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Gravity Currents in Non-rectangular Cross-section
Channels
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Abstract—We consider the propagation of a high-Reynolds-
number gravity current at the bottom of a horizontal channel
along the horizontal coordinate z. The bottom and top of the x

channel are at z = 0, H, and the cross-section is given by '<Z>=b@
the general —f1(z) < y < fa(z) for 0 < z < H. We use a

one-layer, Boussinesq, shallow-water (SW) formulation to solve x
the time-dependent motion produced by release from rest of i

a fixed volume of fluid from a lock. The dependent variables "Z’bz
are the position of the horizontal interface, h(x,t), and the —ZX
speed (averaged over the area of the currentyu(z,¢). For a W@
given geometry f(z), the only input parameter in the lock- /

release problem is the height ratioH /ho of ambient to lock. In
general, the solution is obtained by a finite-difference numerical
code. Analytical results are derived for the initial dam-break
slumping motion, and for the long-time self-similar phase. The
model is illustrated for various cross-section shapes: power-law
(f(2) = bz, where b, o are positive constants), trapezoidal and
circle-segment. The theoretical results are in good agreement
with previously-published experimental data.

Fig. 1. Schematic description of typical channels with nartaegular
cross-section.

Index Terms—gravity currents, shallow-water. the current) as functions of and¢ (time). This allows the

calculation of the position of the nosey ().

I. INTRODUCTION The formulation which we derive is applicable to a quite
eneral cross-section functigifz) (the main formal require-

nt is continuity in[0, H|, and the obviousf(z) > 0 in
0, H)). For definiteness, we shall present results for three
pes of channels. (AY(z) = bz®, whereb is a positive
onstant and) < « < 2. Experiments for this configuration
ere presented by [5], for currents released from a full-depth

A gravity current appears when fluid of one densit
spreads into a fluid of another density and the propagati
is, mainly, in the horizontal direction. Gravity currents occu
at a variety of scales throughout nature. Examples inclu
oceanic fronts, avalanches, seafloor turbidity currents, p

roclastic flows, and lava flows (see for example [1]). Mo K Thi ! ferred h I
studies have focused on the flow of currents which propag P& This geometry is referred to as the POWEr-law Cross-
Section. (B)f(z) = ¢+ bz“, wherec is a positive constant,

on the flat bottom (or top) of a rectangular channel. Howevet,

gravity currents generated and spreading in channels Wﬂﬂd b,a are as above. This Qeometry IS referred to as the
Cfr{ved—trapezmdal cross-section. (C) A circle-sector channel

non-rectangular cross-sections are realistic configurations ;
— ./ 2
nature (e.g., valleys and rivers), buildings, irrigation systems, radius R, f(z) = QZR. Z5 O.S ? < H < 2R._The .
ree types of cross-section considered here are interesting

and industrial fluid-transport infrastructures. It is therefore h demi . £ vi 4 thei |
both practical and academic importance to understand F%' the ‘academic point of view, and their relevance to
model the effects of this geometrical property on the flowN ustrial and environmental applications seems feasible.

In the present paper we consider gravity currents | ey cover a quite wide domain of shapes and provide a
channels with various forms of the cross-sections. Typic ir understanding of the effects associated with deviations

non-rectangular channels are shown for example in Fig. fom the classical rectangular geometry.

Let = be the horizontal coordinate along the changethe The structure of the paper is as follows. In Section I
horizontal coordinate orthogonal te, and = the vertical We formulate the model for channels of a general cross-
coordinate pointing upward. To be specific, the side-walfgction form. This model includes the shallow-water one-
are given byy = —fi(z) andy = fa(z), 0 < z < H. Iayer_ equations of motion and the appropriate bounqlary
We shall see that the flow depends actually on the widgpnditions. We solve this problem numerically in Section
function, f(z) = f1(z)+ f2(z), which is assumed continuous!!! and present detailed t|me-d¢pendent results for various
and positive (zero width a1 and/or H are allowed). cross-section channels. In Section IV we concentrate on the
Our investigation uses a one-layer shallow-water (Swanalytical solution of the dam-break problem and derive
Boussinesq model. The formulation is in terms of the heigHi® constant speed of propagation for the initial slumping

h of the interface and speed (averaged over the area Ofstagg. Next, in Sectiqn V, we revisit the anr_:llytical similarity
solution for the long-time stage of propagation, and compare
Manuscript received March 21, 2013 results with the finite-difference SW solution. In Section VI
T. Zemach is with t_he Department of Computer Science, Tel-Hai Collegga compare our SW results with available experimental data,
Tel-Hai, Israel, e-mail: tamar.zemach@yahoo.com . d sh h h is fai ns i ViI
M. Ungarish is with Department of Computer Science, Technion, Hai@Nd S O_W that there Is a'_r agreement. In Section some
32000, Israel, e-mail:unga@cs.technion.ac.il. concluding remarks are given.
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algebra, and use of (3)-(4) , this equation can be reduced to
exactly the same form as in the classical rectangular- cross-
© section case (see below (6)).
It is convenient to use dimensionless variables. Here we
denote the dimensional variables by asterisks, and transform
r=1o to the dimensionless counterpart (with no special notation)
as follows:
{I*,Z*,h*,H*,t*,u*,p*}: (5)
y = {Jcox, hoz, hoh, hoH,Tt, Uu,anQp} ,

_ n1/2 _ _di i
Fig. 2. Schematic description of the gravity current systemS(de view. where U = (hog ) . and T. N xO/U'. The Y dl_rectlon
(b) cross-section of channel. Heféz) is the width of the channel. In the lengths are scaled with the width of the interface in the lock,

analysisA, denotes the area occupied by the ambient fldid,= F(x,t) f(ho).

is the area occupied by the current, angh is the total area. The resulting dimensionless SW system of equations is
F(h)
Il. FORMULATION ( hu ) +| Y F ( iy ) = ( 0 > (6)
Ut 1 U Uy, 0

The system under consideration is sketched in Fig. 2: a
deep layer of ambient fluid of densify, and heightH lies  the system is hyperbolic, with characteristic relationships
above a horizontal surface at = 0. Gravity acts in the given by
—z direction. At time¢ = 0 a given volume of fluid of

densityp. > p, (the dark region in the figure), initially at rest dh + F(h) du=0 )
in reservoir of heighthy, lengthx, and same cross-section F'(h)

as the channel, is instantaneously released into the ambignt

fluid. We use a{z,y, z} Cartesian coordinate system with dr F(h)
corresponding{u, v, w} velocity components. We assume o T + F(h)’ (8)

that the fluids are separated by a sharp, non-entraining,

interface which is flat (horizontal) in the direction. This is  For a lock-release problem, the initial conditions are 0

the initial hydrostatic situation in a simple lock. The preser@nd given position of the interface (in our cage= 1) in
model assumes that viscous, turbulent, and entrainment e reservoir. The boundary conditions are: (1) the obvious
fects are negligible, and hence in the subsequent flow in= 0 at the backwall: = 0; and (2) Froude condition at

a straight channel there are no effects that can generatth@noser = xx(t):

significant inclination in they direction.

_ _ _ 1/2
The driving force is the reduced gravity, which is defined wz =ay) =uny = Fr-hy", 9)
by , where F'r is the Froude number for the appropriate non-
g =<9 @) rectangular cross-section. As shown by [6], for a giyén),
whereg is the gravitational acceleration ands the reduced this reads
density which is defined by 2(1 — ¢)?2 1/2
Fr=Fry(e)=|—1+Q) ,  (10)
€= |pec — pal/pa- 2 I+¢
We introduce the Boussinesq assumptiog: 1. where
e CRIeT () fobe e cosssecton aren (0 p) oL [0
7o ym.t) T A b [Ap = F(h)]
F(h) = F(h(z,t)) = / ’ f(2)dz = A.. (3) HereAr is the total area of the cross-section, and evidently
0 p <1

Evidently, F'(h) = f(h).
The volume continuity equation of the current can be I1l. EINITE-DIFFERENCE RESULTS
readily obtained using geometric considerations, see Fig. 2

In the motionless ambient fluid, the pressure does not depena;(r)] %o][nple:i our rr:ﬁglelllntg tas/l)<,t we ;eedtan efflltment
on z. Therefore, the hydrostatic balancs; /9 = —p;g, oo Tor obtaining (z,1), u(z,t) andzy(t) results
from our formulation. In general, the system of equations

wherei = a or ¢, supplemented by the property of pressur : 2 .
continuity between the ambient and the current on tbg)'(l?)’ C;N'th Te?hsltllc |\r/1\;t|all bounc:::lr)t/ c;jc_);dltlons, tcannto t
interface = = h(z,t), show that the horizontal pressurei_e SOlVed analytically. Vve use a hinfte-cierence wo-step
L P ax-Wendroff method ( [9], [10]), To facilitate the imple-
gradient in the current is given by . o .
mentation of the boundary conditions, thecoordinate was
Ope _ pcg’@. (4) Mapped into the coordinate = z/x(t). The SW results
oz oz displayed here were obtained with, typically, 200 grid points
The momentum equation of the model is obtained kg the[0, ] interval, and time step af-10~2. (Convergence
averaging the inviscide-momentum balance over the areavas tested also on finer grids.)
A., and elimination of the pressure term by (4). After some Some typical results are presented below.
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Fig. 3. Profiles ofh and w vs.t for various values of. H = 20, f(z) = z
for t= 2(2)20.

Fig. 4. Numerical results: behaviour of the nose veloaity vs. ¢ for
f(z) = z and various values off: 1.1, 2.0, and 20.0. Note the constant
ver - WL

A. Powerlaw cross-section, f(z) = bz®

o.sl o.sl /"‘f
The dimensionalf(z) = bz reads f(z) = =% in < °R = oV e
dimensionless form (the scaling width é%). This means 0= = 02 |
that the value ob does not influence the results. O 5 10 15 20 % 5 10 15 20
The typical behaviour of the time-dependent current is X X

shown in Fig. 3 ford = 20.0 anda = 1.0.
. 5. Profiles ofh and u vs. ¢t for various values oft. H = 20,
(

We can distinguish between three main stages of prodﬁ%) = (14 2)/2 for t= 2(2)20
gation, like in the classical rectangular geometry. The initial
slumping stage is characterized by the constant value of the
velocity of the noseuy, accompanied by a constant valugs.  cross-section with £(2) = ¢+ bz* functions.
of the nose height 5. The nose height 5 of the slumping

stage increases with from 0.4 for a = 0.5 to about0.5 The simple (straight planes) trapezoidal case is obtained

: : : 1/2  for o = 1. For small values ofl we return to the power-law
for a« = 2. uy also increases witl, but more Ilkehl\{ ' case P

becauseF'r is close to a constant (~/2 ) for this value . . . . —
of H (not shown here). In the currents under consideration ' N€ typical behaviour of the solutions is presented in Fig.
the slumping stage is quite long: untike 6.4 for o = 0.5, ° for H# =20.0 and f(z) = (1 +z)/2 (i, d = L,a = 1).

t~ 8 for a = 1.0 andt ~ 12.0 for o = 2. The distance of 1N€ current propagation is shown for= 2,4, .., 20.

propagation during this stage increases witand it attains Ve tested and compared results for various parameters
zy~ 6.4 for o = 0.5, z, ~ 85 for a = 1, z, ~ 11 for for the present configuration. In particular, three values of

a = 2. We conclude that as increases, the current become§ Were used as before.5,1.0,2.0 and two systems: deep
faster, and the slumping stage becomes longer. with H = 20, and shallow with// = 2. Ford = 1, the main
L . conclusions about the tendency of deep £4#0) currents
The next stage of propagation is characterized by t

- i . 10" propagate faster than non-dee 2.0) were similar
decreasing height of the nose and speed. This stage ig, bag p €H2.0)

i ent duri hich th i h il hese obtained for thé = 0 case and described in the
rans_len uring w .'(.: _e curren apprqa(_: €S a similarht . ious section. The effect of on the current is as before:
solution. The transition is smooth and it is therefore not

. i . . we see faster propagation for larger
possible to give a clear-cut statement when this intermediary propag ge

phase ends. The long-time profiles display a tendency to
self-similar behaviour, which can be identified by a lineaC. Circle-sector channel (f(z) = v2Rz — 22 function).
dependency of the velocity on x, and a “tail down - nose . . . . . .
,, . . R . Another interesting and practical configuration is the
up” parabolic form of height.. The similarity solution was . .
.circle-sector channel of radius.

ted by [3], [5], and will be di di detail . .
reported by [3], [5], and will be discussed in more details in Here we scalek with hy, and, as an exception, we also

Sectlo_n_V be!ovy. _ _ scalef(z) with hg. Therefore f(z) = vV2zR — 22, 0 < z <
Additional insights were obtained by further comparisop; ang obviouslyH < 2R. A schematic description of this

with solutions for non-deep ambierif = 2.0 (not shown configuration is given in Fig. 6.

here). Our main conclusion is that the fastest current isTpe typical profiles of the solutions are presented in Fig.

obtained for the largest tested and the slumping height 7 tor 77 — 20.0 and R = 10. The current propagation is

hy and distancer, increase witho. shown fort = 2,4, ... 20.

Fig. 4 illustrates the influence aff on the behaviour of
the speed:y as a function of: for the casef(z) = z. The
slumping stage of propagation (with constant vs. t) can
be clearly seen on the graph. After the slumping stage, therdn general, the shallow-water equations of motion require
is a clear-cut tendency of the speed to decreasetwftdr all numerical solution, as illustrated in the previous section.
H. However, the reduction of speed is not sharg: decays However, some useful analytical results can be obtained
by about20% while ¢ increases by a factor of more thadn for the initial motion after release from rest from behind
In other words, in this casey decreases less than'/5. a straight vertical “dam.”

IV. DAM-BREAK AND THE CONSTANT SLUMPINGu N
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lh Fig. 8. Analytical results for the slumping stage of the cutifen f(z) =

2%: Nose height and speed as functionslg#. a = 2 (light blue online)
, a = 1 (red online),ac = 0.5 (green online)a = 0 (blue online; this is

Fig. 6. Circle cross-sectiofi(z) = v2zR — 22 the classical rectangular case).
08 08 /" —
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) ) ) Fig. 9. Analytical slumping speed for trapezoiddl) = (d+z)/(d+1),
Fig. 7. Profiles Oﬂ; and u vs. ¢ for various values of. H = 20, R =10,  whered = 0 (upper line, red online)d = 1 (blue online),d = 5 (black).
f(z) = V2zR — 22 for t= 2(2)20. The lowest line (green online) is for the classical rectangular cross-section.

We i he f i . .
€ introduce the function small, the ratio ofA, to that of the ambient is smaller than

ke JRr(R) - in the rectangular case; therefore the current feels thinner,
I'(h) = ( )dh (12) ; J ;
(h) = 0 F(fz) : and is faster. The = 5 case is very close to the rectangular

cross-section solution.

The integration of the balance equation (7) fefh) on
a c, characteristic from the reservoir to the nose and the

intersection of speed dictated by the reservoir, with the nose
condition (9) yields: C. Circle-sector channel

I'(1) — T(hy) = Fr(hy/H) - h}v/{ (13) .We focus on theR = 10 case, and let vary..Fig. 10
displays the nose heiglity and the nose velocity.y as
where Fr is given by (10). The solution of this algebraicfunctions of 1/H. Again, the speed.y, increases withH
equation provides firsky, and nextuy. and the nose heiglity decreases witl#. (This means that
Analytical slumping results for some typical functionsg, increases faster than the decrease F_)

f(z) are presented below. We mention here that numerical results of the initial-value
problem were also obtained for deep E420) and shallow

A. f(z) = z* (dimensionless) (H = 2) cases with two values aoR: 10 and 20. For the

allow case withi/ = 2 we obtain that the velocity of the

This case allows some analytical progress. A summa ) :
rrent decreases for increasing valueofFor H = 20, the

of typical analytical results obtained by the abovementioné& X
calculations are presented in Fig. 8. It displays the noE?me“C&‘I results were almost unaffected by these changes

heighth and the nose velocityy as functions oft /H for 0 the radiusR. In all cases, the finite—d_ifference_ results_ were
four values ofa : 0,0.5,1.0,2.0. For a > 0, uy increases in excgllent agreement with .the analytical solution during the
with H and the nose heighty decreases withA. It is slumping stage of propagation.

interesting to note that all the cases considered here display

the tendency of an increasingy with H. This is consistent

with the expectations that a deeper current moves faster.

B. f(z) = c+ bz~

The typical solutions are shown in Fig. 9 for the dimen- ) ——— i
sionlessf(z) = (d+ z)/(d+ 1), whered = 0, 1 and5. The .
effect of d is interesting: the slumping speed of the current
decreases asincreases (for any height of the ambient fluid
H). This behawor Is, again, in agreement with the n_umerlceié‘ 10.  Analytical slumping results for circle segmeff(z) —
SW solutions obtained above (see for example Fig. 3 aR@Rr: — 22, 0 < » < H and R = 10: nose height and nose velocity
Fig. 5). The interpretation is that, for a givény, whend is as functions ofl/H.

o8 ' o 02 o o8
1H 1H
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V. SIMILARITY SOLUTIONS ©

Analytical results of self-similar type are also of impor- .

tance in the study of gravity currents, and it makes sense Xy
to ask how this branch of results is affected by the function 2 _ /5’
f(2). .
The accepted argument is that, at large times after re- o w = w e w

lease, the current is not influenced by the initial conditions.

Moreover, in this stage of propagation, the current is alrea'o:Iy 1 e <on betw \tical similarity solutiobe)((dots)
. . 1g. . omparison between analytical similarity solutio ots

thin a”?' thereforetr Can_ be considered as ConStant‘_(é and numerical results of the lock-release current (line) for the cross-sections

theoretically). In these circumstances, the SW equations a{g) = z«, a = 0.5, 1, 2 (lower, middle and upper lines; online: blue, red,

expected to admit a self-similar solution of the form green).

'rN(t) = Ktﬁ’ hN(tﬂl) = (j:N)2,H(77)7

. 14
une(tm) = En U). (14)
where )

xr i C|

n= H; (15) 2 ; .
Xy 1o 1/
H(1) =1/Fr?;, U(1) =1. (16) o e

The upper dot means time derivative, aid and 3 are / SR T R S S
constants. t

The formulation above satisfies the nose conditign =
TN = Fr-hjl\{z. The remaining details must be obtained frorgig. 12.  Comparison of the experimental results of Monaghari. d8ja
the other boundary conditions and the equations of motiofgymbols) and SW prediction (line) faf = 1, f(z) = z.

The extension to the non-rectangular case is, in general,
problematic. TheF'r approaches the same constant as in
the classical case. However, the difficulty appears because
the area of the current.(h), is in general not a separable It is of course desirable to corroborate the theoretical
function oft andn. Indeed, [3], [5] have derived, for the SWpredictions of the SW model with experimental results. To
equations in power-law cross-sectiofis:) = 2%, similarity our best knowledge, the only pertinent available experimental
solutions of the form (14). The results, in dimensionlesgsults for non-rectangular cross-sections, of [3], [4], [5], are

VI. COMPARISON WITH EXPERIMENTS

form, for a current of fixed volume (dimensionlesB) = for full-depth lock (H= 1) configurations. It is known from
1/(av+1) read the classical rectangular case that tHe= 1 lock-release
B= 2+ 204’ (17) produces some special effects which are not captured by the
3+ 20 one-layer model (in particular, a backward-moving jump of
. 12 the interface, and a long slumping interval). This is because
H) = 7,2 - d(a+1)’ Un) =, (18)  the return flow in the ambient plays a significant role. The
experiments of [3] used a tank with V-shaped bottondof
1\A 1 1/(20+3) length, 0.4m high and0.28m wide; the slope of inclined
K= <> (1a+1> (19) side-walls (f = z) was 25° from the horizontal. A gate
B Jo HOT (m)dn was located at 0.13m from the rear of the channel. Behind
It can be verified by substitution that this solution satisfigg€ date, the container was filled with the aqueous saline
i solution, while its second part contained fresh water. The
the equations (6). o . .
a | B K initial height of the both fluids was the same (H 1). In
0 | 0.667 1.890 the reported experiments the flow was initiated by rapidly
0.5 | 0.750  1.765 -
10 | 0.800 1.694 lifting the gate.
2.0 | 0.857 1.613 Fig. 12 presents a comparison between the present SW
TABLE | results and experimental data reported by [3] fdr =

SIMILARITY SOLUTION COEFFICIENTS FORf(2) = 2* CROSSSECTION 1.0, f(2) = z (experiments 7-10) concerning the position of
the noseyx y, as a function of. The laboratory data is fairly
well predicted by the SW results. During the first stage of

Finally, we verify that the self-similar behavior is indeegropagation (t< 10), the agreement between the one-layer
attained by the lock-released current. We recall that the finiteodel and experiments is actually excellent. At later times,
difference time-dependent SW solution show the tendencyttee observed propagation lags behind the SW predictions;

approach a “nose up - tail down” parabolicprofile, and however, the discrepancy is only a few percentffet 27,

linear with x profile of u, as seen in Fig. 3 More carefulwhen a significant propagation afy ~ 20 is attained. For

comparisons between the similarity analytical expressions> 30 the discrepancy becomes more pronounced, and it

(14) and the finite-difference results are shown in Fig. 1deems plausible that viscous effects become significant at

for f(z) = 2*. The values ofK, 5 used in this comparison this stage (consistent with the estimates of [3]).

are given in Table 1. The SW line on Fig. 12 is very close to a straight line,

ISBN: 978-988-19251-0-7 WCE 2013
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

in spite of the fact that the end of the constant-speed stag® B. M. Marino and L. P. Thomas. Dam-break release of a gravity
is att ~ 8. This is because in th¢(z) = ~» the decay of current in a power-law channel sectidlournal of Physics: Conference
. . . . . Series 296 (2011) 012008, doi: 10.1088/1742-6596/296/1/012008,
the speed with time is less pronounced than in the classical 541
rectangular case. [6] M. Ungarish. A general solution of Benjamin-type gravity current
The real gravity current is of course more complicated than in a channel of non-rectangular cross-sectidmviron Fluid Mech.,
. . . 12(3):251-263, 2011.
the SW solution. The observations [3] revealed a parabollﬁ] T. B. Benjamin. Gravity currents and related phenomedaFluid
head, and strong billows on the interface. These details Mech., 31:209-248, 1968.
are beyond the resolution and the scope of the preseﬁl T. Bonometti, M. Ungarish, and S. Balachandar. A numerical inves-
. L . tigation of constant-volume non-Boussinesq gravity currents in deep
model. However, this may indicate that some corrections ,mpient.J. Fluid Mech., 673:574-602, 2011.
due to three-dimensional flow components, turbulence, arjd] M. Ungarish and T. Zemach. On the slumping of high Reynolds

entrainment are necessary for a more accurate understanding number gravity currents in two-dimensional and axisymmetric config-
fth | . t Gi th . fth ilabl urations. European J. Mech. B/Fluids, 24:71-90, 2005.
of the real gravity current. Given the paucity of the availa ﬁO] R. T. Bonnecaze, H. E. Huppert, and J. R. Lister. Particle-driven

experimental data, and the lack of Navier-Stokes simulation, gravity currents.J. Fluid Mech., 250:339-369, 1993.
this remains an open question. [11] D. Takagi and H. E. Huppert. The effect of confining boundaries on
viscous gravity currents]. Fluid Mech., 577:495-505, 2007.
[12] T. Zemach and M.Ungarish. Gravity currents in non-rectangular cross-
VII. CONCLUDING REMARKS section channels: Analytical and numerical solutions of the one-layer

. shallow-water model for high-Reynolds-number propagatfimys. of
We considered the effect of the shape of the cross- p s 25 026601, 2013.

section of the channel on the time-dependent propagation of
high-Reynolds-number gravity currents. The cross-section is
defined by—f1(z) <y < f2(2), 0 < z < H; the bottom

z = 0 and topz = H walls are straight horizontal planes; the
current propagates over the bottom in directiarWe used

a Boussinesq one-layer shallow-water model, closed by an
analytical F'r conditions at the nose (provided by Ungarish’s
[6] extension of Benjamin’s result). The geometry of the side
walls enters the formulation Vif(z) = f1(z) + f2(z). This
model admits quite general forms $fz), and realistic initial

and boundary conditions. The governing equations were
derived from first principles, without adjustable constants.

We focused attention on currents of fixed volume gen-
erated by lock release from rest. For a given cross-section
geometry, the only free input parameters the height ratio
of the ambient to the lock. In general, the time-dependent
motion requires numerical solution. We used a simple finite-
difference code based on a Lax-Wendroff two-step method.
In all the tested cases, the numerical solution of the SW
model was obtained within insignificant computational effort
on a simple laptop computer.

We also considered analytical solutions of the SW model.
We analyzed the dam-break problem, showed that an initial
slumping stage with constant speed of propagation appears
for any cross-section geometry, and derived a simple formula
for this speed. We also revisited the analytical self-similar so-
lution presented in previous studies ([3], [5]). We conjectured
that such solutions for non-rectangular cross-sections exist
only for the power-law shap¢g(z) = bz*. We compared
the analytical and numerical SW results, and found good
agreement.

We illustrated the application of the SW model for various
cross-section formsf(z) = bz%, f(z) = b(d+2%) and circle
segment.
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