see [14]). 
In addition, the resolvent operator M,J λ  is 1 − inverse 

strongly monotone, that is, for all x, y H,∈  

 
2

M, M, M, M,J (x) J (y) x y, J (x) J (y) ,λ λ λ λ− ≤ − −     (2.6) 

(see [14]). 
 

The following lemmas are useful in our proof. 
 

Lemma 2.1 (see [11]). Let sequence { }nx and { }ny  be 

bounded sequences in a Banach space X.  Let { }nβ be a 

sequence in [0, 1] with n n0 liminf →∞< β n nlimsup →∞≤ β  

1.< Suppose that ( )n 1 n n n nx 1 y x , n 0,+ = − β + β ∀ ≥  and 

( )n n 1 n n 1 nlimsup y y x x 0.→∞ + +− − − ≤  Then,  

n n nlim y x 0.→∞ − =  
 
Lemma 2.2 (see [2]). Let C  be a nonempty closed subset of 
a Banach space and let { }nS  be a sequence of mappings of 
C  into itself. Suppose that 

{ }n 1 n 1 nsup S z S z : z C .∞
= + − ∈ < ∞∑  

Then, for each x C,∈ { }nS y  converges strongly to some 

point of C.  Let S  be a mapping from C  into itself defined 
by n nSy lim S y, y C.→∞= ∀ ∈   

Then, { }n nlim sup S z Sz : z C 0.→∞ − ∈ =  

 
We assume that the bifunction F : C C H× →  satisfies the 

following conditions: 
(A1) F(x, x) 0=  for all x C,∈  
(A2) F  is monotone, that is, F(x, y) F(y, x) 0, x, y C;+ ≤ ∀ ∈  
(A3) for each x, y, z C,∈  

t 0lim F(tz (1 t)x, y) F(x, y);→ + − ≤  
(A4) for each x C, y F(x, y)∈   is convex and  lower semi- 
continuous. 
 
Lemma 2.3 (see [5]). Let H  be a real Hilbert space, C  be a 
nonempty closed convex subset of H, and F : C C H× →  be 
a bifunction satisfying the conditions (A1) –(A4). Let 

0τ > and x H.∈  Then, there exists a point z C∈ such that 
( )F(z, y) 1/ y z, z x 0, y C.+ τ − − ≥ ∀ ∈  

Define a mapping T : H Cτ → by 

( ){ }T z C : F(z, y) 1/ y z, z x 0, y C ,τ = ∈ + τ − − ≥ ∀ ∈   (2.7) 

for all z H.∈  Then the following hold: 
(i) Tτ  is single-valued and firmly nonexpansive, that is, for 
any x, y H,∈  

                    2T x T y T x T y, x y ;τ τ τ τ− ≤ − −                (2.8) 

(ii) EP(F)  is closed and convex and EP(F) F(T ).τ=  
 
Lemma 2.4 (i) (see [13]) u H∈  is a solution of variational 
inclusion (1.4) if and only if  
                      M,u J (u Au), 0.λ= − λ ∀λ >                       (2.9) 
that is, 
           M,VI(H,A,M) F(J (u Au)), 0.λ= − λ ∀λ >          (2.10) 
(ii) (see [14]) u C∈  is a solution of generalized equilibrium 
problem (1.6) if and only if  
                      u T (u Bu), 0,τ= − τ ∀τ >                          (2.11) 
that is,  
                GEP F(T (I B)), 0.τ= − τ ∀τ >                          (2.12) 
(iii) (see [14]) Let A : H H→  is  an α − inverse strongly 
monotone mapping and B : C H→ is a δ −  inverse strongly 
monotone mapping. If (0, 2 ]λ ∈ α and (0,2 ],τ ∈ δ then 
VI(H,A,M)  is a closed convex subset in H and GEP  is a 
closed convex subset in C.  
 
Lemma 2.5 (see [12]). Assume { }na is a sequence of 
nonnegative real numbers such that 

( )n 1 n n na 1 a ,n 0,+ ≤ − α + δ ≥  

where { }nα  is a sequence in (0,1) and { }nδ  is a sequence 
in   such that: 
(i) n 1 n ;∞

= α = ∞∑  

(ii) ( )n n nlimsup / 0→∞ δ α ≤ or n 1 n .∞
= δ < ∞∑  

Then n nlim a 0.→∞ =  
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III. MAIN RESULT  
In this section, we prove the strong convergence theorem 

for solving a common element of  the set solutions of quasi- 
variational inclusion problems, fixed point problems, and 
generalized equilibrium problems in a real Hilbert spaces. 

 
Theorem 3.1 Let H  be a real Hilbert space,  let F  be a 

bifunction from C C× into H satisfying the conditions  (A1)- 
(A4) and  let { }nS  is a sequence of nonexpansive mappings 
on C.  Let A : H H→  is  an α −  inverse strongly monotone 
mapping and B : C H→  is  a δ −  inverse strongly 
monotone mapping. Let HM : H 2→  is maximal monotone 
mapping such that 

n 1 n: F(S ) VI(H,A,M) GEP .∞
=Ω = ≠ ∅ 



 
Let f  be a contraction of H  into itself with a constant 
k (0,1).∈ Let 1x H∈  and 

                         ( )n nu T I B x ,τ= − τ  

                  ( )n M, ny J I A u , n 0,λ= − λ ∀ ≥                       (3.1) 

      ( )( )n 1 n n n n n n C n nx f (x ) x S P 1 t y ,+ = α + β + γ −  

for all n N,∈  the mapping T : H Cτ →  is defined as (2.7) in 

Lemma 2.3, (0, 2 ],λ ∈ α (0, 2 ],τ ∈ δ and{ }nt , { }n ,α { }n ,β  

and { }nγ are four sequences  in [0,1) satisfy 

(i) n n n 1;α + β + γ =  

(ii) n 1n n nlim 0, ;∞
=→∞ α = α = ∞∑  

(iii) n n n n0 liminf limsup 1;→∞ →∞< β ≤ β <  

(iv) n 1n n nlim t 0, t .∞
=→∞ = = ∞∑  

Suppose that { }n 1 n 1 nsup S z S z : z C∞
= + − ∈ < ∞∑  for any 

bounded subset C of H.  Let S  is a mapping from C  into 
itself defined by n nSx lim S x, x C→∞= ∀ ∈ and suppose that 

n 1 nF(S) F(S ).∞
==



 Then, { }nx , { }ny , and { }nu  converge 
strongly to q ,∈ Ω  which is the unique solution of the 
quadratic minimization problem: 

                            2 2
xq min x .∈Ω=                             (3.2) 

Proof.  Put F(S) VI(H,A,M) GEPQ P .=
 

 It easy to see that Qf  

is a contraction. By Banach contraction principle, there 
exists 0z F(S) VI(H,A,M) GEP∈    such that 

0 0 F(S) VI(H,A,M) GEP 0z Qf (z ) P f (z ).= =
 

 

Otherwise, we see that I A,− λ I B,− τ T ,τ and M,J λ are 

nonexpansive.  First, we will show that { }nx  is bounded. 
Put p .∈ Ω We observed that 

22
n nu p T (I B)x T (I B) pτ τ− = − τ − − τ  

               2 2
n nx p ( 2 ) Bx Bp≤ − + τ τ − β −                   (3.3) 

and  
22

n M, n M,y p J (I A) u J (I A) pλ λ− = − λ − − λ  

               2 2
n nx p ( 2 ) Au Ap≤ − + λ λ − α −                  

                  2
n( 2 ) Bx Bp .+τ τ − β −                                 (3.4) 

Using (3.3) and (3.4), we have that 
n n ny p u p x p .− ≤ − ≤ −                                          (3.5) 

From (3.1) and (3.5), we calculated that 
( )( )n 1 n n n n n n C n nx p f (x ) x S P 1 t y p+ − = α + β + γ − −  

( )n n n nf x p x pα β≤ − + − ( )( )n n n n1 t x p t p+γ − − +  

( )n n nf (p) p 1 (1 k) x p≤ α − + − α − − n nt p .+γ          (3.6) 
Using (3.6) and by inductions, we get that 

( )( ){ }n 1x p max x p , 1/ 1 k f (p) p , p , n 1.− ≤ − − − ∀ ≥  

This implies that { }nx  is bounded, so are { }ny , { }nu ,  

{ }nAu , { }nBx , ( ){ }nf x , and ( )( ){ }n C n nS P 1 t y .−  Put 

( )( )n C n nv P 1 t y= − and n n nz S v .=  Next, we show that 

n 1 nx x 0,+ − → as n .→ ∞  Let ( )n 1 n n n nx 1 e x .+ = − β + β  

We  note  that [ ]n n 1 n n ne (x x ) / (1 ) .+= − β − β  Then, we have 
that  

n 1 n n 1 ne e x x+ +− − − ( ) ( )n 1 n

n 1 nn 1 n1 1f x f x+

+

α α
+−β −β≤ +  

                  ( )n 1
n 1 n 1 n n 1 n n

n 1
1 t x x t t e

1
+

+ + +
+

γ
+ − − + − − β

 

       { }n
n 1 n n 1 n

n
sup S z S z : z C x x .

1 + +
γ  + − ∈ − − − β

  (3.7) 

From (3.7) and the conditions (i)-(iv), we have that  
( )n n 1 n n 1 nlimsup e e x x 0.→∞ + +− − − ≤  By Lemma 2.1 

and Lemma 2.2, we have n n nlim e x 0.→∞ − =  
Consequently, 

( )n n 1 n n n n nlim x x lim 1 e x 0→∞ + →∞− = − β − =  

and so are n n 1 nlim v v 0,→∞ + − = n n 1 nlim u u 0,→∞ + − =  

and n n 1 nlim y y 0.→∞ + − =  Since 

           ( )n 1 n n n n n n n n nx x f x x S v x ,+ − = α + β + γ −        (3.8) 

it follows by (ii) and n n 1 nlim x x 0,→∞ + − =  that 

n n nlim Sv x 0.→∞ − =  And we also get that 

n n nlim x u 0,→∞ − = n n nlim u y 0,→∞ − = and 

n n nlim x y 0.→∞ − =  Moreover, we have that 

n n 1 n 1lim x Sx 0.→∞ + +− =  By the same argument as in the 
proof Theorem 3.1(pp. 13-14) of [7], we conclude that 

n nlim x q 0,→∞ − = where q .∈ Ω  Finally, we show that 

n nlim x q 0,→∞ − =  where q  is the unique solution of the 
quadratic minimization problem (3.2). For any r ∈ Ω  and 

n n nlim Sv x 0,→∞ − =  we get that 

( ) ( )n n n nlimsup f r r, x r limsup f r r,Sv r→∞ →∞− − = − −  

                                              ( )
ii nlim f r r,Sv r→∞= − −  

                                              ( )f r r,q r 0.= − − ≤         (3.9) 

And 
2 2

n n nz r S v r− = −  

               ( )( ) 2
n C n n n CS P 1 t y S P r= − −  
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               2 22
n n n n n ny r 2t y , y r t y≤ − − − +  

               ( ) 2 22
n n n n n n1 2t x r 2t r, r y t y .≤ − − + − +  

This implies that 

( ) 22
n 1 n n n n n n nx r f x x S v r+ − = α + β + γ −  

                  ( ) 2
n n n n n(x r) S v r≤ β − + γ −  

                     n n n 1 n 12 k x r x r x r+ ++ α − − −  

                     n n 12 f (r) r, x r++ α − −  

                 ( )2 2
n n n n nx r ( 1 2t x r≤ β − + γ − −  

                     22
n n n n2t r, r y t y )+ − +  

                     n n n 12 k x r x r++ α − −  

                     n n 12 f (r) r, x r .++ α − −                           (3.10) 
Put r q=  in (3.10). Then using (3.9), (3.10), and Lemma 

2.5 we have that n nlim x q 0,→∞ − =  where q  is the 
unique solution of the quadratic minimization problem:  

2 2
xq min x .∈Ω=  This complete the proof.  

 
In Theorem 3.1, if nS S , n 1,= ∀ ≥  then, we have the 
following corollary. 
 
Corollary 3.2   Let H  be a real Hilbert space, let F  be a 
bifunction from C C× into H satisfying the conditions  (A1)- 
(A4) and  let S  be a nonexpansive mapping on H.  Let 
A : H H→  be an α −  inverse strongly monotone mapping 
and B : C H→  be  a δ −  inverse strongly monotone 
mapping. Let HM : H 2→ be a maximal monotone mapping 
such that 1 : F(S) VI(H,A,M) GEP .Ω = ≠ ∅   Let f be a 

contraction of H into itself with a constant ( )k 0,1 .∈  Let 

1x H∈ and  

( )n nu T I B x ,τ= − τ  

                       ( )n M, ny J I A u , n 0,λ= − λ ∀ ≥                (3.11) 

( ) ( )( )n 1 n n n n n C n nx f x x SP 1 t y ,+ = α + β + γ −  

for all n N,∈  the mapping T : H Cτ →  is defined as (2.7) in 

Lemma 2.3, (0, 2 ],λ ∈ α (0, 2 ],τ ∈ δ and { }nt , { }n ,α { }n ,β  

and { }nγ  are four sequences  in [0,1) satisfy 

(i) n n n 1;α + β + γ =  

(ii) n 1n n nlim 0, ;∞
=→∞ α = α = ∞∑  

(iii) n n n n0 liminf limsup 1;→∞ →∞< β ≤ β <  

(iv) n 1n n nlim t 0, t .∞
=→∞ = = ∞∑  

Then, { }nx , { }ny , and { }nu  converge strongly to 1q ,∈ Ω  
which is the unique solution of the quadratic minimization 

problem: 
1

2 2
xq min x .∈Ω=  

 
In Theorem 3.1, if nS S , n 1,= ∀ ≥ n 0, n 1,β = ∀ ≥  

n nf (x ) x , n 1,= ∀ ≥  then we have the following corollary.  
 

Corollary 3.3 Let H  be a real Hilbert space, let F  be a 
bifunction from C C× into H satisfying the conditions  (A1)- 
(A4) and  let S  be a nonexpansive mapping on H.  Let 
A : H H→  be an α −  inverse strongly monotone mapping 
and B : C H→  be  a δ −  inverse strongly monotone 
mapping. Let HM : H 2→ be a maximal monotone mapping 
such that 2 : F(S) VI(H,A,M) GEP .Ω = ≠ ∅  Let 1x H∈  
and 
                                  ( )n nu T I B x ,τ= − τ  

 ( )n M, ny J I A u , n 0,λ= − λ ∀ ≥            (3.12) 

( )( )n 1 n n n C n nx x (1 )SP 1 t y ,+ = α + − α −  

for all n N,∈ the mapping T : H Cτ →  is defined as (2.7) in 

Lemma 2.3, (0, 2 ],λ ∈ α (0, 2 ],τ ∈ δ and { }nα and { }nt  are 
sequences  in [0,1) satisfy 
(i) n 1n n nlim 0, ;∞

=→∞ α = α = ∞∑  

(ii) n 1n n nlim t 0, t .∞
=→∞ = = ∞∑  

Then, { }nx , { }ny , and { }nu converge strongly to 2q ,∈ Ω  
which is the unique solution of the quadratic minimization 

problem: 
2

2 2
xq min x .∈Ω=  

IV. CONCLUSION 
The convergence theorems shown that the iterative 

sequence converges to the unique solution of the quadratic 

minimization problem: 2 2
x F(S) VI(H,A,M) GEPq min x .∈ ∩ ∩=   
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