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Abstract—The ordinary least squares (OLS) procedure is 

inefficient when the underlying assumption of constant error 
variances (homoscedasticity) is not met. As an alternative, we 
often used weighted least squares (WLS) procedure which 
requires a known form of the heteroscedastic errors structures, 
to estimate the regression parameters when heteroscedasticity 
occurs in the data. It is now evident that the WLS estimator is 
easily affected by outliers. To remedy the problem of 
heteroscedasticity and outliers simultaneously, we proposed a 
new method that we call two-step robust weighted least squares 
(TSRWLS) where prior information on the structure of the 
heteroscedastic errors is not required. The performance of the 
newly proposed estimator is investigated extensively by real 
data sets and Monte Carlo simulations. 
 
 

Index Terms— Heteroscedasticity, Monte Carlo simulation, 
Outliers, Two-step robust weighted least squares, Weighted 
least squares. 
 

I. INTRODUCTION 

HE ordinary least squares (OLS) method is widely used 
to estimate the parameters of the  linear regression model. 

Under the usual assumptions, the least-squares estimators 
possess many desirable properties. Among the assumptions, 
the assumption of constancy of error variances or 
homoskedasticity is difficult to achieve which causes the 
heterogeneity of error variances or heteroskedasticity. The 
main problem with the violation of homoskedaticity 
assumption is that the usual covariance matrix estimator of the 
OLS becomes biased and inconsistent. 
 There are abundant literatures which deal with 
heteroscedasticity problems [1-4]. The weighted least 
squares (WLS) is the most popular method to correct the 
problem of heteroscedasticity. Unfortunately, in practice, 
the form of heteroscedasticity is unknown, which makes the 
weighting approach impractical. When heteroscedasticity is 
caused by an incorrect functional form, it can be corrected 
by making variance-stabilizing transformations of the 
dependent variables [5-6] or by transforming both sides [7]. 
However, the transformation procedure might be 
complicated when dealing with more than one explanatory 
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variable. Montgomery et al. [2], Kutner et al. [1], and others 
have tried to find the appropriate weight to solve the 
heteroscedastic problem when the form of heteroscedasticity 
is unknown.  Chatterjee and Hadi [8] proposed an estimator 
which is weight based, but these weights depend on the 
known structure of the heteroscedastic data. Montgomery et 
al. [2] and Kutner et al. [1] proposed estimators which do 
not depend on the known structure of the heteroscedastic 
data. Hereafter we will refer to the Kutner et al. [1] 
estimator as KNN (Kutner, Nachtsheim and Neter) 
estimator. Nonetheless, the shortcoming of the Montgomery 
et al. [2] estimator is that it cannot be applied to more than 
one regressor situation. The advantage of the KNN 
estimator is that it can be applied to more than one variable 
and it does not depend on the known form of 
heteroscedasticity.  
 It is now evident that outliers can make the entire 
inferential procedure meaningless [7,9,10]. The  KNN 
method can only remedy the problem of heteroscedasticity 
but not both problems of heteroscedasticity and outliers. 
Habshah et al. [11] has proposed  robust estimation 
procedure to rectify both problems simultaneously, but their 
procedure can be applied to only one regressor. Not much 
work in the literature that devoted to estimation of the 
multiple regression parameters in the presence of both 
heteroscedasticity and outliers when the structure of 
heteroscedasticity is unknown.  This has motivated us to 
propose a two-step robust weighted least squares (TSRWLS) 
estimator which is outlier resistant and at the same time can 
be applied to more than one regressor when the form of the 
heteroscedasticity is not known.    
 

II. TWO-STEP ROBUST WEIGHTED LEAST SQUARES 

(TSRWLS) 

Consider the general multiple linear regression model: 

                                                y X                         (1) 

where  1 2, , ,
T

ny y y y   is an 1n vector of response 

variable,  1 2, , ,
T

nX x x x   is an n p fixed design matrix 

including the intercept,   is an 1p  vector of unknown linear 

parameters, and   is an 1n vectors of errors. The 
traditionally used OLS estimator of   is 

1ˆ ( )T TX X X y  . It has mean   (i.e., it is unbiased) and 

covariance matrix  
                                           

1 1ˆcov( ) ( ) ( )T T TX X X X X X                                        (2) 
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where ( )TE    , a positive definite matrix. Under 

homoscedasticity, we have 2
nI  , and it follows that 

the 2 1ˆcov( ) ( )TX X   , which can be estimated by 
2 1ˆ ( )TX X  , where 2

1
ˆ ˆ ˆ ˆ ˆˆ / ( ), ( ,..., )T

nn p        being 

the n- vector of OLS residuals.  
     Under heteroscedasticity, that is, 2Z  , where Z is a 
diagonal matrix, equation (2) becomes                                            
 

2 1 1ˆ( ) ( ) ( )T T TV X X X ZX X X                                      (3) 

 
  Define 1W Z  , where W is a diagonal matrix with 
diagonal elements or weights 1 2, ,..., nw w w . It can be easily 

proved that the weighted least squares estimator is 
1ˆ ( )T T

WLS X WX X Wy   and 2 1ˆcov( ) ( )T
WLS WLS X WX   . 

ˆcov( )WLS also can be estimated by 2 1ˆ ( )T
WLS X WX  where 

2 2ˆˆ ( )WLS i iw n p   . It is not difficult to compute the 

weights of the W matrix, if the heteroscedastic error 
structure of the regression model is known. However, it is 
believed that the determination of weight is much affected 
by outliers and if not properly addressed, they will definitely 
affect the parameter estimation and other aspects of a 
weighted least squares analysis.  
     In this paper, our initial goal is to find an appropriate 
weight matrix W that should perform well in the presence of 
heteroscedasticity and outliers in which the heteroscedastic 
error structure is unknown.  To find the robust weight 
matrix W, we propose a two-step robust weighted least 
squares (TSRWLS) estimator by adapting Kutner et al [1] 
and Habshah et al. [11] procedure. We use the LTS 
estimator, instead of the OLS in the KNN algorithm to get the 
initial robust weights. The TSRWLS consists of the 
following two steps. In step 1 we form the initial weight and 
in step 2 we obtain the final weight. 

 
Step1:  

(i) Find the fitted values ˆ
iy  and the residuals î  

from the regression model in equation (1), by 
using the least trimmed of squares (LTS) 
method. 

(ii) Regress the absolute residuals, denoted as is  

where ˆ| |i is  , on ˆiy  also by using the LTS 

method. 
(iii) Find the fitted values îs  from step 1(ii). 

(iv) The square of the inverse fitted values would 
form the initial robust weights, i.e., we obtain 

2
1 ˆ1 ( )i iw s . 

Step2:  
The robust weighting function such as the Huber function 
[12], the Bisquare function [13] and the Hampel function 
[14] can be used to obtain the final weight. However, in this 
study, we will use the Huber’s [12] weights function which 
is defined as 
                                                              

2

1 | | 1.345

1.345
| | 1.345

| |

i

i
i

i

w







  


 

The constant 1.345 is called the tuning constant and i  is 

the i-th standardized residuals of the LTS obtained from 
step 1(i). We multiply the weight 1iw  with the weight 2iw  to 

get the final weight iw . Finally we perform a WLS 

regression using the final weights iw . The regression 

coefficients obtained from this WLS are the desired estimate 
of the heteroscedastic multiple regression model in the 
presence of outliers.  

 

III. EXAMPLES 

In this section, we consider a real data to evaluate the 
performance of the proposed TSRWLS method. 
 
Education Expenditure Data 
 
This data is taken from Chatterjee and Hadi [8] which 
consider the per capita income on education projected for 
1975 as the response variable (Y) while the three 
explanatory variables are 1X , the per capita income in 

1973; 2X , the number of residents per thousand under 18 

years of age in 1974, and 3X , the number of residents per 

thousand living in urban areas in 1970 for all 30 states in 
USA. According to geographical regions based on the pre-
assumption, the states are grouped in a sense that there 
exists a regional homogeneity. The four geographic regions 
(i) Northeast, (ii) North centre, (iii) South, and (iv) West. 
The LTS estimator detected that the observation 49 [Alaska 
(AK)] is an outlier. The residuals vs. fitted values of OLS 
(Standardized), KNN and TSRWLS are presented in Fig.1. 
Fig.’s 1(a)-1(c) display the residuals-fitted plots without 
considering Alaska. If the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig.1. The OLS, KNN and TSRWLS fitted values vs. 
residuals plots without AK, (a)-(c); with AK, (d)- (f) 
 
variances of the error terms are constant then one can expect 
that the residuals are randomly distributed around zero 
residual, without showing any systematic pattern. Fig.1 (a) 
clearly shows that the OLS fit is inappropriate here, as there 
is a clear indication of heterogeneous error variances. 
However, Fig.1(b) and Fig.1(c) suggest that the KNN and 
TSRWLS fit are appropriate for this ‘clean’ data (without 
AK).  We purposely include the observation Alaska to see 
the effect of outliers and the resulting residuals and fitted 
values are plotted in Fig.’s 1(d)-1(f). We see that OLS 
residuals are affected in the presence of outliers, but the 
effect of AK observation is not substantial on KNN and 
TSRWLS estimators.  
 
Modified Education Expenditure Data  
 
We then deliberately change four data points to generate big 
outliers to investigate the effect of multiple outliers. Our 
changed data points are cases 46, 47, 48 and 50  by taking 
the value from outside the well known 3- sigma normal 
distance in Y direction. We replace the data points of Y for 
observations 46, 47, 48 and 50 by .| |conty  where .conty  are 

generated as 9 yy s , with  y  and ys  as the respective  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The OLS, KNN and TSRWLS fitted values vs. 
residuals plots with 10% outliers, (a)-(c); without 10% 
outliers, (d)-(f).  
 
 
mean and standard deviation of Y. With this modified data, 
now we have five outliers (since this data already contained 
one outlier, i.e., Alaska). When the LTS is employed to the 
data, all 5 outliers are identified. 

Fig.’s 2(a)-2(f) present the plots of the residuals against 
the fitted values of the OLS, KNN and TSRWLS for the 
modified data.  It is observed from Fig.’s 2(a) and 2(b) that  
the patterns of residuals are completely destroyed in the 
presence of outliers. That is, the OLS and KNN are greatly 
affected by outliers and so they are not good estimators for 
the remedy of the heteroscedastic problem when outliers are 
present. On the other hand, the TSRWLS in Fig. 2(c) shows 
the scatter plot of the residuals for the ‘good’ data  except 
the data points which are outliers. Like as Fig.1, the 
residual-fitted plots without the 10% outliers for the OLS, 
KNN and the TSRWLS are shown in Fig.’s 2(d)-2(f). Fig. 
2(d) signifies that the OLS cannot remedy the problem of 
heteroscedasticity but the KNN and the proposed TSRWLS 
are successful in this regard. From Fig’s 2(a)-2(f), it suggest 
that the KNN is good in the absence of outliers whereas our 
proposed TSRWLS is good in the presence or absence of 
outliers.   
    Since graphical displays are always very subjective, we 
would like to present some numerical summaries of the 
examples considered above. Table 1 displays the summary 
statistics such as estimates of the parameters and their 
standard errors when there are no outliers, with only one 
outlier (AK), and with 5 outliers. 

 
TABLE 1 

 REGRESSION ESTIMATES OF THE EDUCATION EXPENDITURE DATA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 

 

(a) (b) 

(c) (d) 

(e) (f) 

  
0̂  1̂  2̂  3̂  

Without 
outliers 

 
OLS 

 
-277.5773 

 
0.0483 

 
0.8869 

 
0.0668 

KNN -334.4223 0.0550 0.9809 0.0599 

TSRWLS -283.2395 0.0508 0.8827 0.0573 
 

With 
AK 
outlier 

OLS -556.5680 0.0724 1.5521 -0.0043 

KNN -423.7212 0.0620 1.1782 0.0519 

TSRWLS -365.4785 0.0543 1.0779 0.0633 
 

With 
multiple 
Outliers 

OLS -452.0702   0.0821     0.8200    0.1936    

KNN -536.6901   0.1219     1.0639    -
0.0983    

TSRWLS -391.5358   0.0605     1.0815    0.0626    

 
Standard Errors of Estimators 

 
Without 
outliers 

OLS 132.4229 0.0121 0.3311 0.0493 

KNN 108.2248 0.0111 0.2642 0.0419 

TSRWLS 105.9811 0.0106 0.2732 0.0422 
 

With 
AK 
outlier 

OLS  123.1953  0.0116  0.3147   .0514 

KNN 96.8830 0.0107 0.2313 0.0405 

TSRWLS 102.6924 0.0105 0.2486 0.0402 
 

With 
multiple 
Outliers 

OLS 464.4632     0.0437     1.1864     0.1938     

KNN 182.0470  0.0204     0.4591     0.0397    

TSRWLS 161.8082     0.0170     0.3932     0.0630     
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In the absence of outliers, all estimators perform equally in 
terms of parameter estimates and their standard errors and 
the resulting values are relatively close. But things change 
dramatically when outliers are present in the data. All 
estimators except the TSRWLS are strongly affected by 
outlier(s). We observe that the OLS and the KNN estimators 
not only have more bias in comparison to the TSRWLS, but 

also the sign of  3
ˆ

OLS  and 3
ˆ

KNN  have been changed in 

some occasions. By looking at the results of standard errors 
it is clear that both the OLS and the KNN estimators break 
down easily even in the presence of a single outlier. They 
produce much higher standard errors as compared with the 
TSRWLS estimator and things deteriorate when multiple 
outliers are present in the data.   It can be concluded from 
Table 1 that the proposed TSRWLS is the best overall 
estimator as it possesses less bias and standard errors as 
compared to other estimators in the presence of 
heteroscedasticity and outliers.   
 

IV. SIMULATIONS 

In this section, we report a Monte Carlo simulation study 
which is designed to compare the performance of the 
proposed TSRWLS estimator with the OLS, KNN and five 
versions of HCCM estimators. We re-use a design of 
Cribari-Neto [15]. In this simulation study the ‘good’ 
observations are generated according to linear regression 
model:   
        

0 1 1 2 2i i i i iy x x        ,     i=1,2,…,n.                      (4) 
 

where ~ (0,1)i N  and ( ) 0i jE i j     . To generate a 

heteroscedastic regression model, we consider 
2 2 2

1 2exp( )i i iax ax   with 2 1  and a is an arbitrary 

constant. The covariate values are selected as random draws 
from the U(0,1) distribution. The level of heteroscedasticity 
is measured as 2 2max( ) / min( )i i   , i = 1,2,…,n. For 

each sample sizes we set a =.4 and a =.8, which yield   2 
and   4, respectively. The values of the regression 
parameters used in the data generation scheme are 0 = 1 = 

3 = 1. Then we generate the contaminated model. At each 

step, one ‘good’ observation is substituted with an outlier. 
We focus on the situation where the errors are contaminated 
normal distribution. To generate a certain percentages of 
outliers, we use the regression model 
 

0 1 1 2 2 ( .)i i i i i conty x x        , i = 1,2, …,n.                 (5) 
 

where ( .) ~ (0,1) (0,10)i cont N Cauchy  . The percentages of 

outliers can be varied. Since Cauchy is a longer tailed 
distribution, we are convinced that the contaminated normal 
errors would produce outliers. The values of the regression 

estimates 0 1
ˆ ˆ,   and 2̂  for the OLS, KNN, and TSRWLS 

methods are obtained when certain percentages of ‘good’ 
observations are replaced by outliers and these results are 
presented in Table 2.  
 
It is observed that all these three estimators are fairly close 
to 

 
TABLE 2 

THE VALUES OF THE 0 1
ˆ ˆ,  AND 2̂ FOR N=100 

   =2 

Coeff Outliers OLS KNN TSRWLS 
True 
Value 

beta0 
 

0% 0.51381 0.75832 0.78255 1 

10% 20.6403 7.95988 1.05986 1 

20% 6.23238 8.27183 0.74946 1 

30% 5.59469 7.07112 0.91234 1 

40% 2.00477 -3.0608 0.77635 1 

50% 74.5531 30.3342 -12.085 1 
      

beta1 
 

0% 1.23603 1.10946 1.16784 1 

10% -4.4502 -13.545 0.95281 1 

20% -13.74 -7.8405 1.13331 1 

30% -16.945 -16.305 0.94242 1 

40% -3.4652 16.6149 1.67675 1 

50% -76.907 -59.5 18.0249 1 
      

beta2 0% 1.78597 1.43032 1.20845 1 

10% -6.1737 -12.353 1.16009 1 

20% 11.4026 -0.3606 0.76126 1 

30% 6.6363 5.35328 1.62855 1 

40% -0.8861 -10.214 1.12264 1 

50% -34.105 -29.176 6.23046 1 

                  =4 
Beta0 0% 0.59506 1.05948 0.92545 1 

 10% 14.0779 1.81036 0.5168 1 

 20% 6.398 8.44143 0.98938 1 

 30% 3.40944 -3.8921 0.42918 1 

 40% -5.68 -3.9599 0.29887 1 

 50% -35.518 -34.901 -8.1603 1 

 
     

beta1 0% 1.56987 0.78473 1.00136 1 

 10% -14.15 4.42855 0.95224 1 

 20% -0.8509 -6.6388 1.43201 1 

 30% -22.439 -23.168 1.25833 1 

 40% 4.403 5.18559 1.9236 1 

 50% 57.5132 45.9695 10.278 1 
      

beta2 0% 1.53569 1.39424 1.28584 1 

 10% -12.651 -5.0678 1.4004 1 

 20% -5.0988 -2.6546 1.05175 1 

 30% 18.2148 33.1469 1.14573 1 

 40% 20.1455 5.29954 1.0685 1 

 50% -82.94 -49.466 7.94492 1 

 
It is observed that all these three estimators are fairly close 
to the true values in the absence of outliers. However, the 
OLS estimates tend to move away from the true value 
rigorously, followed by the KNN with the increase in the 
percentage of outliers. The KNN can tolerate slightly over 
1% outliers. But the TSRWLS appears as fairly robust in 
attaining almost the highest possible 50% break down for 
both 2   and 4  . These results also confirm that the 
OLS and KNN estimators cannot retain their unbiased 
properties in the presence of outliers in heteroscedastic 
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model, whereas the proposed TSRWLS estimators can 
successfully retain the unbiasedness properties.  
 The breakdown properties of the OLS, KNN, and 
TSRWLS methods are investigated further by considering the 
samples of size 50, 100 and 150.  Simulation studies were 
performed exactly in the same way as described earlier. 
10,000 simulations are carried out using the S-Plus 
programming language. Summary values such as the mean 
estimated values  

( )

1

1 ˆ
m

k
j j

km
 



   

are computed over m = 10,000 replications. This also yields 
the bias j j  . The mean-squared error (MSE) is given by 

2 ( ) 2

1

1ˆ ˆ ˆ( ) ( ) ( )
m

k
j j j j j

k

MSE
m

    


     

 
Therefore, the root mean squared error (RMSE) is given by 

1 2ˆ[ ( )]jMSE  . As a measure of robustness, we compute the 

‘relative measure of RMSE’ which is the ratio of the 
RMSEs of the estimators compared with the least-squares 
estimators for good data. The relative bias and relative 
measure of RMSE of the OLS, KNN, and TSRWLS 
methods are presented in Tables 3 and Table 4 respectively. 
Due to space limitation only results for  = 2 , n=50 and 100 
are reported. But for the other sample sizes the results were 
consistent for  = 2 and  = 4. Several interesting points 
appear from Tables 3.  For ‘clean’ data, all the three 
estimators considered here are fairly close to one another 
with respect to the values of the biasness measure. By 
inspecting the bias in Table 3, it is observed that the 
performance of both the OLS and the KNN tends to 
deteriorate with the increase in the percentage of outliers 
and they produce poor estimates at both levels (   2 and 
  4) of heteroscedasticity. The performance of the 
TSRWLS is very satisfactory here.  In Table 4 values of 
robustness measures is justified by Relative measure of 
RMSE as compared to the OLS estimate with no outliers. 
We see that the relative efficiency of the all three methods is 
very satisfactory when there are no outliers. However, the 
scenario has changed when there are outliers. It is seen that 
in the presence of outliers the efficiency of the TSRWLS is 
very reasonable in this regard which not in the case of other 
two methods.  Irrespective of the percentages of outliers it 
maintains producing low bias and small RMSE and does not 
break down before 5% contamination.  
 

 

TABLE 3 
BIASNESS MEASURE OF THE PARAMETERS OF THE DIFFERENT ESTIMATORS 

FOR  =2 

 

Outliers  (%)
Estimators 

                         Bias 

OLS KNN TSRWLS 

Coeff. Sample Size n = 50 

0% beta0 -0.0059 -0.0013 -0.00198 

beta1 0.0140 0.0060 0.006226 

beta2 -0.0008 -0.0027 -0.00227 

5% beta0 -17.5758 -3.5790 -0.00329 

beta1 16.7337 3.2144 0.009711 

beta2 13.7552 2.6234 0.000918 

10% beta0 0.9357 0.1849 0.005338 

beta1 -0.3898 0.1293 -0.01026 

beta2 -2.1139 -1.1011 -0.00035 

15% beta0 -85.7342 -36.0054 0.011383 

beta1 82.7205 33.1180 -0.0172 

beta2 32.2882 9.1732 -0.00564 

20% beta0 -195.6400 -87.9323 -0.00422 

beta1 -372.1610 -146.0850 0.00136 

beta2 494.4786 181.1661 0.012381 

Sample Size n = 100 

0% beta0 0.0005 -0.0018 -0.0005 

beta1 0.0004 0.0035 0.0011 

beta2 -0.0014 -0.0009 -0.0016 

5% beta0 1.9708 0.3723 -0.0009 

beta1 0.4748 0.1227 0.0005 

beta2 -3.6606 -0.7952 0.0001 

10% beta0 10.5640 1.3684 -0.0007 

beta1 -15.3713 -2.4119 0.0032 

beta2 -9.1550 -1.9725 -0.0043 

15% beta0 0.0707 0.8919 -0.0046 

beta1 0.9458 -1.4343 0.0033 

beta2 1.7874 0.9745 0.0045 

20% beta0 3.5876 -0.8170 -0.0050 

beta1 -5.4541 -0.7692 0.0059 

beta2 -7.0086 -1.8175 0.0014 
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TABLE 4 
RELATIVE MEASURE OF RMSE OF THE PARAMETERS OF THE DIFFERENT 

ESTIMATORS FOR  =2 
 

Outliers(%) 
Estimators 

Relative measure of RMSE  

OLS KNN TSRWLS 

Coeff. Sample Size n= 50  

 0% beta0      – 103.8433 101.2776 

beta1      – 100.6190 96.7113 

beta2      – 99.9619 95.5360 

5% beta0 0.0265 0.1367 64.8578 

beta1 0.0439 0.2614 74.6672 

beta2 0.0544 0.3143 69.2143 

10% beta0 0.2806 1.2529 68.1788 

beta1 0.3632 1.3702 76.1437 

beta2 0.4208 1.0991 74.1417 

15% beta0 0.0049 0.0122 71.4086 

beta1 0.0079 0.0204 83.3345 

beta2 0.0155 0.0437 71.9914 

20% beta0 0.0028 0.0056 52.1659 

beta1 0.0016 0.0045 59.9413 

beta2 0.0015 0.0041 56.5258 

Sample Size n= 100 

0% beta0      – 103.0542 100.6648 

beta1      – 101.8250 98.3953 

beta2      – 101.6148 97.7441 

5% beta0 0.2752 1.0516 97.3127 

beta1 0.2010 0.6944 93.2256 

beta2 0.2165 0.9376 91.0025 

10% beta0 0.0342 0.2374 81.5563 

beta1 0.0339 0.1863 83.6645 

beta2 0.0460 0.2411 84.4919 

15% beta0 0.0970 0.3056 77.1535 

beta1 0.1534 0.3415 79.3901 

beta2 0.0827 0.3002 81.0387 

20% beta0 0.0605 0.1566 76.7077 

beta1 0.0733 0.2030 77.2481 

beta2 0.0487 0.1171 77.1561 

 

V. CONCLUSIONS 

In this article, we propose a two-step robust weighted least 
squares estimator which is designed for handling the 
problem of heteroscedasticity and outliers in multiple 
regression when the form of the heteroscedasticity is 
unknown. We have examined the performance of the 
proposed TSRWLS estimator and compare its performance 
with other existing estimators. Although the KNN and 
TSRWLS estimators are reasonably close to one another in 
the presence of heteroscedasticity with clean data, but the 
TSRWLS is the most reliable estimator as it possesses the 
least bias and standard errors. However, the performance of 
KNN and OLS are much inferior to the TSRWLS when 
contamination occurred in the data evident by having larger 
bias in estimates and standard errors, and smaller values of 
robustness measures.  
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