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Abstract—We propose a change point detection algorithm
for a sequence of graphs. Our algorithm focuses on the change
of the structure of densely connected subgraphs (community
structure) rather than the change of the link weights. In contrast
to the traditional approaches, the algorithm can identify the
structure change more sensitively. Experiments with a synthetic
data and a real-world data of graphs showed that our algorithm
can accurately locate the changed subgraph compared with
some of the state-of-the-art algorithms

Index Terms—Anomaly detection, Evolution network, Mar-
tingale, Spectral clustering

I. INTRODUCTION

GRAPHS naturally arise in the current circumstance
as seen in computer networks, World Wide Web,

climate networks, social networks and biological networks.
Accordingly anomaly detection of graphs has been gathering
a great deal of attentions. For example, in the network
intrusion detection, we want to find malicious messages (e.g
spammers, port scanners) among many ordinary messages,
and in the climate networks, we want to find anomalous
phenomena (e.g heavy rain, storm) from signals obtained by
several sensors.

Typical networks have dynamic nature and often keep
growing or shrinking with time. Such dynamics should be
taken into consideration for the design of anomaly detec-
tors. In human/social networks represented by graphs with
weighted undirected/directed links, a community that is a
subgraph whose members are connected strongly to each
other is a key factor to specify the characteristics of the
graphs. In the view point of community, we can divide
anomaly into that in the community structure and that in
the community strength/activity.

A graph may change its communities in the member
and/or in the way of connections, while another graph may
strengthen or the connections among community members
may be weaken. One example of the latter case is a lo-
cal computer network where many messages have been
exchanged regularly. In this example, a server and clients
may make a community. Once a client is hacked, it may
behave differently and send irregular messages to specific
computers. Such anomaly would be detected as the change
of link strength. Another example is a scientific network,
where a node represents a scientist and a link represents
the co-author relationship among scientists. A community in
this network is seen as a group of scientists sharing similar
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interests. The community may grow due to some boom of a
specific subject and shrink due to maturity of the field. Such
changes could be observed both in the community activity
and community structure.

In this paper, we proposed an anomaly detector which has
following key properties.

• It concentrates on communities
• It detects mainly the change of community structure.
• It can work online.

We put the following assumptions on the input data: (1)
no domain knowledge is available on the nature of network.
(2) data arrives sequentially, (3) all links are not directed,
(4) there exist some communities, that is subsets of dense
connections.

The rest of papers are organized as follows. We briefly
review some related works, in Section II. In Section III, our
terminology and assumptions are presented. In Section IV,
we describe the details of the proposed method. The experi-
mental results are presented in Section V. We discussed the
characteristics of our algorithm in section VI and summarized
this paper in Section VII.

II. RELATED WORK

In a static network, one goal is to find anomalous nodes
or links which can be regarded as topological outliers. There
have been proposed dozens of rarity/affinity measures for
such outliers such as Random Work Similarity [1], [2],
Information theoretic measure [3]–[5], density measure [6]
and so on. We also use an affinity measure, but it finds
transitions in the dynamics of graph rather than topologically
rare nodes or links.

In a dynamic network, we concentrate on finding the
change points on the dynamics. Specifically, we consider that
a change happens when the densely connected nodes is sep-
arated, or sparsely connected nodes have dense connections.
These changes can be found on the basis of the community,
a group of nodes with densely connections. GraphScope [7]
finds communities in the unweighted graph and detect when
these communities changed. However, it cannot be applied
to the weighted graph. Spectral based anomaly detection
[8]–[11] deals with the weighted graphs and detects the
time point when the densely connected subgraphs change.
These methods identify dense connections thorough spectrum
information of a matrix representing a graph. However, these
approaches only monitor the changes on the dense subgraphs.

Our algorithm also makes use of the spectrum to identify
community structure, but it also monitors the changes on the
sparse connections as well as the dense connections.
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Fig. 1. Illustration graph and its adjacency matrix

TABLE I
EIGENVECTORS AND EIGENVALUES OF MATRIX X REPRESENTING A

GRAPH DEPICTED IN FIG 1

Γ·,1 Γ·,2 Γ·,3 Γ·,4 Γ·,5 Γ·,6
v1 0.57 -0.11 -0.20 0 -0.71 -0.35
v2 0.57 -0.11 -0.20 0 0.71 -0.35
v3 0.58 -0.05 0.34 0 0 0.74
v4 0.13 0.57 0.72 0 0 -0.39
v5 0.08 0.57 -0.38 -0.71 0 0.16
v6 0.08 0.57 -0.38 0.71 0 0.16
λ 4.03 2.98 -1.34 -1.5 -2.0 -2.1

III. PREPARATION

A. Notation

Bold letters always denote random matrices. Superscript
in parentheses denote time and subscripts i, j denote a row
and a column of a matrix.

A graph G consists of a set V of nodes and a set E of links.
Furthermore, each link has a weight w ∈ [0,∞] representing
the strength of connection. The matrix operator diag(·) and
off-diag(·) decompose a matrix into the diagonal part and
non diagonal part respectively.

A symmetric matrix X can be decomposed into X =
ΓΛΓ′, where Γ is an orthonormal matrix with eigenvectors of
X in columns and Λ is a diagonal matrix with corresponding
real value eigenvalues. The column vectors of Γ are sorted
in the descending order of its corresponding eigenvalues.

B. Community

Communities can be analyzed by the spectrum of a matrix
representing a graph [12], [13]. To make clear the meaning
of spectrum, let us consider an adjacency matrix X shown
in Fig 1. Let us decompose X into X = ΓΛΓ′ where Γ
is a matrix whose column is an eigenvector of X and Λ
is a diagonal matrix whose diagonal elements are the real
value eigenvalues. All of eigenvectors of Γ and the diagonal
elements of Λ are shown in Table I. Here it is noted that Γ·1
and Γ·2 correspond two communities C1 = {v1, v2, v3} and
C2 = {v4, v5, v6}, respectively. The eigenvalues represent
the strength of connectivity in the communities. The com-
munity C1 has the strongest connectivity and C2 follows.

For a graph consists of l dense subgraphs, Peron
Frobenius Theorem [14] guarantees that there exist l
positive eigenvalues expressing the strength of connectivity
corresponding to the l communities and its corresponding
eigenvector has large elements in its participating nodes.
Such community is known as eigencluster [13] and the
property of a graph can be separated into community
structure and community activity.

DEFINITION (Community structure and activity)
For a graph G expressed by an adjacency matrix X

with its eigen decomposition X = ΓΛΓ′, we call the
positive eigenvalues of Λ the “community activity” and its
corresponding eigenvector of Γ the “community structure”.

When the number l of communities is known, we can find
the largest l eigenvalues and eigenvectors as X ' ΓlΛlΓ

′
l.

IV. PROPOSED METHOD

In this section, we present our algorithm to detect the
changes in community structures Γ. Our basic assumption is
that the community structure is almost invariant over time, in
other wards, dense/sparse connections would be unchanged
even though their weights of links may change to some
extent. In the following, we formalize the model of graph
evolutions and introduce our algorithm.

A. Model

Let us consider a sequence of random graphs G ={
G(1),G(2), . . . ,G(t)

}
represented by adjacency matrices

X =
{
X(1),X(2), . . . ,X(T )

}
, X ∈ Rn×n, t = 1, 2, 3....

We assume that, as a normal state, the X(t) is generated
independently from the following model:

X(t) = Γ(Λ +N(t))Γ′, t = 1, 2, ..., (1)

where the structure Γ is assumed not to change as well as
activity Λ, while N(t) can change as a random noise (not
always diagonal) matrix with mean zero matrix.

The expectation of matrix X(t) is given by

EX(t) = ΓΛΓ′ + Γ(EN(t))Γ′ = ΓΛΓ′

Therefore, assuming ergodicity of X(t) for a period t ∈
[1, T ], we estimate EX(t) as a sample mean as

X̄ =
1

T

T∑
t=1

X(t) ' Γ (Λ)Γ′. (2)

Then, we estimate Γ and Λ by decomposition of X̄ . By
choosing the principle l components of Γ and Λ, we construct
Γl and Λl as well. When the graph seems to be generated
from this model, we regards the graph is in normal state, but
if it does not, we consider the data is in abnormal state. In the
follwoing, we quantify the deviation of the graph from this
model and descriminate the normal and anomaly deviations.

B. Anomality Measure

Suppose that the model (Γ,Λ) changes to (Γ̃, Λ̃) at time
t0. By monitoring the amount of fluctuation of corresponding
community structure Γ, this change is detected. In the
following, we assume that Γ and Λ are already estimated
from the past sequence by Eq. (2). We decompose X(t) by
multiplying Γ and Γ′ in both sides as

X(t) = ΓY(t)Γ′. (3)

At this time, Y(t) is not diagonal in general. Therefore, we
separate the components into the diagonal part and the non-
diagonal part as

X(t) = ΓY(t)Γ′

= Γ(diagY(t))Γ′ + Γ(off-diagY(t))Γ′. (4)
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Similarly, we separate the Eq. (1) as

X(t) = Γ(Λ +N(t))Γ′

= Γ(Λ + diagN(t))Γ′ + Γ(off-diagN(t))Γ′. (5)

Comparing Eq. (4) and Eq. (5), we can see that diag(Y(t)−
Λ) shows the regular fluctuation within communities, by
noise N(t) and off-diagY(t) shows the fluctuation between
communities. Both amounts are supposed to be small if the
model does not change. However, if the structure changes
from Γ to Γ̃, the amount of fluctuation caused by the change
would be put on the second term of Eq. (4). Indeed, if the
model is unchanged, that is, if Eq. (4) and Eq (5) are equal,

E
(

off-diagY(t)
)
= E

(
off-diagN(t)

)
= O. (6)

Therefore we consider off-diagY(t) as the fluctuation in the
community structure. Let us denote an anomaly score of the
graph at time t as a(t), which is defined as

a(t) = ||off-diagY (t)||F

= Tr

((
off-diagY(t)

)′ (
off-diagY(t)

))
. (7)

where || · ||F is the frobenius norm. The anomaly score a(t)

measures the amount of fluctuation in community structure
and a high score implies that the model might be changed.

C. Martingale Test

From the sequence of anomaly scores a(t), t = 1, 2..., we
would like to find the time when the community structure
is changed. Because N (t), t = 1, 2... are generated from a
stationary distribution, Y(t) and a(t), t = 1, 2, ... are also
expected to have stationary properly as well. In other words,
if the distribution of a(t) has changed, we may consider the
model changed.

To evaluate the changes in the distribution of a(t), we em-
ploy a non-parameteric statistical test based on Randomized
Power Martingale (RPM) [15]. Given a sequence of anomaly
scores a(1), a(2), ..., a(t), the RPM is defined as

M (t) =
t∏

k=1

(
εp̂ε−1

k

)
, (8)

where ε ∈ (0, 1) and the p̂k is given by the p̂-value function

p̂k =

∑k
i 1{a(i) > a(k)}+

∑k
i ui1{a(i) = a(k)}

k
(9)

where 1{S} becomes 1 in case that S is true otherwise
0 and ui is a random variable drawn from a uniform
distribution over [0, 1]. Here it is easily confirmed that the
p̂ value are distributed uniformly over [0,1]. Therefore the
conditional expectation of M(t) with respect to the past p̂-
values p̂1, p̂2, ..., p̂t is given by

E
[
M(t)|p̂1, p̂2, ...p̂t

]
= M(t−1)

∫ 1

0

εp̂ε−1
t d = M(t−1). (10)

This property “the expectation of the next value is the same
as the current value” is called martingale and it satisfies
Doob’s Maximal Inequality [16], [17]:

P
(

sup
0≤k≤t

M(k) ≥ 1/δ

)
≤ δ, (11)

Algorithm 1 Pseudo code of proposed algorithm
Input
A significance level δ
Number of community structures l
Number of first training data τ0
Procedure
Set starting time of the sequence τs = τ0 + 1
Initialize Martingale value M(1) = 1
while New data X(t) arrives do

if t < τs then
// Initial training
Update X̄ and Γ by Eq. (2)

else
// Detecting changes in the model
Decompose X̄ into Γ and Λ.
Compute anomaly score a(t) by Eq. (7)
Compute p-value p(t) by Eq. (9)
Update Radomized Power Martingale M(t) by Eq. (8)
if M(t) ≥ 1/δ then

Declare a change point t
Reset M(t) = 1 and τs = t+ τ0 + 1.

else
Update X̄ and Γ by Eq. (2)

end if
end if

end while

TABLE II
OVERVIEWS OF ALGORITHMS

Algorithm Evaluated Variable Detectable Change
Proposed l eigenvectors Intra-community links
EigenSpace [9] 1st eigenvector Densely connected nodes
EigenCompress [11] Eigenvalues Connectivity strength

where δ ∈ (0, 1] is a significance level. From this inequality,
we see that a change happens with probability 1 − δ when
M(t) exceeds 1/δ. The parameter ε takes responsible for
determining the sensitivity for the changes. Specifically, the
small ε increases sensitiviness for the changes, but it causes
false alarms. According to [15], it is appropriate to set ε in
[0.9, 1).

V. EXPERIMENT

We have conducted two experiments using one synthetic
dataset and one real-world data. We compared the pro-
posed method with other spectral approaches: EigenSpase
[9], EigenCompress [11]. In EigenSpace, the most strongly
connected subgraph is assumed to be invariant over time.
EigenCpmpres, on the other hands, focuses on the activity
of communities, thus detect the change of eigenvalues. These
characteristics are summarized in Table II.

A. Synthetic data

In this experiment, we aimed to confirm that the changes
of community structures are correctly detected by our algo-
rithm. The basic structure of the graphs used in this experi-
ment is shown in Fig 2. This basic graph consists of two com-
munities CA = {v1, v2, v3, v4} and CB = {v5, v6, v7, v8}.
We gave a random uniform fluctuation u ∈ [−1, 1] to the
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TABLE III
FOUR DIFFERENT SCENARIOS OF CHANGING

Scenario of changing (µAA, µBB, µAB)

0 Before change (0.8, 0.6, 0.2)
1 Links in CA are strengthened (1.0, 0.6, 0.2)
2 Links in CB are weaken (0.8, 0.4, 0.2)
3 The connectivity of CB is maximized (0.8, 1.0, 0.2)
4 Links between communities are strengthened (0.8, 0.6, 0.4)

weight of link wi,j between nodes vi and vj as

wi,j =

 µAA + 0.2u (vi, vj ∈ CA)
µBB + 0.2u (vi, vj ∈ CB)
µAB + 0.2u (vi ∈ CA, vj ∈ CB)

, (12)

where µAA, µBB and µAB are basic weights of whithin
communities and between communities. A sequence consists
of 200 graphs was generated according to this model. We
tested 4 scenarios as shown in Fig (3), in which a change
occures at time t0 = 100 and the parameters were changed
to (µ′

AA, µ
′
BB, µ

′
AB) as shown in Table III. The scenarios 1,

2 and 3 change the weights of intra-communities and the
scenario 4 changes in the weights of inter-communities. We
constructed a dataset consists of 100 seqeunces generated by
unchanged model (12) and 100 sequences including a change
according to one of above senarios and tested whether the
algorithm distinguishes changed cases and unchanged cases
correctly or not.

We measured the area under curve (AUC) of the graph as
the plane of which horizontal axis is the false alarm rate and
vertical axis is recall value (Fig. 4). The AUC was calculated
by the trapezoid integration. While we gradually changed
the value of parameters of the algorithms, we measured
the false alarm rate and recall. For the EigenSpace and the
proposed method, the significance level δ was changed. For
EigenCompress, the threshold value for the anomaly scores
was changed since this method does not have any parameter
to determine the significance level.

The other parameters were set so as to achieve the highest
average AUCs over the 4 scenarios. For EigenSpace, the
learning parameter β = 0.03 and the window size w = 30.
The number of eigenvalues monitored by EigenCompress
was 3. For our algorithm, we set l = 2 and ε = 0.95.

The AUCs are summarized in Fig 5 (a). As expected from
their characteristics, Eigenspace succeeded in detecting only
the change of the structure of the most densely connected
community, that is, the change of scenario 3 (the strongest
community moves from CA to CB), while EigenCompress
succeeded in detecting the change of activities of both
communities in scenarios 1, 2 and 3. The reason why the
proposed algorithm aiming the detection of the changes of
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the community structure succeeded in detection of the inter-
community changes is that the activity change also derives
the structure change. For example, in scenario 1, the right
community relatively vanished after strengthening of the left
community.

Next, we examined the mean delay time (MDT) of these
algorithms. To unify the sensitivity of detectors, we set the
value of parameters of algorithms as follows. For EigenSpace
and the proposed method, we set the significance level to
0.05. For EigenCompress, the threshold values is determined
such that the ratio of anomaly scores over the threshold is
0.05.

Fig 5 (b) shows the result of MDT. We observe that the
proposed algorithm has the longest delay in all scenarios.
This is because the the martingale M (t) exceeds the bound-
ary (11) after observing several high anomay scores, while
other methods issues alarm onece one high anomaly score is
observed.

B. Enron email dataset

This dataset [18] consists of the email records in Enron
Inc. observed during January 1999 to Jury 2002. A node
represents an individual employee and an edge represents the
email exchange relationship. The weight of a link represents
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TABLE IV
EVENTS IN ENRON INC FROM JANUARY 1999 TO JURY 2002

Event Time Description
#1 Nov 1999 EnronOnline lunched
#2 Aug 2000 Enron’s stock price attains its largest value
#3 Feb 2001 Jeffrey Skilling takes over as CEO
#4 Aug 2001 Jeffrey announces departure
#5 Dec 2001 Enron is bankrupted
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Fig. 6. (a) # of Emails exchanged in a day. (b) Martingale values

the number of emails exchanged between the corresponding
two employees. In this graph, the most densely connected
subgraph corresponds to an executive committee exchanging
many emails to run the company. The other subgraphs consist
of communications between executives and employees in
corresponding sections.

The special events happened during this period are sum-
marized in Table IV and the number of emails in each
day is shown in Fig 6 (a). We see that the number of
emails started increasing after the event #1 according to the
company growth. Before the event #5, it reached its peak
since the executives exchanged many emails to prepare the
risk of possible bankrupt.

We examined whether our algorithm detects changes re-
lated to these events. We observed that there were more than
3 positive eigenvalues over this period, and thus we set l = 3.
It might be hard to locate the cause of changes after a long
delay and therefore we set δ = 0.05 and ε = 0.9 in order to
detect the changes quickly.

The martingale values were plotted in Fig 6 (b). The four
of changing time points were detected : (A) 06 Jul 1999, (B)
07 Mar 2000, (C) 13 Jan 2001 and (D) 30 May 2001. Only
#4 event is detected as a change. To interpret the result, we
have to consider again what kind of changes are detected
by the proposed method. As seen in Fig 6 (b), our change
detector waits until certain amount of evidence of strangeness
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(c) Period (B) - (C) (d) Period (C) - (D)
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Fig. 7. Illustration of the time series of the subgraphs. The width of a link
shows the amount of emails exchanged.

is gathered, so that it does not detect an abrupt change but
a gradual change to some extent. In this sense, our detector
might have detected changing points of organizational life
cycle: birth, growth, maturity, decline and death. Under this
explanations, the period before (A) corresponds to “birth”
, the period (A)-(B) to “growth”, the period (B)-(C) to
“maturity”, the period (C)-(D) “decline” and the period (D)-
to “death”. These interpretation may be supported by the
events #1-#5 happened in the corresponding period, e.g the
highest stock price was marked (#2) just after the end of
growth period.

To examine the validity of those interpretations, we visual-
ized the graphs corresponding to these periods. Fig 7 shows
the time series of subgraphs consists of the nodes corre-
sponding to 3 strongest communities. Although it might be
a little intentional, Fig 7 (a) -Fig 7 (d) look as showing (a) the
CEO intensively listens to the opinion of external members
and two sections worked for lunching “EnronOnline”, (b) 4
sections are organized, (c) new employees participated and
also some employees moved their sections, and (d) intensive
discussion is made among vice presidents.

We also have to notice that the amount of emails does not
directly affected to the structure of communities. It mainly
impacts on the activity (the weight of links of communities).
In this sense, the change of the amount of emails shown in
Fig 6 (a) is not directly related to the results. Therefore, one
possible explanation about why our detector fails to detect
the events is because the communities of exchanging many
emails did not change the members but increased the activity
only in accord with the growth to maturity period.
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VI. DISCUSSION

A. Detectable changes

The proposed algorithm detects not only the change of
community structure, but also the change of community
activity. This is reasonable in some sense. Strictly speaking,
the community structure and community activity cannot be
separated so clearly because the structure may change due
to the heavily weakened links or strengthened links.

Our algorithm is slow to report a change compared to
the other methods. The competitors are designed to detect
the abrupt changes as it happens, but our algorithm detects
changes after gathering a necessary amount of evidence.
Therefore, it takes longer delay and thus the temporal change
might be missed. It may be possible to use our algorithm to
report a past change later, which might be useful in some
applications.

B. Computational Complexity

The eigen decomposition of X̄ costs O(ln2) and the
multiplication of Γ to compute off-diagY costs O(n2). The
anomaly score is computed at cost of O(n2) and therefore the
total cost of computing anomly score is O(ln2+n2+n2) =
O(ln2). If we employ a heap-sort algorithm for ordering
anomaly scores, p̂ value in Eq. (9) can be computed at cost
of O(T log T ) where T is the number of data in a segment.
Since n is very large in general compared to T , the total
computation cost becomes O(ln2 + T log T ) ' O(ln2).
However, it can be efficiently reduced to O(l3) by employing
the incremental spectrum updating techniques [19], [20] for
the eigen decomposition of X̄ .

C. Laplacian Matrix and Modularity Matrix

In this paper, we focused on the changes of the communi-
ties on the basis of the eigenvectors of an adjacency matrix.
In this case, the community is a group of nodes with dense
connections. Such a property “an eigenvector of a matrix
expresses affinities among nodes” can be also dealt with the
Laplacian Matrix [12], [21] and the Modularity Matrix [22],
[23]. In the future, we will compare these with the proposed
method.

VII. CONCLUSION

In this paper, we have proposed an anomaly detection
algorithm for evolutional networks. We have assumed that
a community is a dense subgraph and the invariant of the
structure of a community can be confirmed by the unchanged
eigenvectors. The traditional approaches monitor mainly the
strongest community, while our approach monitors many
principle communities. This algorithm also outperforms the
others in detection of a change of activity between different
communities.

We compared our algorithm with two state-of-the-art algo-
rithms and confirmed its effectiveness. On the other hands,
its response was three times later than the other methods.
The results on the email communication showed that our
algorithm detected changes longer or shorter before the
critical event happens.

Further analysis is needed to reduce the delay and the
property of other matrix would be more cleared by compar-
ison with our algorithm.
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