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Abstract—This paper is concerned with the design of L1-
induced sparse controller for continuous-time positive systems
with interval uncertainties. A necessary and sufficient condition
for stability and L1-induced performance of positive linear
systems is proposed in terms of linear inequalities. Based
on this, conditions for the existence of robust state-feedback
controllers are established. Moreover, the total number of all the
nonzero elements of the controller gain is to be minimized, while
satisfying a guaranteed level of L1-induced performance. Then,
we propose an ℓ1-minimization problem to relax the ℓ0 objective
function for optimization and an iterative convex optimization
approach is developed to solve the conditions. Finally, an
illustrative example is provided to show the effectiveness and
applicability of the theoretical results.

Index Terms—Interval uncertainties, Linear Lyapunov func-
tions, L1-induced performance, Positive systems, Sparse control.

I. INTRODUCTION

IN many practical systems, there is such a kind of systems
whose state variables are confined to be positive. Such

systems are frequently encountered in various fields, for in-
stance, ecology [1], industrial engineering [2]. These systems
belong to the class of positive systems, whose state variables
and outputs take only nonnegative values for nonnegative
inputs and initial conditions. Positive systems possess many
special characteristics, mainly due to the fact that the states
of positive systems are confined within a cone located in the
positive orthant rather than in the whole space. The special
characteristics brings about many new issues, which cannot
be solved in general by using well-established methods for
general linear systems. Therefore, the study on positive
system theory has drawn the attention of many researchers
all over the world in recent years.

After a system-theoretic approach to positive systems was
proposed in [3], a large number of theoretical contributions
have appeared in the literature [4], [5], [6], [7], [8]. Among
these research results, a positive state-space representation
of a given transfer function has been characterized in [9].
Necessary and sufficient conditions for positive realizability
by means of convex analysis have been derived in [10].
Reachability and controllability for positive systems have
been investigated thoroughly in [11] and [12]. The syn-
thesis problem of state-feedback controllers guaranteeing
the closed-loop system to be positive and asymptotically
stable has been investigated by the LMI approach and the
linear programming approach in [13] and [14], respectively.
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Stability theory for nonnegative and compartmental dynamic
systems with time delay has been investigated in [15], [16],
[17]. Some results on 2-D positive systems can be found in
[7], [18]. As for the results on model reduction problem for
positive systems, we refer readers to [19], [20].

Although numerous results have been developed, it is
noted that most of the above mentioned research works are
based on quadratic Lyapunov functions. The results are often
formulated under the linear matrix inequality (LMI) frame-
work [21]. In recent years, some new results based on linear
Lyapunov functions have emerged [14], [22], [23], [24]. The
motivation is that the state of positive systems is nonnega-
tive, making a linear Lyapunov function a valid candidate.
However, the above-mentioned works mainly focused on the
stability analysis problem and less efforts have been made
in designing the controllers for positive systems. In addition,
some frequently used costs such as H∞ norm are based on
the L2 signal space [25] and these costs are not very natural
to describe some of the features of practical physical systems.
By contrast, 1 norm provides a more useful description for
positive systems, for instance, if the values represent the
amount of material or the number of animal in a species. On
the other hand, finding sparse vectors is important in many
applications such as in parameter estimation or identification,
signal processing or model reduction [26], [27]. A vector or
signal is said to be sparse, if most of its entries are zero. The
ℓ0-norm quantifies sparsity by counting the number of non-
zero entries in a vector or signal. However, finding sparse
vectors is difficult because minimizing the ℓ0-norm is a non-
convex problem. In compressive sensing, sparse signals are
reconstructed by replacing the ℓ0-minimization with an ℓ1-
minimization [27], [28]. However, there are few results on
sparse controller synthesis for positive systems, especially
with linear Lyapunov functions. Moreover, it is worth noting
that the system parameters are usually assumed to be exactly
known in the literature [29], [30]. Actually, practical systems
are often affected by environmental changes, variations, per-
turbations or disturbances, and consequently it is inevitable
that uncertainties enter the system parameters [31]. Owing
to the complexity caused by parameter uncertainties, the
synthesis problems for uncertain positive systems have not
been fully investigated. Motivated by the aforementioned
discussions, in this paper, we consider the sparse state-
feedback stabilization problem for continuous-time interval
positive systems under L1-induced performance.

The remaining parts of this article are organized as follows.
In Section II, preliminaries are presented and the L1-induced
performance is introduced for continuous-time positive sys-
tems. In Section III, the exact value of L1-induced norm is
computed and a characterization is developed under which
the positive linear system is asymptotically stable and sat-
isfies the performance. In Section IV, the sparse controller
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design problem is formulated by minimizing the ℓ0-norm of
the controller gain K and the ℓ0-optimization problem is
relaxed by a ℓ1-minimization problem. Moreover, the result-
ing problem can be tackled by finding a solution of iterative
convex optimization problems. An examples is provided in
Section V to show the effectiveness and applicability of the
theoretical results. Conclusions are given in Section VI.

II. PROBLEM FORMULATION

In this section, we introduce notations and several results
concerning continuous-time linear positive systems.

Let R be the set of real numbers; Rn denotes the n-column
real vectors; Rn×m is the set of all real matrices of dimension
n×m. Let R̄n

+ denote the nonnegative orthants of Rn; that
is, if x ∈ Rn, then x ∈ R̄n

+ is equivalent to x ≥≥ 0. N
is the set of natural numbers. For a matrix A ∈ Rm×n,
aij denotes the element located at the ith row and the jth
column. A ≥≥ 0 (respectively, A >> 0) means that for
all i and j, aij ≥ 0 (respectively, aij > 0). The notation
A ≥≥ B (respectively, A >> B) means that the matrix
A − B ≥≥ 0 (respectively, A − B >> 0). The matrix
A ∈ Rn×n is called Metzler, if all its off-diagonal elements
are positive, that is, ∀(i, j), i ̸= j, aij ≥ 0. For matrices
A,A,A ∈ Rn×m, the notation A ∈ [A,A] means that
A ≤≤ A ≤≤ A. The symbol coli(A) denotes the ith column
of matrix A. The superscript “T ” denotes matrix transpose.
∥·∥ represents the Euclidean norm for vectors. The 1-norm
of a vector x(t) = (x1(t), x2(t), . . . , xn(t)) is defined as

∥x(t)∥1 ,
n∑

i=1

|xi(t)| and the induced 1-norm of a matrix

Q , [qij ] ∈ Rm×n is denoted by ∥Q∥1 , max
1≤j≤n

(
m∑
i=1

|qij |).

The L1-norm of x is defined as ∥x∥L1
,
∫∞
0

∥x(t)∥1dt.
The all-ones vector in Rn is denoted by 1n. Given a matrix
A = [a1, . . . , an] with ai being its ith column, we define a
vector vec(A) , [aT1 . . . aTn ]

T . Matrices, if their dimensions
are not explicitly stated, are assumed to have compatible
dimensions for algebraic operations.

Consider an interval system:{
ẋ(t) = Ax(t) +Bww(t),
y(t) = Cx(t) +Dww(t),

(1)

where x(t) ∈ Rn, w(t) ∈ Rm and y(t) ∈ Rr are the system
state, input and output, respectively.

In this paper, the system matrices A, Bw, C and Dw are
not precisely known, but belong to the following admissible
uncertainty domain:

A ∈ [A,A], Bw ∈ [Bw, Bw], C ∈ [C,C], Dw ∈ [Dw, Dw].
(2)

We have the following definitions throughout the paper.
Definition 1: For a vector x = [x1, . . . , xn]

T ∈ Rn, it
is called sparse if its ℓ0-norm is small compared to the
dimension of the vector, where ℓ0-norm of x is defined as

∥x∥0 =
n∑

i=1

|sign(xi)|.

Definition 2: System (1) is said to be a continuous-time
positive linear system if for all x(0) ≥≥ 0 and w(t) ≥≥ 0,
we have x(t) ≥≥ 0 and y(t) ≥≥ 0 for t > 0.

Definition 3: System (1) is said to be positive and robustly
stable if it is positive and asymptotically stable over all
admissible uncertainty domain in (2).
In the following, we introduce some useful results which will
be used in the sequel.

Lemma 1 ([32]): The system in (1) is a continuous-time
positive linear system if and only if

A is Metzler, Bw ≥≥ 0, C ≥≥ 0, Dw ≥≥ 0.

Proposition 1 ([22]): The positive linear system given by
(1) is asymptotically stable if and only if there exists a vector
p ≥≥ 0 (or p >> 0) satisfying

pTA << 0. (3)

Lemma 2 ([27]): The convex envelope of the function

f = ∥x∥0 =
n∑

i=1

|sign(xi)| on X = {x ∈ Rn|∥x∥∞ ≤ 1} is

fenv(x) = ∥x∥1 =
n∑

i=1

|xi(t)|.
Now, we are in a position to give the definition of L1-

induced norm. For a stable positive linear system given in
(1), its L1-induced norm is defined as

∥ℑ∥(L1,L1) , sup
w ̸=0, w∈L1

∥y∥L1

∥w∥L1

, (4)

where ℑ : L1 → L1 denotes the convolution operator, that
is, y(t) = (ℑ∗w)(t). We say that system (1) has L1-induced
performance at the level γ if, under zero initial conditions,

∥ℑ∥(L1,L1) < γ, (5)

where γ > 0 is a given scalar.

III. PERFORMANCE ANALYSIS

In this section, we compute the exact value of L1-induced
norm for positive system (1). Then, the performance charac-
terization is provided for positive system (1) over the whole
uncertain domain in (2).

First, we give the following theorem through which the
value of L1-induced norm of system (1) can be computed
directly.

Theorem 1: For a stable positive linear system given in
(1), the exact value of the L1-induced norm is given by

∥ℑ∥(L1,L1) = ∥Dw − CA−1Bw∥1. (6)

Proof: For system (1), the impulse response G(t) is given
by

G(t) ,
{

0, t < 0,
CeAtBw +Dwδ(t), t ≥ 0.

(7)

Next, let ℑ : L1 → L1 denote the convolution operator:

z(t) = (ℑ ∗ w)(t) ,
∫ ∞

0

G(t− τ)w(τ)dτ. (8)

From [33], we have

∥ℑ∥(L1,L1) = max
j=1,...,m

∥colj(Ḡ)∥1, (9)

where

Ḡij =

∫ ∞

0

Gij(t)dt. (10)
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Let ci, bwj , dwij denote the ith row vector, the jth column
vector and the (i, j)-element of matrices C, Bw and Dw,
respectively. Equation (10) can be written as

Ḡij =

∫ ∞

0

(
cie

Atbwj + dwijδ(t)
)
dt = −ciA

−1bwj + dwij ,

(11)
yielding (6). �

Next, we derive the following result which provides a
fundamental characterization on the stability of system (1)
with the performance in (5).

Theorem 2: The positive linear system in (1) is asymp-
totically stable and satisfies ∥y∥L1 < γ∥w∥L1 if and only if
there exists a vector p ≥≥ 0 satisfying

1T
r C + pTA << 0, (12)

pTBw + 1T
r Dw − γ1T

m << 0. (13)

Proof: (Sufficiency) In the following, we consider two cases:
x(t) ≡ 0 and there exists a t such that x(t) ̸= 0. First,
for x(t) ≡ 0, from (12), the asymptotic stability of system
(1) is proved. It is easy to see that if x(t) ≡ 0, we have
y(t) = Dww(t) and from (13), ∥y∥L1 < γ∥w∥L1 holds.

Next, we assume that there exists a t such that x(t) ̸= 0.
From (12), we can see that (3) holds, and thus the asymptotic
stability of system (1) is proved.

Consider the linear Lyapunov function candidate
V (x(t)) = pTx(t) and we have

dV (x(t))

dt
= pT (Ax(t) +Bww(t)).

Let

J =

∫ T

0

∥y(t)∥1dt−
∫ T

0

γ∥w(t)∥1dt

=

∫ T

0

(
r∑

i=1

yi(t)− γ
m∑
i=1

wi(t)

)
dt

=

∫ T

0

(
r∑

i=1

yi(t)− γ
m∑
i=1

wi(t) +
dV (t)

dt

)
dt− V (T )

=

∫ T

0

([
1T
r C + pTA

]
x(t) + (1T

r Dw + pTBw

−γ1T
m)w(t)

)
dt− V (T )

=

∫ T

0

([
1T
r C + pTA+ ε1T

n

]
x(t) + (1T

r Dw

+pTBw − γ1T
m)w(t)

)
dt−

∫ T

0

ε1T
nx(t)dt− V (T ),

where ε > 0 is sufficiently small such that 1T
r C + pTA +

ε1T
n << 0 holds.
From (12) and (13), we have

J +

∫ T

0

ε1T
nx(t)dt+ V (T ) < 0,

which equals to∫ T

0

(
r∑

i=1

yi(t)

)
dt+ ε

∫ T

0

(
n∑

i=1

xi(t)

)
dt

< γ

∫ T

0

(
m∑
i=1

wi(t)

)
dt− pTx(T ).

Since the system is asymptotically stable, when T → ∞ we
have ∫ ∞

0

(
r∑

i=1

yi(t)

)
dt+ ε

∫ ∞

0

(
n∑

i=1

xi(t)

)
dt

≤ γ

∫ ∞

0

(
m∑
i=1

wi(t)

)
dt,

which implies
∥y∥L1 < γ∥w∥L1 . (14)

This proves sufficiency.
(Necessity) Assume that system (1) is asymptotically sta-

ble and satisfies ∥y∥L1
< γ∥w∥L1

. Then, according to
Theorem 1, the following inequality holds

∥Dw − CA−1Bw∥1 < γ, (15)

which implies

1T
r Dw − 1T

r CA−1Bw − γ1T
m << 0. (16)

Define p̃ , (−1T
r CA−1)T ≥≥ 0 and p , p̃ + ϵξ >> 0,

where ξ >> 0 satisfies ξT (−A) >> 0, and ϵ > 0 is a
sufficiently small number. We have

1T
r C + pTA = 1T

r C + (p̃T + ϵξT )A

= 1T
r C − 1T

r C + ϵξTA

= ϵξTA

<< 0. (17)

On the other hand,

1T
r Dw + pTBw − γ1T

m

= 1T
r Dw − 1T

r CA−1Bw + ϵξTBw − γ1T
m.

From (16) and ϵ > 0 is sufficiently small, we have that (13)
holds. This completes the whole proof. �

Remark 1: Theorem 2 presents a necessary and sufficient
condition on the L1-induced performance of a stable positive
system in terms of linear programming. A similar result,
proven by virtue of dissipativity theory, can be found in [24].
In the following, we provide a theorem as the performance
characterization for positive system (1) over the whole un-
certain domain in (2).

Theorem 3: The positive linear system in (1) is robustly
stable and satisfies ∥y∥L1

< γ∥w∥L1
for any A ∈ [A,A],

C ∈ [C,C], Bw ∈ [Bw, Bw] and Dw ∈ [Dw, Dw] if and
only if there exists a vector p ≥≥ 0 satisfying

1T
r C + pTA << 0, (18)

pTBw + 1T
r Dw − γ1T

m << 0. (19)

Proof: (Sufficiency) For any A ∈ [A,A], C ∈ [C,C], Bw ∈
[Bw, Bw] and Dw ∈ [Dw,Dw],

1T
r C + pTA ≤≤ 1T

r C + pTA,

pTBw + 1T
r Dw − γ1T

m ≤≤ pTBw + 1T
r Dw − γ1T

m,

which, by Theorem 2, implies that system (1) is robust
stable and satisfies ∥y∥L1 < γ∥w∥L1 over all admissible
uncertainty domain. This proves sufficiency.

(Necessity) Assume that system (1) is robustly stable and
satisfies ∥y∥L1 < γ∥w∥L1 . From Theorem 2, we have (12)
and (13) hold, which implies that (18) and (19) hold. This
completes the whole proof. �
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IV. SPARSE STATE-FEEDBACK CONTROLLER DESIGN

This section deals with the robust sparse state-feedback
stabilization problem for positive systems with interval un-
certainties.

The problem of L1-induced sparse controller design
(L1SCD) is formulated as follows.
Problem L1SCD: Given a positive system

S :

{
ẋ(t) = Ax(t) +Bu(t) +Bww(t),
y(t) = Cx(t) +Du(t) +Dww(t),

(20)

where A ∈ [A,A], B ∈ [B,B], Bw ∈ [Bw, Bw], C ∈ [C,C],
D ∈ [D,D] and Dw ∈ [Dw, Dw], find a state-feedback
controller u(t) = Kx(t) such that

1) the closed-loop system{
ẋ(t) = (A+BK)x(t) +Bww(t),
y(t) = (C +DK)x(t) +Dww(t),

(21)

is positive and robustly stable.
2) the ℓ0-norm of the controller gain K is minimized

subject to the L1-induced performance, that is,

min ∥K∥0
subject to ∥y∥L1

< γ∥w∥L1
. (22)

This is a common sense approach which simply seeks the
sparsest controller gain K satisfying the constraint. However,
the optimization problem is non-convex and NP-hard. From
Lemma 2, we know that the ℓ0-optimization problem (22)
can be relaxed by the following ℓ1-minimization problem:

min ∥vec(K)∥1
subject to ∥y∥L1 < γ∥w∥L1 . (23)

Before solving the ℓ1-minimization problem (23), a nec-
essary and sufficient condition is first presented for the
existence of a solution to the L1-induced state-feedback
stabilization problem. We suppose K ≤≤ 0 and the detailed
proof is omitted here.

Theorem 4: Suppose K ≤≤ 0. The closed-loop system
(21) is positive, robustly stable and satisfies ∥z∥L1 <
γ∥w∥L1 for any A ∈ [A,A], B ∈ [B,B], Bw ∈ [Bw, Bw],
C ∈ [C,C], D ∈ [D,D] and Dw ∈ [Dw, Dw] if and only if
there exist a matrix K and a vector p ≥≥ 0 satisfying

A+BK is Metzler, (24)
C +DK ≥≥ 0, (25)

1T
r (C +DK) + pT (A+BK) << 0, (26)

pTBw + 1T
r Dw − γ1T

m << 0. (27)

Note that the Lyapunov vector p is coupled with the
controller matrix K in (26), which cannot be easily solved.
However, when matrix K is fixed, (26) turns out to be
linear with respect to the remaining variables. Therefore,
a natural way is to fix K, and solve (24)–(27) by linear
programming. Thus, the following iterative algorithm can
be proposed to solve Problem L1SCD.

Algorithm:
• Step 1. Set i = 1. Select an initial matrix K1 such that

the system{
ẋ(t) = Ax(t) +Bu(t) +Bww(t),
y(t) = Cx(t) +Du(t) +Dww(t),

(28)

with

u(t) = K1x(t) (29)

is positive and robustly stable.
• Step 2. For fixed Ki, solve the following feasibility

problem for pi.
FP: Find pi subject to the following constraints:

1T
r (C +DKi) + pTi (A+BKi) << 0,

pTi Bw + 1T
r Dw − γ1T

m << 0.

pi ≥≥ 0.

Denote K∗
i , pi as the solution to the feasibility problem.

If
∣∣(K∗

i −K∗
i−1

)
/K∗

i

∣∣ < ε1, where ε1 is a prescribed
bound, then K∗ = Ki, p = pi. STOP.

• Step 3. For fixed pi, solve the following optimization
problem for Ki.
OP: Minimize ∥vec(K)∥1 subject to the following con-
straints:

A+BKi is Metzler,

C +DKi ≥≥ 0,

1T
r (C +DKi) + pTi (A+BKi) << 0.

Denote K∗
i as the solution to the optimization problem.

• Step 4. If
∣∣(K∗

i −K∗
i−1

)
/K∗

i

∣∣ < ε2, where ε2 is a
prescribed tolerance, STOP; else set i = i+1 and Ki =
Ki−1, then go to Step 2.

Remark 2: The initial matrix K1 can be viewed as a state-
feedback controller matrix, and can be constructed by exist-
ing convex optimization approaches. From [13], we know
that system (28) with (29) is positive and robustly stable if
and only if there exist matrices P , diag(p1, p2, . . . , pn)
and Q , [qij ] ∈ Rl×n such that

PA
T
+QTB

T
+AP +BQ < 0,

aijpj +
l∑

z=1

bizqzj ≥ 0, (1 ≤ i ̸= j ≤ n)

cijpj +
l∑

z=1

dizqzj ≥ 0.

Under this condition, an initial choice of K can be given by
K1 = QP−1.

V. ILLUSTRATIVE EXAMPLE

In this section, we present an illustrative example to
demonstrate the applicability of the proposed results.

Consider the following positive system:{
ẋ(t) = Ax(t) +Bu(t) +Bww(t),
y(t) = Cx(t) +Du(t) +Dww(t),

(30)

where A ∈ [A,A], B ∈ [B,B], Bw ∈ [Bw, Bw], C ∈
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Fig. 1: Time Response of Open-loop System

[C,C], D ∈ [D,D], Dw ∈ [Dw, Dw] with

A =

 −2.00 1.30 2.00
0.50 −3.00 2.00
2.00 1.50 −2.00

 ,

A =

 −1.98 1.31 2.00
0.60 −2.96 2.10
2.00 1.50 −1.92

 ,

B =

 1.00 0.00
0.00 1.00
1.00 0.5

 , B =

 1.04 0.01
0.04 1.00
1.02 0.50

 ,

Bw =

 0.48 0.20
0.08 0.00
0.00 0.50

 , Bw =

 0.50 0.21
0.10 0.00
0.02 0.52

 ,

C =

[
1.00 0.60 1.00
0.80 0.80 1.00

]
, D =

[
0.48 0.00
0.50 1.00

]
,

C =

[
1.02 0.61 1.00
0.80 0.82 1.00

]
, D =

[
0.50 0
0.52 1.01

]
,

Dw =

[
0.10 0.00
0.10 0.20

]
, Dw =

[
0.12 0.01
0.11 0.22

]
.

For γ = 0.7, by solving the conditions in Theorem 4 using
Algorithm, we obtain the sparse controller gain

K∗ =

[
−0.6413 −0.5003 −1.7548
−0.0013 −0.0008 −0.0000

]
after 10 iterations and a feasible solution is achieved with

p =
[
0.9761 0.7829 0.5888

]
.

To illustrate the disturbance attenuation performance, the
external disturbance w(t) is assumed to be

w(t) =

{ [
300 + 200 cos 2t e−3t

]T
, t ≤ 5,[

0 0
]T

, otherwise,

and the initial condition used in the simulation is

x(0) =
[
500 200 300

]T
.

Figures 1–3 show the response of open-loop system and
Figure 4–6 show the state response of the closed-loop system,
from which we can see that the system can be stabilized by
the designed controller.
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Fig. 2: Time Response of Open-loop System
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Fig. 3: Time Response of Open-loop System
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VI. CONCLUSION

In this paper, the L1-induced performance analysis and the
sparse state-feedback stabilization problem for continuous-
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time interval positive systems have been studied. A method
has been derived to compute the exact value of the L1-
induced norm for positive systems and a characterization
has been proposed to ensure the asymptotic stability of the
positive system with a prescribed L1-induced performance
level. In addition, the sparse controller design problem has
been formulated by minimizing the ℓ0-norm of the controller
gain K, which has been relaxed by an ℓ1-minimization
problem. Moreover, the resulting problem has been solved
by an iterative convex optimization algorithm. Finally, an
illustrative example is provided to show the effectiveness and
applicability of the theoretical results.
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