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Abstract— In clustering (also known as unsuper-
vised learning and class discovery), the classes are
unknown a priori and need to be identified from the
unsupervised data. The cluster analysis is concerned
about estimating the number of classes and assigning
each observation to a certain class. In this article we
discuss a method for clustering via the Laplacian ma-
trix. Also, based on a similar argument, we suggest a
method for detecting hubs in a complex networks.
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1 Introduction

Laplacian matrix is defined as subtracting the adjacency
matrix from the degree matrix. The adjacency matrix is
an n× n symmetric matrix in which the ijth component
of it reveals the similarity of the connectivity between the
ith and jth observation. On the other hand, the degree
matrix is an n×n diagonal matrix where the ith diagonal
element is the sum of the ith row of the adjacency matrix.
The idea of using the Laplacian matrix in clustering is
not new, and it can be found in, for example, Donath
and Hoffman[1], Fiedler[2], Pothen, Simon, and Liou[3],
Vishveshwara, Brinda, and Kannan[4], and Ding[5]. But,
this approach is virtually unknown to statisticians and
the suggested methods so far are not easily implemented
for statistical data analysis. In this paper we suggest a
useful algorithm via the Laplacian matrix for clustering.
Also, we suggest a useful method for detecting hubs in a
complex networks. Through illustrative examples based
on real data sets we demonstrate the suggested algorithm
is very effective.

Cluster analysis is a very important and most widely
used tool for unsupervised type data. Good references
on clustering are Everitt[6], Kaufman and Rousseeuw[7]
and Gordon[8].
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2 Clustering and Hub Detection

2.1 Laplacian Matrix

A graph G = G(V,E) consists of a set of vertices V and
a set of edges E. Two vertices vi and vj of a graph G
are said to be adjacent if there an edge eij connecting vi
and vj . A graph is called undirected(directed) if eij = eji
( eij ̸= eji). The degree of a vertex vi is defined as the
number of adjacent vertices to vi, and is denoted by degi.
Graph (a) in Figure 1 has 5 vertices and 5 edges, and the
degrees of vertices are 3,2,2,2,1, respectively.
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Fig. 1

The adjacency matrix A = A(G) of an undirected graph
G with n vertices is defined as an n × n symmetric ma-
trix with components aij , where the diagonal elements
aii are equal to zero for all i = 1, 2, ..., n. The adja-
cency matrix is called unweighted if aij = 1 for all i ̸= j
for which edges eij is defined, and in general aij are not
necessarily equal to 1. Graph (a) and (b) in Figure 2
have unweighted and weighted adjacency matrix, respec-
tively. The Laplacian matrix of a graph G is defined as
L(G) = D(G)−A(G), where D(G), called the degree ma-
trix, is a diagonal matrix with the ith diagonal element
di =

∑n
j=1 aij . Therefore, D(G) = diag{deg1, ..., degn}

for unweighted adjacency matrix. Note that rank of the
Laplacian matrix is n− 1. For detailed discussion on the
graph theory and the Laplacian matrix, see, for example,
Biggs[9], Deo[10], and Starng[11].

The Laplacian matrix has the following properties. It is
symmetric and positive semidefinite, and therefore, it has
n nonnegative eigenvalues. If the graph G is connected,
then only one eigenvalue of them is 0 by the definition of
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the Laplacian matrix, and all others are positive. If the
graph is not connected, then the multiplicity of eigenvalue
is equal the number of disconnected components. The
eigenvector of L corresponding to the nonzero smallest
eigenvalue is called the Fiedler vector in recognition of
the pioneering works of Fiedler[2],[12].

2.2 Motivation on Clustering

Assume there are n objects or observations x1, ...,xn,
where xi is a p−vector. For example, in the gene expres-
sion matrix, xi denotes expression of p genes for the ith
patient. Also, xi could be p−vector of (population, num-
ber of crimes per year, ..., average educational expenses
per household) for the ith city. The goal is to partition n
observations into an arbitrary number of groups such that
observations in the same group have higher correlation or
stronger connectivity than those in the other group. To
use the Laplacian matrix in clustering, it is necessary to
define the adjacency matrix. Let the adjacency matrix
be some similarity measures for x1, ...,xn. For example,
they could be Euclidean distance, Manhattan distance,
and the Mahalanobis distance. In general the component
of the adjacency matrix aij should reveal the closeness or
degree of connectivity between xi and xj .

Clustering can be achieved by minimizing the weighted
sum of squares

Q =
1

2

n∑
i=1

n∑
j=1

(zi − zj)
2aij

where z = (z1, ..., zn)
′ is unknown argument. To avoid

the trivial solution zi = 0 for all i, the constraint z′z = 1
is imposed. Also, the constraint z′1 = 0, where 1 =
(1, · · · , 1)′, is imposed since the minimum is invariant un-
der translations. Therefore the problem can be rewritten
as

argmin
z

1

2

n∑
i=1

n∑
j=1

(zi − zj)
2aij

subject to z′z = 1 and z′1 = 0. To solve the problem,
note that

Q = 1
2

∑n
i=1

∑n
j=1(z

2
i − 2zizj + z2j )aij

=
∑n

i=1 z
2
i aii −

∑n
j=1

∑n
i̸=j zizjaij

= z′Lz

To minimize Q subject to z′z = 1, use Lagrangian
method, i.e.,

T = z′Lz− λ(z′z− 1)

∂T

∂z
= 2Lz− 2λz = 0

⇒ (L− λI)z = 0

which yields a nontrivial solution z if and only if λ is an
eigenvalue of L and z is the corresponding eigenvector.
By multiplying z′ on both sides, we have

z′Lz = λ

Therefore, the nonzero smallest eigenvalue and the as-
sociated eigenvector, which is called the Fiedler vector,
yields the optimal solution.

On the other hand, to detect hub in a network, we need
to maximize Q instead of minimizing Q in clustering.
Therefore, the eigenvector corresponding to the largest
eigenvalue contains the information on hubs, and we are
only to find the components with large values (in absolute
sense) in the eigenvector.

2.3 Hypothetical example
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Fig. 2

Consider two graphs in Figure 2 where adjacencies be-
tween two points (1,2), (1,4), (1,5), (2,3), (3,4) are 1 in
(a), and 0.5 in (6,8) and (7,8) and 0.7 in (6,7) in (b). Also,
assume that all the adjacencies between (v1, . . . , v5) and
(v6, v7, v8) are 0.01, say. Then, the resulting eigenvalues
and eigenvectors for the corresponding Laplacian matrix
are given in Table 1. Since the rank of the Laplacian
matrix is 7, one of 8 eigenvalues is zero. Note that the
eigenvector corresponding to the nonzero smallest eigen-
value consists of two different values, 0.247 and -0.457.
These values represent first 5 components and the next
3 components which match exactly to nearly separated
graphs given in Figure 2. If we assume that all the adja-
cencies between (v1, . . . , v5) and (v6, v7, v8) are zero, then
the resulting Laplacian matrix has rank of 6. Therefore,
two eigenvalues are zero and the corresponding eigen-
vectors are (1/

√
5, 1/

√
5, 1/

√
5, 1/

√
5, 1/

√
5, 0, 0, 0) and

(0, 0, 0, 0, 0, 1/
√
3, 1/

√
3, 1/

√
3), respectively. Again, two

graphs are perfectly separated by observing two eigenvec-
tors corresponding to zero eigenvalues.

Also, we can detect hub from the eigenvector for the
largest eigenvalue. Note that the eigenvector correspond-
ing to the largest eigenvalue is

(0.702,−0.419, 0.338,−0.410,−0.202, 0, 0, 0)
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in Table 1. Hence, the 1st observation has the largest
value 0.702, and it is hub in this network.

Table 1. Eigenvalues and eigenvectors for the Laplacian
matrix of the combined graphs 2(a) and 2(b) in Figure 2.

Eigenvalues 0.00 0.08 0.90 · · · 4.52
1 0.354 0.274 0.138 · · · 0.702
2 0.354 0.274 -0.256 · · · -0.419
3 0.354 0.274 -0.438 · · · 0.338
4 0.354 0.274 -0.256 · · · -0.419
5 0.354 0.274 0.812 · · · -0.202
6 0.354 -0.457 -0.000 · · · 0.000
7 0.354 -0.457 0.000 · · · -0.000
8 0.354 -0.457 -0.000 · · · 0.000

3 Conclusion and Future Works

The suggested method of clustering and detection of hub
using the Laplacian matrix works well. In fact, the eigen-
vector corresponding to the non-zero smallest eigenvalue
contains the information on clustering, and the eigenvec-
tor corresponding to the largest eigenvalue contains the
information on hubs in a network.

To apply to the real data sets we need to refine the adja-
cency matrix by the hard-thresholding, say, and this area
is worth pursuing as a future research.
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