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Infection Load Structured SI Model With
Exponential Velocity And External Source of
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Abstract—A mathematical SI model is developed for the models described by transport equations, and [3], [4] or [6]
dynamics of a contagious disease in a closed population with for a presentation and examples of classical S| models. Prob-
an external source of contamination. We prove existence and jay (1) describes the dynamics of a contagious disease in a
uniqueness of a non-negative mild solution of the problem using . . S
semigroup theory. We finally illustrate the model with numerical clo.se(_j population V_V'th aﬂ external source of Contamlnatlon.
simulations. This incorporates infection load structure of the infected
population, denoted € J, with ¢~ as minimal infection
load in the infected population: this infection load is a
threshold from which the individual are considered to be
infected. As a consequence, an individual with an infection
load: € (0,7~) appears in the model in the susceptible class

In this article is considered an infection load structured. The model also incorporates a constant mortality fate
epidemiological SI model, described by a system of noand a constant entering flux into the susceptible class.
linear partial differential equations of transport type. Thghe mortality rateu(i) for the infected class depends on the
time variable is denoted > 0 and the infection load jnfection loadi. A consequence of the assumption (iii) is
i€ J=(i",+00) C R*. It is supposed that the infectionthat functiony satisfies
load i increases exponentially with time according to the

Index Terms—Epidemiology, SI model, nonlinear PDE, trans-
port equation, semigroup theory, numerical scheme.

|. INTRODUCTION

%

evolution equation% = wvi. This leads to the following lim p(s)ds = 4-00. (2)
problem, oo Ji-
ds(t) The limit in equation (2) models that infected individuals
o =7 (o +)S(t) — BSEH)T(I)(t), t>0, leave the stagd by dying of the disease with a finite
dI(t, 1) O(vil)(t,7) infection load. The horizontal transmission, with reteis
= — ~—— — (i) (t,14) modeled with variable initial load of the infectious agent
ot +<I>(i)ﬁgét)7'(])(t), £>0,i€J at the contagion, wh_ich .is gssigned using the _funcﬂnn
L . The external contamination is modeled as an input of the
viI(t,i7) = aS(), system that affects the susceptible with a constant date
S(0)= Sy eRy, I(0,)=1I€ Li(J)- attributing the minimal initial infection load~—. This is

1) stated in Problem (1) by the loopback boundary condition
In Problem (1),7 is the integral operator defined for some’é 1(t,i”) = aS(t). As a consequence, a zero valuecof

integrable functiorh on .J by induces a problem without external contamination.
T hs / h(i) di External Contamination

J :
implying thatS(t) + 7 (I)(t) denotes the total population at 5
time ¢ > 0, with initial populationSy + 7 (1o). v

T (8%
Throughout the article the following assumptions are madeL» ----------------------------- g ()
on the model: S
BT(I)

() B, o, v,a>0andvy >0,
(i) function ® € C*(J) is a non negative function such Ho H
thatlim; ;o (i) = 0 and [, ®(i)di = 1.
(iii) function p € L>°(J) is such thaiu(i) > uo for almost
every (f.a.e)i € J. Fig. 1. Fluxes of population dynamics diagram
This mathematical model is a variation of a S| epidemio-
logical model of scrapie [8], [10], where the age structured This article firstly investigates in Section Il the well-
is avoid. See [9] and references therein for a review of psedness of Problem (1): the existence and uniqueness
of a non-negative mild solution is proved using a semi-
TU_MR6249 Chrono-environnement - Université de Franche—Comt’@roup approach. To achieve that goal, we start by checking
antoine.perasso@unv-feomte.fr the existence of a strongly continuous semigroup for the

tUMR6623 Laboratoire de Mathématiques de Besancon - Université b ’ : i ; X
Franche-Comté, ulrich.razafison@univ-fcomte.fr linearized problem in Section II-A, by incorporating the
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loopback boundary condition in the domain of a densebjense inX.

defined differential operator. Then Section II-B is dedicatelor (y,g) € X, let us look for (z,¢) € D(A) such that
to the study of the nonlinear part of Problem (1), proving\I — A)(x, ¢) = (y,g). This is clearly equivalent to

that this latter satisfies a Lipschitz regularity. This lipschitz 1

perturbation of the linear problem then induces the existence r=—v, 4)
. . . . A+ o+«

and uniqueness of a non-negative mild solution for the Jé \

nonlinear problem, which is finally proved to be defined on e Q@ =g,

the time horizon0, +oc]. di vi

In a second step, in Section Ill, we illustrate the modevhereg(i) = vip(i). An integration of the previous equality
with numerical simulations throughout a numerical schengives for. € J and: > ¢,
adapted to the model we make explicit in the article.

Finally, in Section IV, we conclude the present work. o) = p()e J A dr +/ e~ SRR A g (6 s,
Il. MATHEMATICAL ANALYSIS Since we want(z,¢) € D(A), when. goes toi~ one
In all that follows, A denotes the set deduces thap satisfies
A = {)‘ € Ra )‘ >V —= MO}? SD('L) — a—l_‘e_ ii* AJ:/MT(T*) dr + l /l e~ f; >\+UMT(T7) drg(s) dS.
. . . 14 vt J;—
(X, |- Ilx) is the Banach space with product norm given by g (5)
X =Rx L'(J) We now prove that suckz, ) € D(A). Indeed, using the

expression ofp given in (5) and assumption (iii) om,
and X is the non-negative cone df, that isX, =R, x classical majorations and Fubini’s theorem imply foe A,
LL(J).
+ 400
For every constank > 0, By denotes the ball of, / lp(i)] di < ——=

= Ao
Br ={z € X, |z||x < R}.

hoo sopteo 1,
+/ (/ e dz’> lg(s)| ds.
[ s vt

A. The linear problem (6)

Related to Problem (1), we consider the differential ope
atorA: D(A) C X — X defined by

Foraea equation (4) impliesxy|z| < |y| so we deduce

from (6)
D(A) = {(z,9) € X, (ip) € WH'(J) andp(i7) = az}, +o0 1
| di < 1). 7
() [ el < sl + Lol @)
0 L This finally implies thatx, ) € X and consequently to (4),

with d 2

— Yo — , < ——||(y, :
Ly = di(l/up) 1. [(z,0)lx < )\+MO||(?J 9lx
The aim of this section is to prove that, D(A)) generates We now check thafip) € W1 (J).
a positiveCy semigroup. Assumption (iii) ony implies that for\ € A,

Atpg

Proposition 1. The domainD(A) is a dense subset of .. N too g i\~
X, and the resolvent set(A4) containsA. Moreover, the / e Ji- u—”r(rd"dz‘ g/ (—) di < +o00.

resolventR) is given for every\ € A by v

3

Ri(y) Moreover, Fubini's theorem and assumption (iii) pryield
Ri(y,9) = ( Rox(y,9) ) ; (3) for Ae A,
+o00 i )
where / / e JI FEdr g(5) ds di
1 -
Ria(y) = Ntpotal oo [ phoo g5\ —240
« i Ade g < - di s)| ds
Ro\(y,9) = ERL/\(?J)@ Ji- = /r /s <S) l9(s)]
1 e dr < v _
o [ B ) as < sl

Proof: Consider for every: € R the dense subsdb, Equation (5) and the previous estimations prove tha) <
of L1(J) given by L(J). Finally, form the expression (5) it is clear that) €
- WLi(J). So (z,) € D(A) and the expression (3) a®,
Dy ={g € Cc(J), g(i") = az}, follows from (4) and (5). m

where C.(J) denotes the set of continuous functions Wm&:orollary 1. The resolventR, satisfies
compact support. We clearly hale] ({z} x D) C D(A),
|R31l <

_ _ ~ 5, VAEA, VneN. (8)
and sinceU,cr {z} x D, = X, we deduce thaD(A) is (A + o)
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Proof: Let us denoteR} = (RY,,R3,) for every 1) Existence and uniqueness of the solution on finite
n € N. Using equation (4) and the same calculation wéme horizon: In this section, we aim at proving existence,
developped to get (7), an induction proves that for evepniqueness and positivity of the solution of Problem (1) on a
n € N* and every(y,g) € X, finite time horizon. This solution is defined in a mild sense,
we refer to [2] for the definition.

n 1
IRIAW) < (A + po)™ 1yl Proposition 2. For every (So,Iy) € X4, there exists
i+ tmae < oo such that Problem(1) has a unique mild
/ |Ry 5 (z,y)| di < m(|y| + |lgllzy), solution (S, I) € C([0,T], X4) for everyT < tpqa-
i~ ’ Ho)"
) . Proof: We prove the theorem with a fixed point method,
and (8) directly yields. ]

adapting the ideas of [11].
Theorem 1. The differential operator(A4, D(A)) is an Letm > 0. Consider, for),, that satisfies (12), the operator
infinitesimal generator of a strongly continuous positivey  — 4 — \,,T and the functionf,, = f + Al — 7

semigroup{ T4 (t on X that satisfies . . \ 0
group{Ta ()} A consequence of Theorem 1 is thdf, is an infinitesimal

(Ta(t)] < 2e¥—H)t vt > 0. (9) 9enerator onX of a positive Cy semigroup{T’a,, (¢)}:>0
that satisfies
Proof: For A € A one gets(A + 1o — )" < (A + o)™ (V—po—Am)t
for everyn € N. Then the Corollary 1 and the Hille-Yosida 1T, (O] < 2e¥7H , VE20,
theorem [5] prove the existence of the semigr¢@(t)}:>0 so one can considen > 0 big enough such that,, > 0
and the majoration (9). Moreover, as it is proved in proved igiven by
[1], the resolveni?, being positive on.}(.J), the semigroup

{T4(t)}¢>0 is also positive. n rm = 2[|(So, Lol x o (T4, @)]I-
> €lo,
satisfies
B. The non-linear problem o < .

In this section, we tackle the non-linearity in Problem h
proving it satisfies a Lipschitz condition. To this goal, W%y
check that Problem 1 rewrites as

all that follows, let us denot&’\™ the subset of{' given

X' = X, NB,,.

d [ S(t) S(t) si
= = A + F(S(1), I(1)), incer,, <m we have
dt ( 1(t) ) < I(t) J5@). 1) (10) ,
X7 C By, (13)
S(O):S()GRJH I(Ov)ZIOGL}k(J)v
Let 7 > 0 be such that
where functionf : X — X is given by
7 < min (1 —”(S()’IO)HX ) (14)
Fu,v) = ( ol ;ﬂl/}T(v) ) _ (11) T (AT, 4+ An)
BeuT (v) whereA is given in Proposition 1.
Lemma 1. The functionf : X — X given in(11) satisfies Consider the mapping” : C([0,7], X) — C([0,7],X)
the following properties : defined by
1) 3A >0, VM > 0, V((u1,v1), (uz,v2)) € B3, F(u(s),v(s)) =Ta,,(t)(So, Io)
t
| f(ur,v1) = f(uz,v2) || x < AM]|[(u1,v1)—(uz,v2)]x, +/ Ta,, (t —8)fm(u(s),v(s)) ds.
0
2) vm > 0,3, >0, Since f,, (0) = 0 in X, Proposition 1 implies that fot €
(u,v) € By N X1 = f(u,v) + A (u,v) € Xy. (12) [0, 7} and(u, v) € C((0, 7], B ),
[1E(u(t),v()|x < sup [|Ta,,(s)] (S0, Lo)]|x
Proof: Let M > 0 and ((u1,v1), (ug,v2)) € B%,. s€[0,4]
Straightforward computations give Ftrm (Arm + Am))s
lur T (v1) — ua T (v2)| < M| (ur,v1) — (ug, v2)| x. and consequently to (14) the mapping preserves

C([0, 7], By, ). Moreover, equations (12) and (13) imply that
Hypothesis (ii) on® and the previous inequality imply F preservesC([0, 7], X\™) for (So,Ip) € X4 since the
semigroup{T4,, (t)}+>0 IS positive.
[ f(ur,v1) = fuz, v2)|x < AM||(ur,v2) — (uz, v2)||x, Similar calculations prove thaF is a contraction mapping
of C([0, 7], X) with Lipschitz constant.
ConsequentlyF is a contraction ofC'([0, 7], X ™) and the
Banach fixed point theorem implies the existence and the

whereA = 24 is a positive constant. Moreover, given> 0,
on gets for everyu, v) € B,,NX the following estimation,

v = BuT (v) + Amtt > (Am — Bm)u, uniqueness ofu,v) € C([0,7], X}™) such thatF(a,v) =
B (a,v) in C([0, 7], X). By similar arguments than ones devel-
so (12) is satisfied for every,, > Sm. B oped in [7], the solution can then be extended[@t,,,.[
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With 6. < 400,

Finally, every mild solution of Problem (1) is a mild solution

of the following problem,

(1)~

dt \ 1(t)

S(0) =Sy € Ry, I(0,-
so the unique fixed poir(ii, v) of F is also the unique mild
solution of Problem (10). [ ]

2) Global existenceMWe now prove that the solution can
be extended on the whole horizon tirke .

Theorem 2. For every(Sy, Iy) € X4, the Problem(1) has
a unique mild solution(S,I) € C(R*, X ).

) + fm(S(1), 1(1)),

)

Proof: We suppose by contradiction that,,,. < +oo.
Then Proposition 2 implies thdtS, I) € C([0, tmaz], X+),

and so

t
Fow(t,€)] < Tow(0.€)+et [ (uov(s,€)+0)Tov(s.€)ds.
A standard Gronwall inequality argument then gives
[op(t, )| < 1o9p(0,§) +ct

t
+ / (I o(0,€) + cs)(p 0 ¥(s, &) + v)els Wov(wtr)dugg
0

But if ¢,,.. < 400, then hypothesis (iii) on functiop and
the previous inequality yields a contradiction with (17).
To conclude, we necessarily ha¥g,,—+oo- [ ]

IIl. NUMERICAL SIMULATIONS

and standard results from [7] imply that the solution the . . . . .
[7] imply H] this section we illustrate the model with some numerical

satisfies
lim
t_>t’V‘VL(l(17

1(5(), I(1))[[x = +oc. (15)

simulations. We start with the presentation of the scheme.

SinceS and! are non-negative functions and all the param-

eters are positive, Problem (1) implies that
0<S(t)<So+n~t, Vt>0.

But sincet,,.. < +oo one can deduce that

0< %1_13;25 S(t) < 1151375735)5(15) < +o0. (16)
Then equation (15) necessarily implies
fim sup ()2 sy = +oo. (17)
Suppose now that
ltigltsup St)T (I)(t) = +oc. (18)

Since from the equation iy of Problem (1) one gets

aws&+w—ﬁA S(s)T(I)(s) ds,

the latter equality combined to (18) and Fatou’s Lemma

would imply thatlim inf, ;. S(t) = —oo, which contra-
dicts (16). So théim sup in (18) is finished. Taking (16)-(17)
into account one deduces that necessanily_,; . S(t)
0 and alsolimy,_,,,,, S’(t) = 0. Assigning these limits in
the equation inS in Problem (1) one gets
lim ST (I)(t) = 2

t—=tmax

. 19
3 (19)
Consider now the change of variablés= (11, 2) given
by
Y (t6) e (i) = (i e 79),
Classical differential calculus applied oo ¢ leads to the
following differential equation,
oI
Uo0) — (pows 4 1) 0w+ @ o AST()
Sincet — S(¢t)7 (I)(t) is a continuous function, then, taking
into account (19) and hypothesis (i) on functidn there
exists a positive constamt> 0 such that the latter equation
implies
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A. Numerical scheme

We introduce an infection load-time grids where the infection
load and the time steps ar&: and At respectively. We
define i;,1,o = i~ + jAi, t" = nAt and the cells
Kj =lij_1/2,1541/2[ centered at; = 5(i;_1/2 + i11/2),

1 < j < M whereM is the number of cells . We denote by
I} the approximation of the average bft", ) over the cell

K;, namely

1j+1/2

/ijl/2

Since the propagation speed of the transport equation is not
finite, we use an implicit upwind finite volume scheme in
order to computd’. The general scheme is as follow:

1

I ~ —
Aj

J

It i)di.

« We compute the initial states:

ij41/2

! Io(i)di.

0 _ 0 _
S = 5(0) and I; i

tj—1/2

o Assume nowS™ andI™ = (I7,..
> we define

., Iy,) are computed,

M
Tar(I") = Ay 17,
j=1

> we compute

Sn+1 — 1
1+ At(po + a + BT (IM))

(vAt +8™),

> we compute/"*! by solving the following linear
system:

At n At .
— VEZj_l/QIjjll + <1 + v i/ + Atuj) I +1
— I A, BT T (1), 1< < M,

wherep; = u(i;) and®; = &(3;).

WCE 2013



Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

TABLE |
PARAMETER VALUES USED FOR THE SIMULATIONS
1004
90
Parameter definition symbol value w0
initial susceptible population size  Sp 100 indiv. f
initial infected population size I 0 indiv. 0]
susceptible mortality rate 140 0.1 year! ool
infected mortality rate I 0.15 year! ]
infection load growth rate v 103 year! S
contamination rate ey 0.02 year?! = a0
horizontal transmission rate B 3.10~3 (indiv. year)~! ]
entering flux {v1;72} {0; 1} indiv.year !
204
104
B. Numerical simulations S ok o os om0k

0.10
year
For the simulations, we consider the truncated domain

(17,iT) where we set~ = 1 andi™ = 2. We use the _ .
NI ) . Fig. 2. Case 14, = 0) ; Total populationS (t) + Tas (I)(t t
infection load stepAi = 0.05 and a time step\t = 0.1. We  of yoar ase 1 = 0) ; Total populationS () + 7ar (1)(2) on a quarter

present two cases of simulation. Both suppose that the initia

population does not contain infected, stated/py= 0. %07
The first case of simulation corresponds to a zero entering o]
flux in the population {; = 0). One can then check on » ol
Figure 2 that the total population decreases and converges t ol
0 with time. o
In the second case, the entering flux is not zego=£ 1). One o
. . . year
can check that, with the parameters used for the simulation
an epidemic occurs at the beginning of the contamination w
process. Moreover, the disease seems to be persistent pers E
tent in time in the following sense : there exists> 0 such S o
IV. CONCLUSION 500 005 N ear 020 0z

In this article, we have proved the existence and thFe 3. Case24a—1):8 tibles (£) and total infectedTas (1)(t)

. . . . . 3. ase 2 = , Susceptl and total intected/ ps
uniqueness of a non negative mild solution for a Sl modgfa quarter of year
that describes the evolution of a disease in a closed popula-
tion. This disease is characterized by an exponential velocity
of the infection load, a contagious process between indivig1) 1. Segal,Non-linear semi-groupsAnnals of Mathematics 78:339-364,
uals, and an external source of contamination. This last is 1963. A ) | |

: ; ; H.R. Thieme Mathematics in Population Biologyrinceton Series in

§upposed to k_)e proportional to the suscept!ple populathn éhﬂ Theoretical and Computational B[i)ology, Prince%g;\, 2003
is modeled with a loopback boundary condition. Accordingly
to the simulations made, further investigations on this model
shall prove the persistence of the disease when the entering
flux ~ is non zero.
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