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Abstract—We consider the application of the piecewise
monotonic data approximation method to some problems that
are derived from univariate signal restoration. We present
numerical examples in order to show the efficacy of a software
package that implements the method in data fitting and in
denoising data from a medical image. The piecewise monotonic
approximation method makes the smallest change to the data
such that the first differences of the smoothed data change
sign a prescribed number of times. Our results exhibit some
strengths and certain advantages of the method over wavelets
and splines. Therefore, they may be helpful to the development
of new algorithms that are particularly suitable for MRI and
CT calculations.

Index Terms—data smoothing, divided differences, magnetic
resonance imaging, piecewise monotonic approximation, signal
restoration

I. INTRODUCTION

P iecewise monotonic data approximation introduced by
Demetriou and Powell [6]. Since then some useful

applications of the method in signal restoration, image
processing and spectroscopy have been appeared (see, for
example, [12], [19], [2] and references therein). Let {φ(xi) :
i = 1, 2, . . . , n} be a sequence of values of a signal φ(x)
measured at the abscissae x1 < x2 < · · · < xn, but
these measurements include errors (noise) and the data are
to be used to provide a restoration to φ(x). We assume
that if the signal has turning points, then the number of
measurements is substantially greater than the number of
turning points. Therefore some algorithms are proposed in
[6] that modify the measurements if their first differences
{yi+1 − yi : i = 1, . . . , n − 1} include more than k − 1 of
sign changes, a condition which allows k monotonic sections
to the smoothed data, k being a prescribed integer.

Signals in practice are piecewise monotonic, but in many
applications the number of monotonic sections they contain
is not known in advance. Prior knowledge about the geometry
of the signal may provide good estimates of k, but it is
not inefficient to run the algorithm of [6] for a sequence
of integers k if a suitable value is not known.

Some advantages of this technique over other currently
used smoothing algorithms are as follows. First, there is no
need to choose a set of approximating functions. Second, the
smoothing process is a projection because, if it is applied to
the smoothed data, then no changes are made to. Third, the
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technique is particularly suitable when the errors are large
and uncorrelated.

Weaver [19], with respect to the use of monotonicity
algorithms in fMRI, points out that the primary advantage
of the monotonic increasing approximation is that it smooths
the data as little as possible without blurring the edges; it
leaves increases unchanged; both sharp and smooth increases
remain unchanged, so no smoothing occurs at all; it avoids
Gibb’s ringing. Analogously for the monotonic decreasing
approximation. Lu [12] has combined the Tikhonov regu-
larization [18] with the piecewise monotonicity criterion in
an iterative scheme for signal restoration. In this way, the
piecewise monotonicity criterion not only is different from
a low-pass filter, which is actually subjected to the Gibbs
effect, but also very efficient in signal denoising. As general
references in signal and image processing see [14] and [9].

The paper is organized as follows. In Section II we outline
the method for piecewise monotonic data approximation. In
Section III we consider numerical examples that illustrate
the method on data from a periodic function with simulated
errors and data from a noisy medical image. The results
are instructively analyzed and the smoothing capability of
the method is demonstrated. In Section IV we present some
concluding remarks and discuss on the possibility of future
directions of this research.

In order to apply the piecewise monotonicity method to
a sequence of data, only one parameter, namely k, must
be set by the user. Then the method automatically and
simultaneously obtains the optimal turning points and the
best fit. Some Fortran software, namely L2WPMA, that
implements the method was written by one of the authors
[5] that is suitable for processing large numbers of data
in real time. It calculates efficiently a global solution in
quadratic complexity with respect to n, a complexity which
reduces to only O(n) when k = 1 or k = 2. At the end
of the calculation a spline representation of the solution and
the corresponding Lagrange multipliers are provided. The
software package has been tested on a variety of data sets
showing a performance that does provide in practice shorter
computation times than the complexity indicates in theory.

II. PIECEWISE MONOTONIC DATA APPROXIMATION

We regard the measurements as components {φi = φ(xi) :
i = 1, 2, . . . , n} of a n−vector φ. We assume for the moment
that k is known and the method of [6] calculates a vector y
that minimizes the sum of the squares

Φ(y) =
n∑

i=1

(yi − φi)2 (1)

Proceedings of the World Congress on Engineering 2013 Vol I, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



subject to the piecewise monotonicity constraints

ytj−1 ≤ ytj−1+1 ≤ · · · ≤ ytj , if j is odd
ytj−1 ≥ ytj−1+1 ≥ · · · ≥ ytj , if j is even

}
, (2)

where the integers {tj : j = 0, 1, . . . , k}, specifically the
positions of the turning points or extrema of the fit, satisfy
the conditions

1 = t0 ≤ t1 ≤ · · · ≤ tk = n. (3)

The integers {tj : j = 1, 2, . . . , k − 1} are not known
initially and they are variables in the optimization calculation
that gives a best fit. This raises the number of combinations
of integer variables to the formidable order O(nk), but
fortunately the piecewise monotonic approximation problem
is characterized by the following properties that allow an
efficient and automatic calculation of an optimal fit y: (a) The
constraints prevent the equation y = φ from holding, because
if φ does not satisfy the piecewise monotonicity constraints,
then {tj : j = 1, 2, . . . , k − 1} are all different. (b) At the
turning points of a best fit y, the interpolation conditions

ytj
= φtj

, j = 1, 2, . . . , k − 1 (4)

hold. (c) Each monotonic section in a best piecewise mono-
tonic fit is the optimal fit itself to the corresponding data,
so it can be obtained by a separate calculation. Indeed, the
components {yi : i = tj−1, tj−1 + 1, . . . , tj} on [xtj−1 , xtj

]
minimize the sum of the squares

tj∑
i=tj−1

(yi − φi)2 (5)

subject to the constraints

yi ≤ yi+1, i = tj−1, . . . , tj − 1, if j is odd (6)

or subject to the constraints

yi ≥ yi+1, i = tj−1, . . . , tj − 1, if j is even. (7)

In the former case the sequence {yi : i = tj−1, tj−1 +
1, . . . , tj} is the best monotonic increasing fit to {φi :
i = tj−1, tj−1 + 1, . . . , tj} and on the latter case the
best monotonic decreasing one. Therefore, provided that
{ti : i = 1, 2, . . . , k − 1} are known, the components of y
can be generated by solving a separate monotonic problem
on each section [xtj−1 , xtj

]. The problem with the decreasing
monotonicity may be treated computationally as the problem
with the increasing monotonicity after reversing the order of
the data. It is important to note that the constraints on y
are linear and have linearly independent normals. Also, the
second derivative matrix with respect to y of the objective
function (5) is twice the unit matrix. Thus, the problem of
minimizing (5) subject to (6) is a strictly convex quadratic
programming problem that has a unique solution (see [8] for
a general reference in optimization). The calculation of a best
monotonically increasing approximation to φ seeks intervals
where its components have different constant values. The
intervals are formed by using the remarkable property that
any constraints which are satisfied as equalities by the
best approximation subject to a subset of the monotonicity
constraints are also satisfied as equalities by the best approx-
imation subject to all monotonicity constraints. Algorithm

1 of [6] performs the calculation of the best monotonic
increasing fit on [xtj−1 , xtj ] together with all the numbers

∑̀
i=tj−1

(yi − φi)2, ` = tj−1, . . . , tj (8)

in only O(tj − tj−1) computer operations. This surprisingly
little work contributes heavily to the efficiency of the calcu-
lation of an optimal piecewise monotonic fit. Note that the
monotonic problem has raised an extensive interest due to
its applications in economics, operations research, decision
analysis, non-parametric regression and data analysis (see,
for example, [15] and references within). (d) The optimal
integer variables when the calculation is solved for two
values of k that differ by 2 have an interlacing property. The
local maxima of a best approximation with k−2 sections are
separated by the local maxima of a best approximation with
k sections and similarly for the local minima. This property
provides a substantial improvement in the efficiency of the
method.

Further, it is proved that an optimal fit y associated with
the integer variables {tj : j = 1, 2, . . . , k − 1} can split at
tk−1 into two optimal sections. One section that provides an
optimal fit on [x1, xtk−1 ], which in fact is similar to y with
one monotonic section less, and one section on [xtk−1 , xn]
that is a single optimal monotonic fit to the remaining data.
Hence the optimization problem is amenable to dynamic
programming, where the positions of the turning points of
the required fit are also variables of the calculation. The
implementation of this idea includes several options that
are considered by [6] and [4], and still there is room for
further research. Demetriou [5] especially implements an
algorithm of [4] and provides a versatile Fortran package
that derives a solution in only O(nm + km2) computer
operations, where m is the number of local extrema of the
data. Here, for example, p is the index of a local maximum
of the sequence φi, i = 2, . . . , n − 1 if φp−1 < φp and
φp > φp+1. Furthermore, the reported numerical results are
by far better than this complexity, which makes piecewise
monotonic approximation very efficient in practice.

The method may also be applied to the problem where
inequalities (2) are replaced by the reversed ones, in which
case the first section of the fit is decreasing. The latter
problem may be treated computationally as the former one
after an overall change of sign of φ. Is not inefficient to run
the method with both options, if the user opts for letting
the method decide whether the first section is increasing or
decreasing.

Some serious applications of the piecewise monotonic
approximation approach in medical practice related with
noise reduction in magnetic resonance imaging and in signal
reconstruction were reported by [19] and [12] at time prior
to [5]. Specifically, [19] first makes use of a Fourier filter
in order to select significant extrema and then constrains the
data to be monotonic between extrema.

Our method need not rely upon any other assumption than
the value of k. In the following section, we apply L2WPMA
directly for automatic signal restoration.
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III. NUMERICAL EXAMPLES IN SIGNAL RESTORATION
WITH PIECEWISE MONOTONICITY CONSTRAINTS

To illustrate the efficacy of the method in signal restoration
we present two numerical examples. The first example is
a best fit with k = 6 monotonic sections to n = 100
measurements of the function

φ(x) = sin(5x)− x (9)

at equally spaced abscissae on the interval [−2.5, 2]. The
measurements were generated by adding uniformly dis-
tributed random numbers from the interval (−0.5, 0.5) to the
function values φ(xi), i = 1, 2, . . . , n. The data are presented
in the second and the third column of Table I, although
the abscissae are irrelevant to this calculation. Without any
preliminary analysis the data were fed to L2WPMA, 6 mono-
tonic sections were required and the solution was reached
immediately in a common pc. The best fit is presented in
the fourth column of Table I and the corresponding Lagrange
multipliers are presented in the fifth column; the horizontal
lines indicate the turning point positions. Fig. 1 shows the
data and the fit; the data are denoted by (+), the best
approximation by (o) and the piecewise linear interpolant
to the smoothed values illustrates the fit.

The Lagrange multipliers, one multiplier for each con-
straint, are also irrelevant to the actual calculation of the
best fit; they are provided because they are useful to further
analysis. Indeed, we can immediately notice the correspon-
dence between the zero Lagrange multipliers and the inactive
constraints. For example, the constraint y2 ≤ y3 is amply
satisfied because y2 = 2.839 and y3 = 3.066, while λ2 is
zero. The nonzero Lagrange multipliers correspond to active
constraints. For example, the equations y3 = y4 = y5 =
y6 = y7 = 3.066 (see column 4) are associated with the
Lagrange multipliers λ4 = 0.546, λ5 = 0.118, λ6 = 0.651
and λ7 = 0.049 (see column 5). A sensitivity analysis would
conclude that the best fit is strongly dependent upon the
placement of all active constraints, because the associated
Lagrange multipliers are away from zero. In addition, the
inactive constraints allow for freedom in order to follow the
data trends. Since a Lagrange multiplier may be interpreted
as a number measuring the marginal potential change in
the value of the objective function (1), a relaxation of the
corresponding constraint reduces the value of (1) approxi-
mately by an amount equal to the magnitude of the multiplier.
Therefore, the large moduli of Lagrange multipliers (see,
for example, λ28 = −10.628, λ29 = −10.429, etc) on the
long range [x17, x39] of constant components suggest that
substantial improvements may be possible if we increase
k by 2. Thus, if we assume that the best fit with k + 2
monotonic sections is as good as the best fit with k sections,
while k+2 sections are allowed, then replacing, for example,
y28 by φ28 retains feasibility because y27 < y28 and
y28 > y29, and reduces the objective function by the amount
(φ28 − y28)2. The remark suggests that there is room for
improving the fit by increasing k, while the magnitudes of
the Lagrange multipliers indicate the range [x17, x39] as a
range for potential improvement of the fit.

The first attempt at fitting the data, on the purpose of
demonstrating some features of the piecewise monotonic fit,
was not entirely satisfactory. Indeed, the turning points of the
fit are at the abscissae x8, x50, x64, x78 and x89, satisfying
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Fig. 1. Graphical representation of the data given in Table I. The data of
column 2 annotate the x-axis. The data of column 3 are denoted by (+) and
the best fit of column 4 by (o). The solid line illustrates the fit.
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Fig. 2. Best fit (solid line) with k = 8 monotonic sections to n = 200
measurements (+) of function (9) produced as described in Section III.

in addition the interpolation conditions (4). Notice also that
the monotonic algorithm averages any data values that are
needed to achieve monotonicity. For example, y3 = y4 =
y5 = y6 = y7 = (

∑7
i=3(φi))/5 = 3.066, while the

corresponding Lagrange multipliers are calculated from the
corresponding first order conditions (see [5] for details). In
view of the preceding discussion, the first decreasing section
of the fit suggests that a better approximation is possible
by increasing k. Therefore, a second attempt at fitting these
data with k = 8 resulted in the approximation values and
the corresponding Lagrange multipliers that are presented in
columns 6 and 7, respectively, of Table I, giving two extra
turning points at x21 and x31 by enhancing the fit on the
interval [x17, x39], where the constant components provide a
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TABLE I
BEST FITS WITH k = 6 AND k = 8 MONOTONIC SECTIONS TO MEASUREMENTS OF FUNCTION (9)

 
  

Best Fit k=6 Best Fit k=8 
   

Best Fit k=6 Best Fit k=8 

 
xi φi yi λi yi λi  xi φi yi λi yi λi 

              
1 –2.50 2.066 2.066 

 
2.066 

 
51 –0.23 –0.710 –0.855 0.000 –0.855 0.000 

2 –2.45 2.839 2.839 0.000 2.839 0.000 52 –0.18 –0.999 –0.855 0.289 –0.855 0.289 
3 –2.41 3.339 3.066 0.000 3.066 0.000 53 –0.14 –0.678 –0.678 0.000 –0.678 0.000 
4 –2.36 2.852 3.066 0.546 3.066 0.546 54 –0.09 –0.186 –0.340 0.000 –0.340 0.000 
5 –2.32 3.333 3.066 0.118 3.066 0.118 55 –0.05 –0.494 –0.340 0.308 –0.340 0.308 
6 –2.27 2.765 3.066 0.651 3.066 0.651 56 0.00 –0.146 –0.146 0.000 –0.146 0.000 
7 –2.23 3.042 3.066 0.049 3.066 0.049 57 0.05 0.086 0.086 0.000 0.086 0.000 
8 –2.18 3.673 3.673 0.000 3.673 0.000 58 0.09 0.756 0.659 0.000 0.659 0.000 
9 –2.14 2.884 2.899 0.000 2.899 0.000 59 0.14 0.561 0.659 0.195 0.659 0.195 

10 –2.09 2.914 2.899 –0.030 2.899 –0.030 60 0.18 0.735 0.659 0.000 0.659 0.000 
11 –2.05 2.584 2.584 0.000 2.584 0.000 61 0.23 0.583 0.659 0.152 0.659 0.152 
12 –2.00 2.442 2.442 0.000 2.442 0.000 62 0.27 0.974 0.908 0.000 0.908 0.000 
13 –1.95 2.046 2.157 0.000 2.157 0.000 63 0.32 0.843 0.908 0.132 0.908 0.132 
14 –1.91 2.203 2.157 –0.221 2.157 –0.221 64 0.36 1.020 1.020 0.000 1.020 0.000 
15 –1.86 2.221 2.157 –0.128 2.157 –0.128 65 0.41 0.960 0.960 0.000 0.960 0.000 
16 –1.82 1.491 1.491 0.000 1.491 0.000 66 0.45 0.161 0.261 0.000 0.261 0.000 
17 –1.77 0.962 1.198 0.000 1.136 0.000 67 0.50 0.362 0.261 –0.200 0.261 –0.200 
18 –1.73 1.311 1.198 –0.472 1.136 –0.348 68 0.55 –0.195 –0.195 0.000 –0.195 0.000 
19 –1.68 0.886 1.198 –0.247 0.886 0.000 69 0.59 –0.848 –0.848 0.000 –0.848 0.000 
20 –1.64 0.728 1.198 –0.870 0.728 0.000 70 0.64 –1.157 –1.057 0.000 –1.057 0.000 
21 –1.59 0.227 1.198 –1.810 0.227 0.000 71 0.68 –1.025 –1.057 –0.200 –1.057 –0.200 
22 –1.55 0.236 1.198 –3.752 0.236 0.000 72 0.73 –0.989 –1.057 –0.136 –1.057 –0.136 
23 –1.50 0.700 1.198 –5.677 0.700 0.000 73 0.77 –1.127 –1.127 0.000 –1.127 0.000 
24 –1.45 1.114 1.198 –6.674 0.704 0.000 74 0.82 –1.753 –1.753 0.000 –1.753 0.000 
25 –1.41 0.369 1.198 –6.842 0.704 0.820 75 0.86 –1.855 –1.855 0.000 –1.855 0.000 
26 –1.36 0.805 1.198 –8.500 0.704 0.151 76 0.91 –1.951 –1.876 0.000 –1.876 0.000 
27 –1.32 0.527 1.198 –9.285 0.704 0.354 77 0.95 –1.801 –1.876 –0.151 –1.876 –0.151 
28 –1.27 1.297 1.198 –10.628 1.297 0.000 78 1.00 –2.169 –2.169 0.000 –2.169 0.000 
29 –1.23 1.576 1.198 –10.429 1.542 0.000 79 1.05 –1.574 –1.739 0.000 –1.739 0.000 
30 –1.18 1.507 1.198 –9.673 1.542 0.069 80 1.09 –1.703 –1.739 0.329 –1.739 0.329 
31 –1.14 1.924 1.198 –9.054 1.924 0.000 81 1.14 –1.939 –1.739 0.400 –1.739 0.400 
32 –1.09 1.680 1.198 –7.601 1.777 0.000 82 1.18 –1.185 –1.185 0.000 –1.185 0.000 
33 –1.05 1.874 1.198 –6.637 1.777 –0.194 83 1.23 –0.926 –1.064 0.000 –1.064 0.000 
34 –1.00 1.777 1.198 –5.284 1.777 0.000 84 1.27 –1.202 –1.064 0.276 –1.064 0.276 
35 –0.95 1.519 1.198 –4.127 1.693 0.000 85 1.32 –0.952 –0.952 0.000 –0.952 0.000 
36 –0.91 1.867 1.198 –3.484 1.693 –0.348 86 1.36 –0.899 –0.911 0.000 –0.911 0.000 
37 –0.86 1.627 1.198 –2.146 1.627 0.000 87 1.41 –0.922 –0.911 0.022 –0.911 0.022 
38 –0.82 1.514 1.198 –1.287 1.520 0.000 88 1.45 –0.594 –0.594 0.000 –0.594 0.000 
39 –0.77 1.525 1.198 –0.654 1.520 –0.011 89 1.50 –0.338 –0.338 0.000 –0.338 0.000 
40 –0.73 1.150 1.150 0.000 1.150 0.000 90 1.55 –0.376 –0.376 0.000 –0.376 0.000 
41 –0.68 0.967 0.967 0.000 0.967 0.000 91 1.59 –0.410 –0.410 0.000 –0.410 0.000 
42 –0.64 0.442 0.442 0.000 0.442 0.000 92 1.64 –0.727 –0.727 0.000 –0.727 0.000 
43 –0.59 –0.001 –0.001 0.000 –0.001 0.000 93 1.68 –1.166 –1.147 0.000 –1.147 0.000 
44 –0.55 –0.343 –0.168 0.000 –0.168 0.000 94 1.73 –1.129 –1.147 –0.037 –1.147 –0.037 
45 –0.50 –0.178 –0.168 –0.349 –0.168 –0.349 95 1.77 –1.578 –1.578 0.000 –1.578 0.000 
46 –0.45 0.016 –0.168 –0.369 –0.168 –0.369 96 1.82 –1.702 –1.698 0.000 –1.698 0.000 
47 –0.41 –0.359 –0.359 0.000 –0.359 0.000 97 1.86 –1.694 –1.698 –0.008 –1.698 –0.008 
48 –0.36 –0.949 –0.710 0.000 –0.710 0.000 98 1.91 –1.830 –1.830 0.000 –1.830 0.000 
49 –0.32 –0.470 –0.710 –0.479 –0.710 –0.479 99 1.95 –2.773 –2.773 0.000 –2.773 0.000 
50 –0.27 –1.035 –1.035 0.000 –1.035 0.000 100 2.00 –2.808 –2.808 0.000 –2.808 0.000 

              

     continued        
 

poor fit; all the other turning points remained unchanged.
An advantage of having a known underlying function is
that we can see whether the fit is more accurate than the
measurements and it is. Another feature of the smoothing
technique is shown at the rightmost monotonic section of
this fit, [x89, x100], where some data errors are too small to
be detected by the monotonic constraints. Thus, some data
remain unchanged, namely yi = φi, for i = 90, 91, 92, 98, 99
and 100. Further, the particular fit with k = 6 (see Fig. 1)
shows that L2WPMA achieves the piecewise monotonicity
property it sets out to achieve and, generally, any degree of

undulation in the data can be accommodated by choosing
a suitable k. Moreover, we repeated the experiment with
n = 200 data points, but we applied the method of [17],
which is a variant of L2WPMA that includes the trend test
of [13]. Now only the data φ were fed to the program and
the best fit with k = 8 monotonic sections was calculated
automatically. It is a remarkable result that accords with
human judgment. In Fig. 2 we display the data and the fit.
The approach of [17] seems promising to combat the data
trends, it has worked well in a number of examples and it
is being pursued by our research team at the University of
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Athens.
The second example is a fit to 640 data points obtained by

the 239th vertical scan line through the 640×640 gray-scale
noisy image in Fig. 3. The pixel intensities are displayed in
Fig. 4. The data vary considerably and although exhibit some
turning points, reader’s eye is not especially attracted. We
seek turning points that might reveal major monotonic trends.
The difficulty with these data is that there is no mathematical
function that could show the accuracy of any fit. We start by
noticing that the total number of local extrema of the data
is 126. We fed the data to the computer program of [17]
with the data trend test without any preliminary analysis and
the resultant fit gave automatically k = 70, thus providing
too many turning points. It is likely that the first attempt at
estimating suitable turning points of these data is not entirely
satisfactory, but this cannot be realized until the fit has been
calculated.

Fig. 3. A T2-Weighted Magnetic Resonance Imaging axial slice of the
pelvis.

Therefore we carried out some more runs with smaller
numbers of turning points, which gives more emphasis to
major monotonic trends. The data were fed to L2WPMA and
the best fit subject to the piecewise monotonicity constraints
with k = 6 was calculated immediately. Fig. 5 displays
the data and the fit. The computer program terminated
at an optimum with five turning points at the abscissae
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Fig. 4. Vertical scan line 239 of the image in Fig. 3. Pixel intensities are
denoted by (+).

x223, x322, x356, x389, x445 and x640 and sum of squares of
residuals equal to 3355 × 102. Indeed the fit to the data
is much smoother than are the data values themselves, but
we should not forget that the method has revealed the most
important k − 1 turning points. Thus, in case that the fit
might be considered unsatisfactory, we carried out a second
run with k = 8, which gave automatically two extra turning
points at x361 and x369 by enhancing the fit of Fig. 5 in the
interval of adjacent turning points [x356, x389], where the fit
seems rather poor. The fit is presented in Fig. 6 and the sum
of squares of residuals is reduced to 2292× 102. One more
run with k = 10, gave two extra turning points at x407 and
x427 by enhancing the fit of Fig. 6 in the interval of adjacent
turning points [x389, x445]. The fit is presented in Fig. 7 and
the sum of squares of residuals is reduced to 1510 × 102.
In Fig. 5 few noticeable peaks within the range are ignored.
The choices k = 8 or k = 10 may be satisfactory, in that the
associated fit may be an adequate approximation to the data
engineer’s best estimate of the truth, revealing turning points
and in-between trends that seem to have real significance.

In order not to be misled by the results in usual practices
with piecewise monotonic approximation, we mention some
ideas that failed to provide optimality. We saw in our
examples that all turning points of a best approximation with
k − 2 sections were turning points of a best approximation
with k sections. Also, the extra 2 turning points of the best fit
with k sections were found in a range of constant components
of the best fit with k−2 sections. Hence a best approximation
with 3 monotonic sections might be obtained by improving
the best monotonic approximation after reducing the search
for the turning points to ranges of constant components.
Nonetheless, the conjecture has been proved not to be true
[3]. Moreover, the extra 2 turning points were found to be
between adjacent turning points of the best approximation
with k − 2 sections. However, the turning points of the
best approximation with k − 2 sections need not be turning
points of a best approximation with k sections, because,
as was mentioned in Section II, the local maxima of best
approximation with k − 2 sections are separated (weakly)
by the local maxima of best approximation with k sections,
and similarly for the local minima. Furthermore, if among
the Lagrange multipliers there are a few whose magnitudes
are much larger than the rest, then simply they anticipate the
possibility that more monotonic sections may be needed for
obtaining an improved fit.

Piecewise monotonic approximation, in the absence of any
structure, requires at least O(m2) operations when k ≥ 3,
because it is necessary to take account of all possible values
of (8), for ` = tj−1, . . . , tj .

Piecewise monotonic approximation reveals the most im-
portant turning points (peaks), while interpolating the data
at these points. By increasing k, piecewise monotonic ap-
proximation has the freedom to make the sum of the squares
of the residuals smaller, while in practice it maintains the
most important turning points. This feature of piecewise
monotonic approximation is not shared with wavelet or spline
approximation, where it is difficult to represent the data at a
peak, because the presence of a peak causes the propagation
effect to introduce substantial perturbations (ripples) into
the tail of the approximation. Hence piecewise monotonic
approximation provides a considerable advantage over low-
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pass filtering or over the use of basis functions to represent
the data, which usually result in ringing and blurring artifacts
[12], [19], [11].
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Fig. 5. Best fit with k = 6 (solid line) to the signal of Fig. 4.
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Fig. 6. Best fit with k = 8 (solid line) to the signal of Fig. 4.
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Fig. 7. Best fit with k = 10 (solid line) to the signal of Fig. 4.

IV. CONCLUDING REMARKS

We have presented applications that show the effectiveness
of piecewise monotonic approximation to signal restorations.
Piecewise monotonic approximation as a data smoothing
approach can have many applications. Despite the large
number of local minima that can occur in this optimization
calculation, it gives a global solution in quadratic complexity
with respect to n, but in practice the complexity is by
far lower. The accompanying Fortran software is suitable
for calculations that involve several thousand data points
and they would be most useful for real time processing
applications. In view of the effort that was needed to develop

L2WPMA and certain variants of this package for automating
the calculation of k, it is expected that these packages will
be of value to many computer calculations.

Moreover, it would be very helpful to try to solve
particular signal processing problems, in order to receive
guidance from numerical results and from medical imaging
practices [16]. For example, in certain applications in MR
spectroscopy we often have good estimates of k [12] that
can be utilized by the method of [17]. In addition, one may
well combine certain features of our method with wavelets
(see, [11], [10]) or other parametric forms (see, for example,
splines [1], [7] or semiparametric techniques [20]) if there
exists an opportunity for improved practical analyses in
medical imaging and computed tomography.
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