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Solving Semi-Explicit Index-1 DAE Systems
using L-Stable Extended Block Backward
Differentiation Formula with Continuous

Coefficients

Olusheye.A. Akinfenwa and Solomon.A. Okunuga

Abstract— An application of three steps Extended Block
Backward Differentiation Formulae (EBBDF) for the
solutions of semi-explicit index-1 systems of Differential
Algebraic Equations (DAEs) is presented. The processes
compute the solutions of DAEs in a block by block fashion
by some continuous schemes which are combined and
implemented as a set of block formulae. Numerical results
revealed this method to be efficient and very accurate, and
particularly suitable for semi implicit index one DAEs.

Index Terms—: Extended Backward Differentiation
Formula, Block method, L-Stability

I. INTRODUCTION

There are many physical problems which are naturally
described by a system of Differential Algebraic Equations
(DAEs). These problems have a wide range of applications
in various branches of science and engineering. These
include mechanical or multibody systems, chemical
processes, optimal control, electric circuit design and
dynamical systems.

A system of ordinary differential equations(ODEs) with
algebraic constraints which can be written in form

y'=/ (J’(x)azgx)) 5 J’éxo}: Yo } D
L0, 2(x) =0, z(x))=z,
is called differential algebraic equation.

The index along

DEFINITION 1.1 (Differential index):

the solution path is defined as the minimum number of

differentiations of the system (1) that is required to reduce
the system to a set of ODEs .

Numerical solutions for DAEs were first introduced by
Gear by applying numerical methods for ODEs to DAEs
[4]. Runge-Kutta methods [1] and BDF [2], [5] are
commonly used for semi-explicit index-1 DAEs, however,
these methods approximate the solution of (1) at one point.
The algorithm presented in this paper is based on block
method and approximates the solution at several points. It
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would be observed that block methods were first introduced
by Milne [9] for use only as a means of obtaining starting
values for predictor-corrector algorithms and has since then
been developed by several researchers (see [4,10,11,12]),
for general use. This paper presents a block method which
preserves the Runge-Kutta traditional advantage of being
self-starting and is more efficient than several known
methods, since it requires m function evaluations per
integration step, where m is the number functions in the
block method .

II. DERIVATION OF THE METHOD

In this section, we develop an Extended Backward
Differential equation (EBDF) with the additional methods
derived from its first derivative and combined to form the
Extended Block Backward Differentiation Formula

(EBBDF) on the interval from X,to X, ., =X, +3h
where £ is the chosen step-length. In particular, we assume
that the exact solution y(x) on the interval [xn, X, +3] is

locally represented by Y (x) given by

r+s—1

Y= 0,
@) |

where [ ; are unknown coefficients to be determined, and
@;(x) are polynomial basis function of degree »+s5—1.

such that the number of interpolation points# and the
number of distinct collocation points, s are respectively

chosen to satisfy # =k, s>0. The proposed method is

thus  constructed by  specifying the following
parameters:, (0(xn+j) = x;fﬂ. ,j=01...,4
r=3,s=2,andk =3.
by imposing the following conditions

4
lex}']l+i :y;1+i H l: 0,1,2 (3)
j=0

4
Dlxii =L s 12,3,
=0
(4)

assuming that y .= Y(x” +ih) denote the numerical

approximation to the exact solution

y(xnﬂ' )’
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foe, =Y "(x, + ik ) denote the approximation to y'(xw_),
7 is the grid index. It should be noted that equations (3)
and (4) lead to a system of five equations which is solved by
matrix inversion to obtain the coefficients [/ ; J=0L...4

The EBDF with continuous coefficients is then obtained by
substituting these values of / ; into equation (2). After some

algebraic computation, the method yields the expression in
the form

= Z a; (‘x)y)1+_j - h(ﬂz

where j(x), =0, 1,2, B,(x),f,(x) are continuous

coefficients. The continuous coefficients of equation (5) are
thus given as

()= (h—x+xn)(2h—x+xn)2(l7h—5x+5xn),

68h*
" (x):(X—xn)(Zh—x+x f(24n-7x+7x,)
1 174°
o, (x)= (e, N —x+x, 228h" = 23(x+ x, )* +143h(— x+ x,))
e 68h*

(x—x, \h—x+x, \2h—x+x, 39 +11(-x+x,))

ﬂz(x): 345
__()c—xn)(h—erxn)(2h—x+xn)2
’/BS(X)_ 17h3

is then used to generate the main discrete EBBDF by
evaluating at point X = X, to yield
1 9 9 18 6 ( 6)

=-—y,+— +— +—fort—
yn+3 17 Yn 17 Yn+1 17 yn+2 17 .fn+2 17 .fn+3

Differentiating (5) with respect to x we have

e Do TR G AR T

a, a . (x),J70, 1, 2; B,(x), B,(x) are continuous coefficients

used to generate the additional methods.
The additional methods are obtained by evaluating (7) at
points x = { X } to obtained

n+ ‘xn+]
39 96 57 39 4
ey Y m e Y A Sy —— 8
fn 17 yn+1 17 Yn+2 17 <fn+2 17f;1+3 ( )
39 96 57 39 4
=-— + — _—
/ 173yn 17 Yo = 1,57Yn+2 1,{4fn+2 171fn+3
ey Y e Y e frn F— 10
f;1+1 17 yn 17 Yn+1 17 yn+2 17 fn+2 17 fn+3 ( )
__L +z +2 +78f +£f
yn+3 17 yn 17 yn+l 17 yn+2 17 n+2 17 n+3
3 24 27 14 1
= — —_— [P — 9
Jrn+l 17 yn 17 Yn+1 + 17 Yn+2 17f;z+2 + 17 ﬁ1+3 ( )

the methods (6), (8), and (9), are combined to give
the Extended block BDF 10

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(x)fn+2 +p; (‘x)fn+3) (5)

III. ORDER OF ACCURACYAND STABILTY OF EBBDF

The three step extended block backward differentiation
formulae can be represented by a matrix finite difference
equation in block form as

40y,

- A(O)Yw 1)

a7 hB (I)Fw + hB (O)Fw |
where

Yw (yn+1 ’ yn+2 yn+3 )T ’

Y, = v »)s

F (f;wl f;1+2 f;1+3 )T 2

Fo=(fn f 1)
w-0,1,2, . and n=0,3,..., N-3.
And the matrices 4" 4© B are 3 py 3 matrices whose

entries are given by the coefficients of (11) given as

24 -7 00 = o4 L

17 17 139 17 17

A0 2| 7% ST gla9=lo 0 T go_| o 32 4

17 17 171 17 17

I 00 — o 18 6

1717 17 17 17
0 0 O
B?=|0 0 1
0 0 O

The local truncation error associated with the EBBDF can
be defined to be the linear difference operator

L[y(x);h]zzajyrwj_h(ﬂan+2+ﬁ3fn+3) (12)

Assuming that y(x) is sufficiently differentiable, we can
write the terms in (12) as a Taylor series expression of

y(xn+j) al’ld f(xmj):y'(xnﬂ) as

Y Z(;h) My and

o0 -hp .
WL
j=0 P:
(13)

Substituting (13) into equation (12), we obtain the equation
Y(x)5h] = )+ Chy(x)+ CRY(x)+. . .+ Chy"(x)+. . .
Where the constants c,,.p=0,1,2,. .are given as

follows:
2
C,=2 a,
J=0
1 & .
CZZFZ] a;,-2p8,-3B,+7,
< J =1

2
v pr a;, —pQ" B, +377 g -1 71)}
J=1

and y, =0, y=1,1=0,1.
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The method in (10) is said to have a maximal order of
accuracy p if

Lly(x,);h]1=C,,
And
C,=C=C,...C,=0, C

hp+1yp+l(xn)+ O(hp+2)

=0 (14)

Therefore, C pel is the error constant and C,. 'y (x,)

p+1

the principal local truncation error at the point X, .
Therefore the values of the error constant calculated for the
EBBDF (10) is given as:

13 19 -1 T . _ T
(' 170 ’W’T) with order p=(4,4,4)" and

T is the transpose.

A. Zero Stability

The zero stability of the method is concerned with the
stability of the difference system in the limit as h tends to

zero [6]. Thus, as h—0 the difference system (11)
becomes

My~ 40)

ANy = 4y

whose first characteristics polynomial p(R) given
by r|<1, j=1,..3

AR =defRA) - 49]= %Rza—k) (15)
The block method (10) is zero stable for p(R)=O and

satisfies, and for those roots with ‘R j‘ =1, the multiplicity

does not exceed 1. hence the extended block BDF with
continuous coefficients is zero stable.

B. Consistency and Convergence
We note that the block method (10) is consistent as it has
order p > 1. Since the block method (10) is zero stable
then following Henrici [8],

Convergence = zero stability + consistency,
hence the method (10) converges.

C. Linear Stability

The stability properties of the block formulae (10) is
discussed and determined through the application to the test
equation :

y'=4y, A<0 (16)
applying (12) on (16) yields
YZU = Q(Z)Yw-_l’ (17)

where O(z) is the amplification matrix with z = hA
given by
O(z) =(A" +zB")"' (4 +B")
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The matrix Q(z) has eigenvalues

(égl ;60,8 ) = (0, 0, & ), where the dominant

eigenvalue 5 , is arational function of z given by

12 +18 z+11z°+3z2°
$.(2)=

12 -18 z+112z*-32°
which is the stability function of our block method (10).
From (18) the usual property of A-stability which requires

that for all z=hleC” and , (z) <0 is obtained. The

(18)

absolute stability region S associated with the block
method (10) is the set
S ={Z= hA .for that z where the roots of the stability function (18)

aremoduli <1} -

In the spirit of Hairer and Wanner [7], the stability
region S is presented in white colour which corresponds to
the 3- step extended block BDF stability function (18).
Clearly, from Figure 1 below, it is obvious that the method
is A- stable, since it has no pole of the stability function (18)
represented by the plus sign in the left half complex plane,
also (18) satisfies the L- stability condition that

LimRe(z)=0 where z=hA.

Z—>0

Therefore, the method is L-Stable.

Absolute Stability %
Im

Re

wn
[

Figurel.Absolute stability region

v. Computing with EBBDF

The method is implemented more efficiently as a 3-step
block numerical integrators for (1) to simultaneously obtain

.. T . ..
the approximations (yn 10 Vs Va3 ) without requiring
back values or predictors taking , = 0, 3,.., N —3 over

sub-intervals[xo, xz], o ,[xN_g, X, ] For example, n =
T
0, w = 1,(y1, Y, y3) are simultaneously obtained

over the sub-interval [xo, x3] ,as ), is known from the
initial value problem (1), n=3, @ =2, . (y,, y,, y, ) are

simultaneously obtained over the sub-interval [x,, x,] as
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TABLE 1

Y, is known from previous block and so on. Hence, the Numerical result for the Example 5.1, h=0.1

sub-intervals do not over-lap. It should be noted that for

linear problems, the code used Gaussian elimination and for x i Exact Block method (11) Error
nonlinear problems, the Newton’s method is used. y(x) Yi ly(x) -yl
2(X) Zi | 2(x) — zi
2 20 1.95393014 1.95393606 5.92%x10 ¢
0.90929743 0.90929861 1.18x10"°
. MERICAL EXAMPLE
V. NU C S 4 40 -3.00889434 —-3.00889931 497%x10 ¢
In thi . . h | 01 h -0.75680249  —0.75680352 1.03x10 °°
n this ;ec}?on, vx;le g,lve ht rel:: exampbi:s to 1 ustratedt g 6 60 167401423  —1.67402028 6.0410
?)czlgacybcl) the Elet o 1T e three F.ro ems are stan lgrd 027941549  —0.27941584 3.50%10 7
pro svrns v;/“ (()ise ) upons are;) 11mp0rtance in a¥p 1}@1 8 80 791520143  7.91521420 127%10
system§. e llq m:ﬁlmum abso ute errors pd the 098935824  0.98935949 125%10
ap.pr0x1mate. SO ult\iloni1 'compzilta.nolil/[s \lzlvere f:arréeo out 10 100 —5.44016570  —5.44017306 73610 ¢
using our written Mathematica code in Mathematica 8.0. 054402111  —0.54402190 7.90%10 7
Example 5.1
’
x) =xcosx—y+(l+x)z 0)=1
y'(x) y+(+x)z ., y(0) TABLE 2
sinx—z=0 , Z(O) =0 Numerical result for the Example 5.2, h=0.1
’,f,fl,é, ’e’;gac t solution is X i Exact Block method (11) Error
—x . . y(x) Yi [ y(x)—yil
y(x)=e " +xsinx , z(x)=sinx 2x) z | 2(x) ~ 2
2 20 4.62962962 4.62962962 1.77 15
Example 5.2 <10
277777777 2.77777777 8.88x10 "¢
4 40 12.70370370 12.70370370 1.42x10 7
y=z »(0)=1 544444444  5.44444444 4 44X -1s
23_y2=0’ 2(0) =1 . . 44x10
0< <10 6 60 26.99999999  26.99999999 1.42x10 7™
=r= . . 8.99999999 8.99999999 5.68x10 '
The exact solution is 5
3 ) 8 80 49.29629629 49.29629629 1.13x10 -
X X -
y(x) = (1 n j , z(x) = (1 i j 13.44444444  13.44444444 230x10 7"
3 3 10 100 81.37037037 81.37037037 9.94%x10 7
1877777777  18.77777777 1.77x10 ™
Example 5.3
yix)=-xy, -(+x)z,, y(0)=5
/ _ _ TABLE 3
Y (x)=- XYy — (I+ x)zz D (0)=1 Numerical result for the Example 5.3, h=0.1
_ 2 x Exact Exact  Method (11) Method (11) Error Error
yl 22 X O _ 1
— - —¢cos > z,(0)=- y(x1) y(x2) i y2 | y(x0)-yil | y(x2)-yal
2(x1) 2(x,) zi b2 | z(x1)-z1| | 2(%2)-21]
2
y,—z . [ x
%— sin (2J z,(0)=0 2-1.171437 0.416147 -1.171279 0.416035 1.58x10 * 1.12x10 ~*

4.130340 0.909297 4.130540 0.9093222.00x10 ~* 2.49x10 ~*

4-1.484303 0.653644 -1.484763 0.652627 4.60x 10 * 1.02x10 3

o 4.293148 -0.756802  4.295901 -0.756771 2.75x10 > 3.16x10 5
The exact solution is

2
. X | _ -3 -3
y,(x)=sin x+5cos | | , 6 3.022168 -0.960170 3.031045 -0.954886 8.88x10 > 5.28x10
2 -2.794766 -0.279415 -2.807775-0.275101 1.30x10 > 4.31x10 3
. X
y,(x) =cos x+ 5sin (TJ 8 5.160475 0.145500 5.181067 0.136285 2.06x10 2 9.21x10 3
2.611633 0.989358 2.612052 0.992150 4.19x10 * 2.79x10 3
z,(x)=-cos x, z,(x)=sin x

10 4.280809 0.839072 4.301332 0.856292 2.05x10 2 1.72x10 2

The tables below show the numerical results of extended -2.150946 -0.544021 -2.123399 -0.548677 2.75x10 > 4.66x10 3

block BDF method for solving semi-explicit index-1 DAEs.

Tables 1, 2, 3 display the result for example 5.1, 5.2, and 5.3

for h=0.1, while for different step size the maximum errors
are obtained in table 4.
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TABLE 4
Numerical result for the Examples,

Max error = max (‘yi —y(t,.) z, —z(t,.)
1<i<NS

)

5

h Max Error Max Error Max Error

Problems5.1 Problems5.2 Problem5.3

107" 137516x10-°  1.35003x10-°  9.11765x 10
10 72 136738x10~°  2.95586x10 2 1.15275% 10 =

10 ™% 3.16192x10 "  1.05295x10 1  1.13751x10

VI CONCLUSION

We have proposed in this paper a EBBDF for the solutions
of semi-explicit index-1 DAEs. The method is of order 4, it
is self-starting and provides good accuracy. Numerical
examples using the three step EBBDF showed that the
method is accurate and efficient as evident in Tables 1-3.
The EBBDF is also found to be convergent and L-stable,
making it a suitable , method this class of problems.
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