


Abstract— One of the most important methods for pricing

complex derivatives is Monte Carlo simulation. However, this
method requires a large amount of computing resources for
accurate estimates. Since Monte Carlo simulations used in
derivatives pricing are often parallelisable, one way to reduce
the computing time is to use GPUs, which allow many copies of
the same process to be run in parallel with different data.

This paper first presents a GPU implementation of a Basket
Option pricing engine and an analysis of the timing and
memory resources for different algorithm parameters. The
results show that, on an NVidia GTX670 card using NVidia’s
proprietary CUDA programming platform, a speedup of over
250 can sometimes be achieved compared with a sequential C
implementation.

To produce more portable code which will run on a range of
different parallel architectures, OpenCL is becoming popular.
However, users can be reluctant to adopt OpenCL in case they
lose performance compared with an architecture-specific
programming platform such as NVidia’s CUDA, particularly
when high speed-ups are at stake. This paper secondly reports
experiments which show that, all things being equal, the
performance of OpenCL and CUDA implementations are
within approximately 10% of each other, with the OpenCL
implementation sometimes being the faster. This suggests that
OpenCL is a viable programming platform for GPU
acceleration of pricing engines, even when aiming for high
speed-up factors of 100-300.

Index Terms— Acceleration, GPU, OpenCL, Options

Pricing

I. INTRODUCTION

One of the most important methods for pricing complex
derivatives, and sometimes the only practical one, is Monte
Carlo simulation. This method is commonly used, but it
requires a large number of simulations to achieve an
accurate price estimate. This in turn requires a large amount
of computing resources. Since Monte Carlo simulations
used in derivatives pricing are often parallelisable, one way
to reduce the computing time is to use multi-core CPUs or
many-core GPUs, which allow many copies of the same
process to be run in parallel with different data. The
technology currently employed by many financial
institutions is grid computing, and this often involves
sending data out to a central computing grid, which can
cause security issues. These grids also consume a lot of

Manuscript received March 19, 2013; revised April 11, 2013
Sean Trainor is with The Institute of Electronics, Communications and

Information Technology (ECIT), Queen's University Belfast, Belfast BT3
9DT, UK (e-mail: strainor05@qub.ac.uk).

Danny Crookes is with The Institute of Electronics, Communications
and Information Technology (ECIT), Queen's University Belfast, Belfast
BT3 9DT, UK (e-mail: d.crookes@qub.ac.uk).

energy, in comparison to that consumed by GPUs, for the
same amount of computation.

In order to aid developers, manufacturers of GPUs have
developed programming languages for their products which
allow them to be used for more general purpose computing.
GPUs consist of many hardware managed single instruction
multiple data (SIMD) units, each of which can have multiple
threads running at once. These multithreaded processors
were originally designed to process large numbers of pixels
very efficiently for graphics processing applications, and so
will work well when data can be broken up into smaller
pieces and these pieces processed independently.

This paper focuses on accelerating a Basket Option
derivative pricing engine using an NVidia GPU (the
GTX670). For programming NVidia GPUs, one proprietary
programming language is NVidia’s CUDA (released in
2006). Many authors (see e.g. [1], [2], [3]) have shown that
using the CUDA programming platform on NVidia GPUs is
highly effective for accelerating option pricing and risk
calculation. This paper firstly describes the implementation
of a Basket Option derivative pricing engine on an NVidia
GTX670 GPU, and reports a speed-up of over 200
compared to a single-core CPU implementation. However,
using CUDA restricts developers to writing code that only
operates on NVidia GPUs, and with the constant changing
and updating of the set of parallel architectures available
today, algorithm developers would like their code to be able
run on a range of different current and future architectures.
One potentially portable cross-platform programming
language, which may allow them to achieve this goal, is
OpenCL. This paper also investigates whether the very high
speed-up of the CUDA implementation can be retained
when the pricing engine is coded in OpenCL, even though it
is not architecture-specific.

For a financial company considering investing in GPU
implementation, the following questions arise:

- What speedups can a GPU offer?
- Which programming platform gives greater

speedups?
- If code portability is required (through the use of

OpenCL), what are the performance costs, if any?
This paper presents a GPU implementation of a basket

option pricing engine and a comparison of OpenCL and
CUDA for implementing it. We compare a combination of
three kernel functions which make up this pricer: the first
generates correlated samples from normally distributed
random numbers, the second generates the price paths and
the third performs a binary reduction.

GPU Acceleration of a Basket Option
Pricing Engine
Sean Trainor and Danny Crookes

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

II. RELATED WORK

In the area of derivatives pricing and risk calculation,
there is always a demand for increased computational
capacity. An important, and often indispensable, tool for
these types of calculations is Monte Carlo simulation.
However, a large number of price path simulations need to
be carried out in order to obtain an accurate enough answer.

Situations in which Monte Carlo methods are most useful
usually involve at least one of the following (see [4]):
complex asset price dynamics, path dependence of the
derivatives, or hedging strategies depending on more than
two or three underlying assets. Basket options fall into at
least the last of these categories, and so it is appropriate to
use Monte Carlo methods to price them.

The use of GPUs for accelerating Monte Carlo
simulations has been investigated. Bernemann et al [1] give
an example of an exotic option pricing system that uses
GPUs, although only path generation is implemented on the
GPUs (and a speedup factor of around 100x for 1 GPU over
1 CPU is achieved), and it is stated that, for products that
require payoffs to be calculated frequently, it may be better
also to implement the payoffs on the GPU. Their paper
describes the pricing of basket options (options on
combinations of equity underlyings) with up to 30
underlyings, and it is evident that, for a large number of
underlyings, the GPU does not have enough memory.

In a study by Dixon et al [2], the importance of speeding
up risk calculations is stressed. Their approach is to use a
quadratic approximation to the loss function of a portfolio,
and to use low-discrepancy sequences to increase the
convergence rate of the Monte Carlo simulation. Very large
speedups are achieved (up to 148x), which shows how
suitable GPUs are in this situation.

In [3], Solomon et al. implement a trinomial lattice pricer
for European options and a binomial lattice pricer for
American lookback options. They find that, for large
numbers of time-steps (between 1000 and 30,000), the GPU
gives speedups which increase, almost linearly, up to 101x
(for 30,000 steps). This shows that GPUs can also be useful
when using other types of options pricing methods. It is also
found that “above 30,000 steps, the accuracy is no longer
able to maintain reliable precision with the CPU version”.

 More recently, a new open programming language,
OpenCL (Open Computing Language), has been developed
(first released in 2009). It allows programmers to write code
that can be executed on many different compute devices
with very minor modification. This includes devices such as:
multicore CPUs, Cell Broadband Engines, FPGAs [5] and
GPUs, including NVidia GPUs. When using OpenCL,
programmers write code for an abstract memory model
rather than for that of a specific architecture, and this allows
for portability.

In a comparison between OpenCL and CUDA for Monte
Carlo simulations of a Quantum system, Karimi et al. [6]
find that CUDA performed better when transferring data to
and from the GPU and they did not see any considerable
change in OpenCL’s relative data transfer performance as
more data were transferred. CUDA’s kernel execution was
also consistently faster than OpenCL’s, despite the two
implementations running nearly identical code.

A more comprehensive comparison between CUDA

(version 3.2) and OpenCL is carried out by Fang et al. [7].
They find that CUDA performs at most 30% better than
OpenCL and they also show that this difference is due to
“unfair comparisons”. In total, 14 benchmarks are used,
including matrix multiplication, Fast Fourier Transform,
molecular dynamics and sorting. By changing code and
analysing PTX (Parallel Thread Execution) codes (low level
NVidia GPU code) it is shown that “the performance gaps
between OpenCL and CUDA are due to programming
model differences, different optimisations on native kernels,
architecture related differences, and compiler differences”.
They also found that OpenCL outperformed CUDA in
achieved peak bandwidth by 8.5% on GTX280 and 2.4% on
GTX480 in a bandwidth test.

Komatsu et al. [8] compare CUDA 3.0 and OpenCL 1.0
for several kernel functions, including matrix multiplication.
They find that manual optimisation removes any significant
performance difference. The use of OpenCL to make
comparisons between NVidia and AMD GPUs is also
investigated, and it is found that the optimisation option of
the OpenCL C compiler and the work-group size need to be
adjusted for each GPU to obtain the best performance.

III. THE OPTION PRICING MODEL

Following Hull [9], the case of a basket option whose
payoff depends on n variables ௜ܵ ሺ0 ൑ ݅ ൏ ݊ሻ will be
investigated. Attention will be restricted to the case of
constant volatilities ߪ௜ and constant risk-free interest rates ݎ௜.
Letting ݖ௜ be an element of a sample (a vector) from a
multivariate normal distribution, then discretising the price
paths into subintervals of length Δt, we obtain the following
price paths:

௜ܵሺݐ ൅ Δݐሻ െ ௜ܵሺݐሻ ൌ ௜ݎ ௜ܵሺݐሻΔݐ ൅	ߪ௜ ௜ܵሺݐሻݖ௜√Δݐ	.

It is usually more accurate and more convenient to simulate
݈݊ ௜ܵ rather than ௜ܵ. Ito’s Lemma allows us to change
variables from ௜ܵ to ݈݊ ௜ܵ, and so to express the path
followed by ௜ܵ as:

௜ܵሺݐ ൅ Δݐሻ ൌ ௜ܵሺݐሻ exp ቂቀݎ௜ െ
ఙ೔
మ

ଶ
ቁ ݐ߂ ൅ ,ቃݐ߂√௜ݖ௜ߪ

and it is processes of this form that we simulate.
The price of the option will be calculated by taking the

average over all simulation paths (trials) for each asset,
discounting back to the start time, and multiplying each
average by its respective weighting. The average over these
results will be taken to give the price estimate. This can be
expressed mathematically as:

݁ܿ݅ݎܲ ൌ
1

ݏݐ݁ݏݏܣ݉ݑ݊

 ൈ

෍ ௜ݐ݄݃݅݁ݓ ൈ ݂݋ݕ݄ܽܲݐܽ݌ ௜݂

௡௨௠஺௦௦௘௧௦ିଵ

௜ୀ଴

ൈ ݁ି௥௔௧௘೔ൈ௛௢௟ௗ௜௡௚்௜௠௘

with

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

݂݋ݕ݄ܽܲݐܽ݌ ௜݂ ൌ

1
ݏ݄ݐܽܲ݉ݑ݊

෍ ݂݋ݕ݄ܽܲݐܽ݌ ௜݂௝ሺ݄݈݁݉݅ܶ݃݊݅݀݋ሻ
௡௨௠௉௔௧௛௦ିଵ

௝ୀ଴

where ݂݋ݕ݄ܽܲݐܽ݌ ௜݂௝ሺ݄݈݁݉݅ܶ݃݊݅݀݋ሻ is the estimate of the
value of asset i, on simulation j for that asset, at the end of
the holding time of the option.

IV. METHODOLOGY AND EXPERIMENTAL SETUP

In these experiments (for both the basket option pricing
and the CUDA/OpenCL comparison) an NVidia GTX670
GPU was used and compared against an Intel Xeon 3.3GHz
CPU. This GPU has 1344 cores, with each running at
980MHz. We compare OpenCL version 1.2 (see [10]) and
CUDA version 4.0.

At the heart of the Monte Carlo implementation is the
generation of random numbers. For our experiments, we
used the CUDA-based CURAND library (see [11]) to
generate large blocks of random numbers (the generators in
this library can be used on both the host and the GPU(s)).
The random numbers needed for the path simulations were
standard normal deviates, and these are produced by the
library functions by applying a Box-Muller transform to
uniformly distributed random numbers. The uniform
deviates used were produced by a XORWOW generator
from the CURAND library. This generator parallelises very
well, and this contributes positively to the speedups
obtained.

Although it is beneficial, in terms of execution time, to
generate as many random numbers as possible at a time, it
was found that, for some parameter settings, the GPU card
does not have enough memory to hold all the random
numbers at once. Therefore, we implement the algorithm
using batches of random numbers, and accumulate
intermediate totals.

The following pseudo-code shows the steps involved in
the pricing of the basket option, here: ݊஺ is the number of
underlying assets, ݊௉ is the total number of paths generated,
݊஻ is the number of batches of paths generated, ݊ௌ is the
number of time steps per path, 	r୅ is the risk-free interest
rate, 	σ୅ is the volatility and z୅ is the Ath element from a
sample from the required multivariate normal distribution.

A. Pseudo-code for the Basket Option Pricer

Initiate	input	values	
For	each	batch		B		do	
	 Rൌ	Block	of	ሺ݊஺ ∗

௡ು
௡ಳ
∗ ݊ௌሻ	random	numbers	

Generate	correlated	samples	from	the	required	
distribution	using	R	values.	

	 For	each	asset		A	do	
	 	 1݈ܽݐ݋ݐ ൌ 0	
	 	 For	each	path	ܲ	do	
	 	 	 	U ൌ startprice୅	
	 	 	 For	each	step		S		do	

	 	 	 	 ܷ ൌ ܷexp	ሾቀݎ஺ െ
ఙಲ
మ

ଶ
ቁ Δݐ ൅ 	ሿݐ஺√Δݖ஺ߪ

	 	 	 ൅ൌ	1݈ܽݐ݋ݐ ܷ	
	 	 1݈ܽݐ݋ݐ ൌ 1݈ܽݐ݋ݐ ൈ

௡ಳ
௡ು
					

	 	 ൅ൌ	2஺݈ܽݐ݋ݐ 		1݈ܽݐ݋ݐ	

For	each	asset		A		do	
൅ൌ	ݎ݁ݓݏ݊ܽ 2஺݈ܽݐ݋ݐ ൈ ݁ି௥௔௧௘ಲൈ௛௢௟ௗ௜௡௚்௜௠௘	

ݎ݁ݓݏ݊ܽ ൌ
ݎ݁ݓݏ݊ܽ
݊஺

	

B. Obtaining Correlated Samples from Multivariate
 Normal Distributions

In order to obtain random samples from a multivariate
normal distribution which are correlated by the
instantaneous correlations between the ௜ܵ variables (when
the correlation matrix is symmetric and positive definite), a
Cholesky factorisation (based on that in [12]) of the
correlation matrix is performed to obtain a lower triangular
matrix. By multiplying this factorised matrix by a vector of
random univariate standard normal deviates, a vector of
correlated standard normal deviates is obtained, and this
vector is a sample from the desired multivariate normal
distribution. A vector of this type must be obtained to
simulate each time-step taken by all assets in the basket on
each path.

C. Binary Reduction on the GPU

To parallelise the summation process which occurs in the
algorithm, we use a standard binary reduction algorithm on
the GPU to calculate an intermediate sum for each thread
block. These sums are transferred to the host for final
summation to give the final result. The binary reduction
algorithm also improves the precision of the summation
result, compared with a linear summation.

D. CUDA vs. C Performance Comparison

For comparison purposes, we standardised on a fixed
number of steps (݊ௌ = 10), and recorded timings (averaged
over three runs) for three different numbers of paths (2ଵହ,
2ଶ଴ and 2ଶହ) and for three different basket sizes (8, 16 and
32 assets). For the larger numbers of paths and assets, the
processing had to be done in batches, because of memory
limitations. The memory per batch is of the order of
݊஺ ∗

௡ು
௡ಳ
∗ ݊ௌ which puts a limitation on the number of paths

per batch (and therefore on the total number of threads per
batch).

V. RESULTS AND ANALYSIS

Table I: CUDA timings and speedup over a
C implementation

Assets Total

Paths
Batches Paths/

Batches
 CUDA
time (ms)

Speedup
vs. C

8 2ଵହ 1 2ଵହ 1.3 158

8 2ଶ଴ 1 2ଶ଴ 31 251

8 2ଶହ 32 2ଶ଴ 888 284

16 2ଵହ 1 2ଵହ 3.8 118

16 2ଶ଴ 2 2ଵଽ 88 184

16 2ଶହ 64 2ଵଽ 2698 194

32 2ଵହ 1 2ଵହ 11.2 95

32 2ଶ଴ 4 2ଵ଼ 294 128

32 2ଶହ 128 2ଵ଼ 9222 130

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

A. Performance Analysis

For accurate results, it is best to focus on Monte Carlo
simulations with at least 2ଶ଴ paths. Thus the results show
that large speedups of between 128 and 284 can be achieved
on a single GPU. It can be seen that the speedup drops
when the number of assets is increased. With larger
numbers of assets, this is partly because memory limitations
reduce the number of threads (paths), with some loss of
utilisation. A more important factor, however, is the data
access patterns to the correlation matrix, an ݊஺ x ݊஺ matrix
held (in our implementation) in shared memory.
Optimisations to reduce this bottleneck are possible.

B. CUDA vs. OpenCL Performance comparison

We implemented an OpenCL version of the basket option
pricer and compared its performance with the CUDA
implementation. OpenCL and CUDA share many
similarities: both models have the idea of a host (usually a
CPU), both require memory to be allocated on the device(s),
and both require explicit transfers of data to and from the
device(s). Although these languages share many similarities,
the CURAND library is not available in OpenCL. Because
we did not have an OpenCL implementation of the
CURAND library, we do not include the random number
generation times, and use a simple Gaussian generator on
the host to obtain the random numbers. This is sufficient to
measure data transfer times from host to device and vice
versa, and to measure the pricing speeds.

C. Analysis of CUDA vs. OpenCL

Table II shows that OpenCL is faster at transferring data to
the GPU, with the difference decreasing slightly with
increasing amounts of data to transfer. The pricing column
shows that, as the amount of computation increases, the
difference in speed between the two versions decreases.
Overall, the difference between each of the two versions is
only of the order of 10% at most, and for larger amounts of
computation, OpenCL is actually faster than CUDA. It
should be noted again, however, that these timings do not
include the generation of random numbers. This actually
highlights another practical consideration to be taken into
account in relying on OpenCL as a portable programming
platform: the availability of appropriate library
implementations for the specific architecture being used.
Although the programming notation may be portable, each
hardware platform needs its own implementation of the suite
of commonly used libraries.

VI. CONCLUSIONS

This paper has explored several issues associated with the
use of a GPU to accelerate a Monte Carlo-based Basket
Option pricing engine. The study has led to several
conclusions:
(i) Very large speedups can be obtained (over 250) from a

single NVidia GTX670 GPU for realistic problem sizes.
These are significant speedups, and are for a solution to
the whole problem.

Table II: CUDA vs. OpenCL timings and comparison
(If the final column < 1.0, OpenCL is faster than CUDA)

Assets Total

Path
s

Transfer
time
(ms)

Pricing
time
(ms)

Total
Time

Open
CL/
CUDA

CUDA
8
OpenCL

2ଵହ

3.9

4.0

1.1

1.7

5.0

5.7

1.14

CUDA
8
OpenCL

2ଶ଴

80.2

80.1

24.0

25.0

104.2

105.0

1.01

CUDA
8
OpenCL

2ଶହ

2615.5

2559.9

769.9

735.4

3385.4

3295.3

0.97

CUDA
16
OpenCL

2ଵହ

7.4

7.7

3.1

3.5

10.5

11.2

1.06

CUDA
16
OpenCL

2ଶ଴

178.9

159.9

78.0

72.0

256.9

231.9

0.90

CUDA
16
OpenCL

2ଶହ

5166.4

5140.3

2475.4

2265.1

7641.8

7405.4

0.97

CUDA
32
OpenCL

2ଵହ

11.6

10.3

10.0

9.6

21.6

19.9

0.92

CUDA
32
OpenCL

2ଶ଴

324.3

316.5

278.3

246.8

602.6

563.3

0.93

CUDA
32
OpenCL

2ଶହ

10141.1

10121.3

8365.1

7858.3

18506.2

17979.6

0.97

 (ii) The speedup over a standard C implementation reduces

(by approximately half, to around 130) when we
quadruple the number of assets (from 8 to 32). One
reason for this is the data access patterns to the shared
correlation matrix, which introduces an overhead of
order (number of assets)2. Further optimisations could
reduce this bottleneck, but would not necessarily be
portable across different hardware platforms.

(iii) An OpenCL implementation was developed and
compared with the CUDA version. This showed that
OpenCL for larger problem sizes was actually a little
faster than the CUDA implementation, though both
were within 10% of the other. It is noted that the
CUDA implementation did not explore some very
architecture-specific optimisations.

(iv) A practical consideration when considering the use of
OpenCL is whether or not key libraries are available in
OpenCL for the specific architecture in question (e.g.
for random number generation). Although the notation
of OpenCL may be portable, the library

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

implementations are normally not, even if they are
available.

Ongoing research is investigating the performance of the
Basket Option pricing engine on a multi-core CPU using the
SSE vector processing instruction set.

REFERENCES
[1] A. Bernemann, R. Schreyer and K. Spanderen, “Accelerating Exotic

Option Pricing and Model Calibration Using GPUs” (February
2011). Available at SSRN: http://ssrn.com/abstract=1753596 or
http://dx.doi.org/10.2139/ssrn.1753596

[2] M. Dixon, J. Chong, K. Keutzer, “Acceleration of Market Value-at-
Risk Estimation,” Proceedings of the 2nd Workshop on High
Performance Computational Finance (WHPCF '09), 2009.

[3] S. Solomon, K. R. Thulasiram, P. Thulasiraman, "Option Pricing on
the GPU," hpcc-icess, 2010 IEEE 12th International Conference on
High Performance Computing and Communications, 2010. pp.289-
296.

[4] P. Glasserman, Monte Carlo Methods in Financial Engineering,
Springer, 2004.

[5] OpenCL for Altera FPGAs: Accelerating Performance and Design
Productivity
http://www.altera.com/products/software/opencl/opencl-index.html

[6] K. Karimi, N. G. Dickson and F. Hamze, 2010, “A Performance
Comparison of CUDA and OpenCL,” Available at
http://arxiv.org/abs/1005.2581.

[7] J. Fang, A. L. Varbanescu and H. Sips, “A Comprehensive
Performance Comparison of CUDA and OpenCL,” Proc. 2011
International Conference on Parallel Processing, Delft, Sept. 2011.
pp. 216 – 225.

[8] K. Komatsu, K Sato, Y. Arai, K. Koyama, H. Takizawa, and H.
Kobayashi. "Evaluating performance and portability of OpenCL
programs." In The Fifth International Workshop on Automatic
Performance Tuning (iWAPT2010), 2010.

[9] J. C. Hull, Options, Futures and Other Derivatives, 7th Edition,
Pearson Education, 2010.

[10] The OpenCL Specification
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[11] CUDA Toolkit 4.0 CURAND Guide.
[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,

Numerical Recipes in C, Second Edition, Cambridge University
Press, 1992.

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

