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Abstract—We study the problem of analyzing and classifying
frontal view gait video data. In this study, we suppose that
frontal view gait data as a mixing of scale changing, human
movements and speed changing parameters. We estimate these
parameters using the statistical registration and modeling on
a video data. To demonstrate the effectiveness of our method,
we conducted experiment, assessing the proposed method for
frontal view human gait authentication. We apply K-nearest-
neighbor classifier, using the estimated parameters, to perform
the human gait authentication, and present results from an
experiment involving 120 subjects. As a result, our method
shows high recognition rate and low calculation cost.

Index Terms—Frontal view gait authentication, gait analysis,
human gait modeling, statistical registration.

I. INTRODUCTION

WE study the problem of analyzing and classifying
frontal view gait video data. A study on the hu-

man gait analysis is very important in the fields of the
health/sports management, medical and biometrics research.

Gait analysis is mainly based on motion capture system
and video data. The motion capture system can give the
precise measurements of trajectories of moving objects, but it
requires the laboratory environments and we cannot be used
this system in the field study. On the other hand, the video
camera is handy to observe the gait motion in the field study.

From the standpoint of health/medical research area. Gage
[1] proposed brain paralysis gait analysis using gait video
data. Kadaba et al. [2] discussed importance of lower limb in
the human gait using gait video data too. Many gait analysis
have recently analyzing using video analysis software (e.g.
Dartfish, Contemplas, Silicon Coach). For example, Borel et
al. [3] and Grunt et al. [4] proposed infantile paralysis gait
analysis using lateral view gait video data.

On the other hand, from the standpoint of statistics, Olshen
et al. [5] proposed the bootstrap estimation for confidence
intervals of the functional data with application to the gait
cycle data observed by the motion capture system.

In recent years, gait analysis is very important in the
biometrics research area too. From a practical perspective,
the method based on the video data is very important
authentication technique, where data does not require the
subject to help this system. For instance, face recognition
is one of the famous authentication techniques using video
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data. However, it needs strong learning. Gait authentication,
on the other hand, is a viable alternative (e.g. Soriano et al.
[6]; Barnich & Droogenbroeck [7]).

Soriano et al. [6] proposed the gait authentication method
based on the data matching techniques using the dynamic
time warping of human silhouettes. Barnich & Droogen-
broeck [7] proposed histogram based gait authentication
method and they apply to the frontal view gait authentication.

However, most studies have not focused on frontal view
gait analysis, because such data has many restrictions on
analysis based on the filming conditions. Frontal view gait
authentication case is certainly exists. For instance, in corri-
dor like structure, it is difficult to apply the lateral view gait
authentication [8].

The video data filmed from the frontal view is difficult to
analyze, because the subject getting close in to the camera,
and data includes the scale-changing parameters [7], [8]. To
cope with this, Okusa et al. [9] and Okusa & Kamakura [10]
proposed a registration for scales of moving object using the
method of nonlinear least squares, but Okusa et al. [9] and
Okusa & Kamakura [10] did not focus on the human leg
swing.

Okusa & Kamakura [11], [12] focus on the gait analysis
using arm and leg swing model with estimated parame-
ters and application to the human gait authentication and
normal/abnormal gait analysis. However, their models have
many of parameters, and it raise calculation cost and insta-
bility of parameter estimation.

In this study, we redesign the frontal view human gait
model for the gait authentication. We suppose that frontal
view gait data as a mixing of scale changing, human
movements and speed changing parameter. We validate the
effectiveness of each parameters, and modify the previous
model for the gait authentication.

To demonstrate the effectiveness of our method, we
conducted experiment, assessing the proposed method for
frontal view human gait authentication. We apply K-nearest-
neighbor classifier, using the estimated parameters, to per-
form the human gait authentication, and present results
from an experiment involving 120 subjects. As a result, our
method shows high recognition rate and low calculation cost.

II. FRONTAL VIEW GAIT DATA

In this section, we describe an overview of frontal view
gait data. Many of gait analysis using lateral view gait data,
because lateral view gait is easy to detect the human gait
features. However, in a corridor like structure, the subject is
approaching a camera. Such case is difficult observe lateral
view gait.
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In a lateral view gait, at least two cycles or four steps are
needed. For more robust estimation of the period of walking,
about 8m is recommended. To capture this movement, the
camera distance required is about 9m. Practically, having
such a wide space is difficult. On the other hand, frontal
view gait video is easy to observe 8m (or more) gait steps
[8].

Figure 1 is an example of frontal view gait data recorded
by Figure 2 situation. Figure 1 illustrates difficulty of frontal
view gait analysis. Even if subject do the same motion
with the same timing, frontal view gait data includes scale
changing components. Figure 3 shows subject’s width time-
series behavior of frontal view gait data. This figure illus-
trates frontal view gait data contains many of time-series
components.

Fig. 1. Frontal view gait data

Fig. 2. Filming situation of frontal view gait data
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Fig. 3. Time-series behavior of frontal view subject width

III. MODELING OF FRONTAL VIEW GAIT DATA

A. Preprocessing

The raw video data is difficult to observe subject width
and height time-series behavior, because data contains back-
ground. We separate subject from background using inter-
frame subtraction method (Eq. 1).

∆(T ) = |I(T+1) − I(T )|, T = 1, ..., (n− 1),

∆(T )(p, q) =

{
1 (∆(T )(p, q) > 0)
0 (Otherwise).

(1)

Here, ∆(T ) is an inter-frame subtraction image, I(T ) is
grey scaled video data image at frame T , (p, q) is the pixel
coordinate.

a) Subject Width/Height Calculation: Inter-frame sub-
traction method can separate the subject and background.
However, it is difficult to measure the time-series behavior
of the subject width and height. In this section, we describe
the subject width and height calculation method using inter-
frame subtraction data.

Let us suppose that inter-frame subtraction image is binary
matrix. We can measure the subject height and width by
integration calculation of row and column at each frame. In
this study, we focus on the human gait arm and leg swing
of the frontal view gait. We assume that subject width and
height time-series behavior consist of the arm and leg swing
behavior.

B. Relationship between camera and subject

Figure 4 shows a relationship between camera and sub-
ject. From figure 4, Width and height modeling has same
structure. In this section, we describe the subject’s width
modeling. We can assume simple camera structure. We
consider the virtual screen exists between observation point
and subject, and we define xi as subject width on the virtual
screen at i-th frame (i = 1, ..., n).
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Fig. 4. Relationship between camera and subject

Here we define zi, zj as distance between observation
point and subject at i-th, j-th frame, zs as distance between
observation point and virtual screen, θxi1 , θxi2 as subject
angle of view from observation point at i-th frame, d as
distance between observation point and 1st frame, vi as
subject speed at i-th frame. Okusa et al. [9] defined the
subject length L was constant. We assume that L has the
time-series behavior and we define Li is the subject length
at i-th frame.
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xi at i-th frame depends on θxi1 , θxi2 as shown in Figure
4.

xi = zs(tan θxi1 + tan θxi2). (2)

Similarly, the subject length at i-th frame is

Lxi = zi(tan θxi1 + tan θxi2). (3)

From Eq.(2), Eq.(3), ratio between xn and xi is

xn

xi
=
Lxnzi

Lxizn
(4)

Frame interval is equally-spaced (15 fps). Okusa et al. [9]
assumed the average speed is constant. We can assume that
average speed from i-th frame is (n − i) = (zi − zn)/v̄ ,
therefore zi is zi = zn + v̄(n− i). We substitute zi to Eq.(4)

xi =
Mxiγ

γ + (n− i)
xn + εi, (5)

where γ is zn/v̄, Mxi is Lxi/Lxn , εi is noise. From Eq.(5),
predicted value x̂

(n)
i is registration from i-th frame’s scale

to n-th frame’s scale

x̂
(n)
i =

γ + (n− i)
Mxiγ

xi. (6)

Similarly, we can define subject height as

yi =
Myiγ

γ + (n− i)
yn + εi, (7)

where Myi is Lyi/Lyn .
Next, we discuss the scale changing, human movement,

and speed changing parameter estimation model.

C. Scale changing parameter estimation

From Eq.(5), scale parameter is γ. Solve Eq.(5) for γ
shows

γ =
xi(n− i)
xi −Mxixn

. (8)

Here γ is the ungaugeable parameter, and we estimate it
using nonlinear least squares method

S(γ,Mxi) =
n∑

i=1

{
xi −

Mxiγ

γ + (n− i)
xn

}2

. (9)

D. Human movement parameter estimation

Mxi and Myi are movement model of the subject. If the
subject is the rigid body, movement model Mxi and Myi are
constant. Meanwhile, human gait is not a constant. Mxi and
Myi needs the movement model because the subject body is
moving wildly.

b) Human gait modeling: arm swing: Collins et al. [13]
has reported that arm swing is an very important role in the
gait motion. We consider the human gait model based on
Collins et al. [13] model (see Figure 5).

Frontal View Lateral View Top View

Fig. 5. Gait model
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Fig. 6. Arm swing model

It seems reasonable to think that arm swing is single
pendulum. Collins et al. [13] model assumed that arm swing
is move to anteroposterior direction. Our model, on the
other hand, can assume that arm swing move to an oblique
direction (Figure 6).

Figure 6’s model has an ungaugeable area. Our method’s
width/height calculation is based on integration calculation
of row and column at each frame. If the arm move to inside
the body area, arm length is ungaugeable. Arm swing model
is

xi =

(
W (P1,P2,Q1,Q2,g1,g2,f,i)
W (P1,P2,Q1,Q2,g1,g2,f,n) + s

)
γ

γ + (n− i)
xn + εi

W (P1, P2, Q1, Q2, g1, g2, f, i) =
P1τ(fi+Q1, g1) + P2τ(fi+Q2, g2)

τ(θ, g) =

{
sin(θ) + g (sin(θ) + g > 0)
0 (Otherwise)

(10)

where P1 = a1 cos(ψ) and P2 = a2 cos(ψ). P1τ(fi +
Q1, g1) and P2τ(fi + Q2, g2) are right and left arm model
respectively. From Eq.(10), we estimate each gait parameter
using nonlinear least squares method.

S(γ, P1, P2, Q1, Q2, g1, g2, f, s) =
n∑

i=1

{
xi −

(
W (P1,P2,Q1,Q2,g1,g2,f,i)
W (P1,P2,Q1,Q2,g1,g2,f,n) + s

)
γ

γ + (n− i)
xn

}2

(11)

Here, f is gait cycle frequency, s is adjustment parameter,
P1, P2 are arm swing amplitude parameters, Q1, Q2 are arm
phase parameters, and g1, g2 are ungaugeable area parame-
ters.
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c) Human gait modeling: leg swing: Leg swing mod-
eling is simpler than arm swing model because leg swing
model does not have a ungaugeable area. Okusa et al. [9] and
Okusa & Kamakura [10] does not consider the leg swing. It
seems reasonable to think like arm swing that leg swing is
single pendulum (Figure 7).

b cos(ω)

ω

b

Fig. 7. Leg swing model

Leg swing model is

yi =

(
H(b1,Q3,f,i)
H(b1,Q3,f,n) + s

)
γ

γ + (n− i)
yn + εi

H(b1, Q3, f, i) = b1 cos(fi+Q3). (12)

Here b1 is leg swing amplitude parameter, and Q3 is leg
phase parameter.

E. Speed changing parameter estimation
Frontal view video data is difficult to see the subject’s

speed. If our gait model is correct, observed value xi and yi

is same as the fitted value of gait model at point `i. Previous
model’s `i assumes equally spaced (`i = i = 1, ..., n). We
estimate `xi

and `yi
value for minimize the observed value

and model fitted value at `i. We can define estimated value
`xi and `yi as a virtual space coordinate at i-th frame (Figure
8).

Eq.5, Eq.7 with the coordinate estimation shows

xi =
Mxiγ

γ + (n− `xi)
xn + εi

yi =
Myiγ

γ + (n− `yi
)
yn + εi. (13)

Here, `xi , ..., `xn and `yi , ..., `yn are virtual space coor-
dinate parameters of width and height respectively. From
Eq.13, arm swing and leg swing model with the coordinate
estimation shows Eq.14, Eq.15.

xi =

(
W (P1,P2,Q1,Q2,g1,g2,f,`xi

)

W (P1,P2,Q1,Q2,g1,g2,f,`xn ) + s
)
γ

γ + (n− `xi)
xn + εi

W (P1, P2, Q1, Q2, g1, g2, f, `xi
) =

P1τ(f`xi +Q1, g1) + P2τ(f`xi +Q2, g2)

τ(θ, g) =

{
sin(θ) + g (sin(θ) + g > 0)
0 (Otherwise).

(14)

yi =

(
H(b1,Q3,f,`yi

)

H(b1,Q3,f,`yn ) + s
)
γ

γ + (n− `yi)
yn + εi

H(b1, Q3, f, `yi) = b1 cos(f`yi +Q3). (15)

Fig. 8. Virtual space coordinate estimation

We suppose that virtual space coordinate of subject is
ˆ̀
i = (ˆ̀xi + ˆ̀

yi)/2. Then, we can assume that subjects speed
is 1st order difference of ˆ̀

i, and acceleration is 2nd order
difference of ˆ̀

i.

IV. EFFECTIVENESS OF EACH PARAMETERS

In this section, we discuss the effectiveness of each pa-
rameters. From the standpoint of security, we think authen-
tication method needs high accuracy, low calculation cost.

Eq.14 and Eq.15 models has many of parameters, we need
to estimate n + 11 parameters. It raise calculation cost and
instability of parameter estimation. Okusa & Kamakura [11]
discussed parameter estimation algorithm and its application
to the human authentication. However, Okusa & Kamakura
[11] algorithm can not simultaneous processing for multiple
subjects.

To cope with this, we confirm the most affected parameters
for authentication. We choose randomly selected 30 subject
from 120 subject and calculate the interclass stability index
C for each estimated parameters. Parameter k’s interclass
stability Ck calculation is

Ck =
∑

p6=q
|Θk,p − Θk,q|. (16)

This index means most minimum interclass stability index
parameter is most effective parameters for gait authentica-
tion. Where, Θ is the set of the estimated parameters from
Eq.14 and Eq.15 models, and p, q are learning and test
data’s subject ID, respectively. Note, that length of the virtual
space coordinate parameters ˆ̀

i are not equal at each subjects,
because it depends on moving distance and speed. Therefore,
we set ¯̀̂= 1

n

∑ ˆ̀
i as a representative value of ˆ̀

i.
We ascending sorting Ck and we choose the smaller Ck

value parameters until over 90% authentication rate. From
this process, finally we can choose parameters P, b1, γ, f .

A. Modified gait model

From the validation results of effectiveness of each param-
eters, most effective parameters for the gait authentication are
P, b1, γ, f . Accordingly, we modify the Okusa & Kamakura
[11] model for estimate these parameters.
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TABLE I
RSS, AIC, CAIC, CALCULATION TIME VALUE OF WIDTH AND HEIGHT DATA

Subject ID
Model Method A B C D E F G H I J

RSS 170.46 67.02 122.28 382.93 193.88 302.20 125.73 55.34 1.17 0.68
Okusa & Kamakura [11] AIC 626.95 558.86 581.82 676.03 663.96 657.80 577.59 510.50 236.67 190.94
model cAIC -4.48 -80.53 -25.72 60.52 0.68 42.29 -22.00 -81.13 -410.69 -440.49

Calc. Time 7.766 6.830 8.231 8.007 6.092 7.090 6.929 8.426 7.462 7.581
RSS 354.50 192.40 229.01 859.82 619.89 580.83 134.61 175.97 1.08 2.83

Proposed AIC 354.79 309.24 311.51 416.31 414.43 386.11 268.71 286.10 -107.87 -26.86
model cAIC 355.33 309.77 312.07 416.87 414.94 386.66 269.28 286.68 -107.35 -26.32

Calc. Time 0.986 0.669 0.793 0.782 1.093 0.865 0.626 0.912 0.535 0.814
Number of frames: 79 80 76 77 83 77 75 74 81 79

Calc. Time: Calculation Time [sec]

Here modified width model is

xi =
(

W (P,Q1,f,i)
W (P,Q1,f,n)+s1

)
γ

γ+(n−i) xn + εi

W (P,Q1, f, i) = P sin(fi+Q1). (17)

Where P is amplitude of arm swing, Q1 is phase of human
gait, f is gait cycle frequency and s is adjustment parameter.

Similarly, modified height model is

yi =
(

H(b1,Q1,f,i)
H(b1,Q1,f,n)+s2

)
γ

γ+(n−i) yn + εi

H(b1, Q1, f) = b1 sin(2fi+Q1). (18)

Differences points between Okusa & Kamakura [11]
model and our modified model are two points. Firstly, we
reduce the model parameters from the validation results of
effectiveness of each parameters. Secondly, we standardize
the parameters between leg swing and arm swing model.
These measures have efficacy for calculation cost and pa-
rameter estimation stability. Our modified models are easy
and stable to estimate P, b1, γ, f parameters.

In next session, we validate the effectiveness of our model.

V. EXPERIMENTS AND RESULTS

A. Gait parameter estimation

To validate the effectiveness of our modified model, we
compare Eq.17 and Eq.18 model with Eq.14 and Eq.15
model by Residual Sum of Squares (RSS), Akaike Infor-
mation Criterion (AIC) [14] and Consistent Akaike’s Infor-
mation Criterion (cAIC) [15] value. We took movie of 10
subjects walking video data from frontal view (10 steps,
Male, average height: 176.4cm, sd: 3.07cm) and apply to
our proposed method.

Figure 9 is plot of the subject width(pixel) time-series
behavior. Here, continuous line represent fitted value of
Eq.18. From Figure 9, proposed model is good fitting for
frontal view gait data.

Table I is RSS, AIC, cAIC, Calculation time value of
previous model (Eq.14 and Eq.15 model) and proposed
model (Eq.17 and Eq.18 model). In Table I, most minimal
RSS and cAIC models are previous model (Eq.14, Eq.15
model). Meanwhile, most minimal AIC and calculation time
model are proposed model (Eq.17, Eq.18 model).
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Fig. 9. Fitted Value of subject’s width

In this research, we focus on the calculation cost and
authentication accuracy. From Table I, our proposed models
calculation cost is about 90% faster than previous model.
From the standpoint of calculation cost, we think our pro-
posed model is very high performance.

Naturally, low calculation cost not means high authentica-
tion accuracy. In next section, we validate the authentication
accuracy between previous model with proposed model.

B. Gait authentication

In this section, we discuss the human gait authentication.
In this paper, we apply K-NN classifier (K=1), using the all
estimated parameters, to perform the gait authentication, and
present results from an experiment involving 120 subjects
(10 steps, Male: 96 (average height: 173.24cm, sd: 5.64cm),
Female: 24 (average height:156.25cm, sd: 3.96cm)). To eval-
uate our estimated parameters, we apply these parameters to
leave-one-out cross-validation test.

We compared proposed method with Okusa & Kamakura
[11] method. Okusa & Kamakura [11] method have high
performance than Soriano et al. [6] method and Barnich &
Droogenbroeck [7] method.

Figure 10 is plot of the gait cycle vs. authentication rate.
“Gait cycle” means the gait steps used in the authentication
(one gait cycle is two steps). Here dashed line is Okusa &
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Kamakura [11] method’s authentication rate, continuous line
is proposed method’s authentication rate. Figure 10 shows
our method has the better performance compared to Okusa
& Kamakura [11].
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Fig. 10. Gait cycle vs. authentication rate

Table II is authentication rate (10 steps case) and average
calculation time of proposed method and Okusa & Kamakura
[11] method. In table II, our method shows high performance
and low calculation cost. It is probable that caused by
proposed method choose most effective parameters and reject
the negative effective parameters.

TABLE II
GAIT AUTHENTICATION RATE(%) AND

AVERAGE CALCULATION TIME (SEC)

Authentication rate(%) Calc. time
Proposed method 86.3 0.93

Okusa & Kamakura [11] 85.3 9.42

VI. CONCLUSION

In this article, we proposed the human gait model for
the frontal view human gait authentication. Our model is
able to estimate stably human gait feature quantity by low
calculation cost. Our model is 90% faster than our previous
model. Moreover, estimated parameters have high accuracy
for the human gait authentication than previous method.

In next phase, we need to compare our method with more
another gait authentication method. Additionally, we need
to implement the gait authentication system based on the
proposed method and demonstrate it.
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