
 

 
Abstract— One of the most important methods for pricing 

complex derivatives is Monte Carlo simulation. However, this 
method requires a large amount of computing resources for 
accurate estimates. Since Monte Carlo simulations used in 
derivatives pricing are often parallelisable, one way to reduce 
the computing time is to use GPUs, which allow many copies of 
the same process to be run in parallel with different data. 

This paper first presents a GPU implementation of a Basket 
Option pricing engine and an analysis of the timing and 
memory resources for different algorithm parameters.  The 
results show that, on an NVidia GTX670 card using NVidia’s 
proprietary CUDA programming platform, a speedup of over 
250 can sometimes be achieved compared with a sequential C 
implementation.   

To produce more portable code which will run on a range of 
different parallel architectures, OpenCL is becoming popular.  
However, users can be reluctant to adopt OpenCL in case they 
lose performance compared with an architecture-specific 
programming platform such as NVidia’s CUDA, particularly 
when high speed-ups are at stake.  This paper secondly reports 
experiments which show that, all things being equal, the 
performance of OpenCL and CUDA implementations are 
within approximately 10% of each other, with the OpenCL 
implementation sometimes being the faster.  This suggests that 
OpenCL is a viable programming platform for GPU 
acceleration of pricing engines, even when aiming for high 
speed-up factors of 100-300. 

 
Index Terms— Acceleration, GPU, OpenCL, Options 

Pricing 

I. INTRODUCTION 

One of the most important methods for pricing complex 
derivatives, and sometimes the only practical one, is Monte 
Carlo simulation. This method is commonly used, but it 
requires a large number of simulations to achieve an 
accurate price estimate.  This in turn requires a large amount 
of computing resources. Since Monte Carlo simulations 
used in derivatives pricing are often parallelisable, one way 
to reduce the computing time is to use multi-core CPUs or 
many-core GPUs, which allow many copies of the same 
process to be run in parallel with different data. The 
technology currently employed by many financial 
institutions is grid computing, and this often involves 
sending data out to a central computing grid, which can 
cause security issues. These grids also consume a lot of  
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energy, in comparison to that consumed by GPUs, for the 
same amount of computation. 

In order to aid developers, manufacturers of GPUs have 
developed programming languages for their products which 
allow them to be used for more general purpose computing. 
GPUs consist of many hardware managed single instruction 
multiple data (SIMD) units, each of which can have multiple 
threads running at once. These multithreaded processors 
were originally designed to process large numbers of pixels 
very efficiently for graphics processing applications, and so 
will work well when data can be broken up into smaller 
pieces and these pieces processed independently. 

This paper focuses on accelerating a Basket Option 
derivative pricing engine using an NVidia GPU (the 
GTX670).  For programming NVidia GPUs, one proprietary 
programming language is NVidia’s CUDA (released in 
2006).  Many authors (see e.g. [1], [2], [3]) have shown that 
using the CUDA programming platform on NVidia GPUs is 
highly effective for accelerating option pricing and risk 
calculation. This paper firstly describes the implementation 
of a Basket Option derivative pricing engine on an NVidia 
GTX670 GPU, and reports a speed-up of over 200 
compared to a single-core CPU implementation.  However, 
using CUDA restricts developers to writing code that only 
operates on NVidia GPUs, and with the constant changing 
and updating of the set of parallel architectures available 
today, algorithm developers would like their code to be able 
run on a range of different current and future architectures.  
One potentially portable cross-platform programming 
language, which may allow them to achieve this goal, is 
OpenCL.  This paper also investigates whether the very high 
speed-up of the CUDA implementation can be retained 
when the pricing engine is coded in OpenCL, even though it 
is not architecture-specific. 

For a financial company considering investing in GPU 
implementation, the following questions arise:  

- What speedups can a GPU offer? 
- Which programming platform gives greater 

speedups? 
- If code portability is required (through the use of 

OpenCL), what are the performance costs, if any? 
This paper presents a GPU implementation of a basket 

option pricing engine and a comparison of OpenCL and 
CUDA for implementing it. We compare a combination of 
three kernel functions which make up this pricer: the first 
generates correlated samples from normally distributed 
random numbers, the second generates the price paths and 
the third performs a binary reduction. 
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II. RELATED WORK 

In the area of derivatives pricing and risk calculation, 
there is always a demand for increased computational 
capacity. An important, and often indispensable, tool for 
these types of calculations is Monte Carlo simulation.  
However, a large number of price path simulations need to 
be carried out in order to obtain an accurate enough answer. 

Situations in which Monte Carlo methods are most useful 
usually involve at least one of the following (see [4]): 
complex asset price dynamics, path dependence of the 
derivatives, or hedging strategies depending on more than 
two or three underlying assets. Basket options fall into at 
least the last of these categories, and so it is appropriate to 
use Monte Carlo methods to price them. 

The use of GPUs for accelerating Monte Carlo 
simulations has been investigated. Bernemann et al [1] give 
an example of an exotic option pricing system that uses 
GPUs, although only path generation is implemented on the 
GPUs (and a speedup factor of around 100x for 1 GPU over 
1 CPU is achieved), and it is stated that, for products that 
require payoffs to be calculated frequently, it may be better 
also to implement the payoffs on the GPU. Their paper 
describes the pricing of basket options (options on 
combinations of equity underlyings) with up to 30 
underlyings, and it is evident that, for a large number of 
underlyings, the GPU does not have enough memory.  

In a study by Dixon et al [2], the importance of speeding 
up risk calculations is stressed.  Their approach is to use a 
quadratic approximation to the loss function of a portfolio, 
and to use low-discrepancy sequences to increase the 
convergence rate of the Monte Carlo simulation. Very large 
speedups are achieved (up to 148x), which shows how 
suitable GPUs are in this situation. 

In [3], Solomon et al. implement a trinomial lattice pricer 
for European options and a binomial lattice pricer for 
American lookback options. They find that, for large 
numbers of time-steps (between 1000 and 30,000), the GPU 
gives speedups which increase, almost linearly, up to 101x 
(for 30,000 steps). This shows that GPUs can also be useful 
when using other types of options pricing methods. It is also 
found that “above 30,000 steps, the accuracy is no longer 
able to maintain reliable precision with the CPU version”.   

 More recently, a new open programming language, 
OpenCL (Open Computing Language), has been developed 
(first released in 2009). It allows programmers to write code 
that can be executed on many different compute devices 
with very minor modification. This includes devices such as: 
multicore CPUs, Cell Broadband Engines, FPGAs [5] and 
GPUs, including NVidia GPUs. When using OpenCL, 
programmers write code for an abstract memory model 
rather than for that of a specific architecture, and this allows 
for portability. 

In a comparison between OpenCL and CUDA for Monte 
Carlo simulations of a Quantum system, Karimi et al. [6] 
find that CUDA performed better when transferring data to 
and from the GPU and they did not see any considerable 
change in OpenCL’s relative data transfer performance as 
more data were transferred. CUDA’s kernel execution was 
also consistently faster than OpenCL’s, despite the two 
implementations running nearly identical code. 

 

 
A more comprehensive comparison between CUDA 

(version 3.2) and OpenCL is carried out by Fang et al. [7]. 
They find that CUDA performs at most 30% better than 
OpenCL and they also show that this difference is due to 
“unfair comparisons”.  In total, 14 benchmarks are used, 
including matrix multiplication, Fast Fourier Transform, 
molecular dynamics and sorting. By changing code and 
analysing PTX (Parallel Thread Execution) codes (low level 
NVidia GPU code) it is shown that “the performance gaps 
between OpenCL and CUDA are due to programming 
model differences, different optimisations on native kernels, 
architecture related differences, and compiler differences”.  
They also found that OpenCL outperformed CUDA in 
achieved peak bandwidth by 8.5% on GTX280 and 2.4% on 
GTX480 in a bandwidth test. 

Komatsu et al. [8] compare CUDA 3.0 and OpenCL 1.0 
for several kernel functions, including matrix multiplication. 
They find that manual optimisation removes any significant 
performance difference. The use of OpenCL to make 
comparisons between NVidia and AMD GPUs is also 
investigated, and it is found that the optimisation option of 
the OpenCL C compiler and the work-group size need to be 
adjusted for each GPU to obtain the best performance. 

III. THE OPTION PRICING MODEL 

Following Hull [9], the case of a basket option whose 
payoff depends on n variables ௜ܵ ሺ0 ൑ ݅ ൏ ݊ሻ will be 
investigated. Attention will be restricted to the case of 
constant volatilities ߪ௜ and constant risk-free interest rates ݎ௜. 
Letting ݖ௜ be an element of a sample (a vector) from a 
multivariate normal distribution, then discretising the price 
paths into subintervals of length Δt, we obtain the following 
price paths: 

௜ܵሺݐ ൅ Δݐሻ െ ௜ܵሺݐሻ ൌ ௜ݎ ௜ܵሺݐሻΔݐ ൅	ߪ௜ ௜ܵሺݐሻݖ௜√Δݐ	. 

It is usually more accurate and more convenient to simulate 
݈݊ ௜ܵ rather than ௜ܵ. Ito’s Lemma allows us to change 
variables from ௜ܵ to ݈݊ ௜ܵ, and so to express the path 
followed by ௜ܵ as: 

௜ܵሺݐ ൅ Δݐሻ ൌ ௜ܵሺݐሻ exp ቂቀݎ௜ െ
ఙ೔
మ

ଶ
ቁ ݐ߂ ൅  ,ቃݐ߂√௜ݖ௜ߪ

and it is processes of this form that we simulate. 
The price of the option will be calculated by taking the 

average over all simulation paths (trials) for each asset, 
discounting back to the start time, and multiplying each 
average by its respective weighting. The average over these 
results will be taken to give the price estimate. This can be 
expressed mathematically as: 

 

݁ܿ݅ݎܲ ൌ
1

ݏݐ݁ݏݏܣ݉ݑ݊
 

          
    ൈ 
 

෍ ௜ݐ݄݃݅݁ݓ ൈ ݂݋ݕ݄ܽܲݐܽ݌ ௜݂

௡௨௠஺௦௦௘௧௦ିଵ

௜ୀ଴

ൈ ݁ି௥௔௧௘೔ൈ௛௢௟ௗ௜௡௚்௜௠௘ 

 
with 
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݂݋ݕ݄ܽܲݐܽ݌ ௜݂ ൌ 

1
ݏ݄ݐܽܲ݉ݑ݊

෍ ݂݋ݕ݄ܽܲݐܽ݌ ௜݂௝ሺ݄݈݁݉݅ܶ݃݊݅݀݋ሻ
௡௨௠௉௔௧௛௦ିଵ

௝ୀ଴

 

where ݂݋ݕ݄ܽܲݐܽ݌ ௜݂௝ሺ݄݈݁݉݅ܶ݃݊݅݀݋ሻ is the estimate of the 
value of asset i, on simulation j for that asset, at the end of 
the holding time of the option. 

IV. METHODOLOGY AND EXPERIMENTAL SETUP 

In these experiments (for both the basket option pricing 
and the CUDA/OpenCL comparison) an NVidia GTX670 
GPU was used and compared against an Intel Xeon 3.3GHz 
CPU. This GPU has 1344 cores, with each running at 
980MHz. We compare OpenCL version 1.2 (see [10]) and 
CUDA version 4.0. 

At the heart of the Monte Carlo implementation is the 
generation of random numbers.  For our experiments, we 
used the CUDA-based CURAND library (see [11]) to 
generate large blocks of random numbers (the generators in 
this library can be used on both the host and the GPU(s)). 
The random numbers needed for the path simulations were 
standard normal deviates, and these are produced by the 
library functions by applying a Box-Muller transform to 
uniformly distributed random numbers. The uniform 
deviates used were produced by a XORWOW generator 
from the CURAND library. This generator parallelises very 
well, and this contributes positively to the speedups 
obtained. 

Although it is beneficial, in terms of execution time, to 
generate as many random numbers as possible at a time, it 
was found that, for some parameter settings, the GPU card 
does not have enough memory to hold all the random 
numbers at once.  Therefore, we implement the algorithm 
using batches of random numbers, and accumulate 
intermediate totals.   

The following pseudo-code shows the steps involved in 
the pricing of the basket option, here: ݊஺ is the number of 
underlying assets, ݊௉ is the total number of paths generated, 
݊஻ is the number of batches of paths generated, ݊ௌ is the 
number of time steps per path, 	r୅ is the risk-free interest 
rate, 	σ୅ is the volatility and z୅ is the Ath element from a 
sample from the required multivariate normal distribution. 

 

A. Pseudo-code for the Basket Option Pricer 

Initiate	input	values	
For	each	batch		B		do	
	 Rൌ	Block	of	ሺ݊஺ ∗

௡ು
௡ಳ
∗ ݊ௌሻ	random	numbers	

Generate	correlated	samples	from	the	required	
distribution	using	R	values.	

	 For	each	asset		A	do	
	 	 1݈ܽݐ݋ݐ ൌ 0	
	 	 For	each	path	ܲ	do	
	 	 	 	U ൌ startprice୅	
	 	 	 For	each	step		S		do	

	 	 	 	 ܷ ൌ ܷexp	ሾቀݎ஺ െ
ఙಲ
మ

ଶ
ቁ Δݐ ൅ 	ሿݐ஺√Δݖ஺ߪ

	 	 	 ൅ൌ	1݈ܽݐ݋ݐ ܷ	
	 	 1݈ܽݐ݋ݐ ൌ 1݈ܽݐ݋ݐ ൈ

௡ಳ
௡ು
					

	 	 ൅ൌ	2஺݈ܽݐ݋ݐ 		1݈ܽݐ݋ݐ	

For	each	asset		A		do	
൅ൌ	ݎ݁ݓݏ݊ܽ 2஺݈ܽݐ݋ݐ ൈ ݁ି௥௔௧௘ಲൈ௛௢௟ௗ௜௡௚்௜௠௘	

ݎ݁ݓݏ݊ܽ ൌ
ݎ݁ݓݏ݊ܽ
݊஺

	

 

B. Obtaining Correlated Samples from Multivariate  
      Normal Distributions 

In order to obtain random samples from a multivariate 
normal distribution which are correlated by the 
instantaneous correlations between the ௜ܵ variables (when 
the correlation matrix is symmetric and positive definite), a 
Cholesky factorisation (based on that in [12]) of the 
correlation matrix is performed to obtain a lower triangular 
matrix. By multiplying this factorised matrix by a vector of 
random univariate standard normal deviates, a vector of 
correlated standard normal deviates is obtained, and this 
vector is a sample from the desired multivariate normal 
distribution. A vector of this type must be obtained to 
simulate each time-step taken by all assets in the basket on 
each path. 

C. Binary Reduction on the GPU 

To parallelise the summation process which occurs in the 
algorithm, we use a standard binary reduction algorithm on 
the GPU to calculate an intermediate sum for each thread 
block.  These sums are transferred to the host for final 
summation to give the final result.  The binary reduction 
algorithm also improves the precision of the summation 
result, compared with a linear summation. 

D. CUDA vs. C Performance Comparison 

For comparison purposes, we standardised on a fixed 
number of steps (݊ௌ = 10), and recorded timings (averaged 
over three runs) for three different numbers of paths (2ଵହ, 
2ଶ଴ and 2ଶହ) and for three different basket sizes (8, 16 and 
32 assets).  For the larger numbers of paths and assets, the 
processing had to be done in batches, because of memory 
limitations.  The memory per batch is of the order of 
݊஺ ∗

௡ು
௡ಳ
∗ ݊ௌ which puts a limitation on the number of paths 

per batch (and therefore on the total number of threads per 
batch). 

V. RESULTS AND ANALYSIS 

Table I:  CUDA timings and speedup over a  
C implementation 

 
Assets Total 

Paths 
Batches Paths/ 

Batches 
 CUDA 
time (ms) 

Speedup 
vs. C 

8 2ଵହ 1 2ଵହ 1.3 158 

8 2ଶ଴ 1 2ଶ଴ 31 251 

8 2ଶହ 32 2ଶ଴ 888 284 

16 2ଵହ 1 2ଵହ 3.8 118 

16 2ଶ଴ 2 2ଵଽ 88 184 

16 2ଶହ 64 2ଵଽ 2698 194 

32 2ଵହ 1 2ଵହ 11.2 95 

32 2ଶ଴ 4 2ଵ଼ 294 128 

32 2ଶହ 128 2ଵ଼ 9222 130 
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A. Performance Analysis 

For accurate results, it is best to focus on Monte Carlo 
simulations with at least 2ଶ଴ paths.  Thus the results show 
that large speedups of between 128 and 284 can be achieved 
on a single GPU.  It can be seen that the speedup drops 
when the number of assets is increased.  With larger 
numbers of assets, this is partly because memory limitations 
reduce the number of threads (paths), with some loss of 
utilisation.  A more important factor, however, is the data 
access patterns to the correlation matrix, an ݊஺ x ݊஺ matrix 
held (in our implementation) in shared memory.  
Optimisations to reduce this bottleneck are possible. 

B. CUDA vs. OpenCL Performance comparison 

We implemented an OpenCL version of the basket option 
pricer and compared its performance with the CUDA 
implementation. OpenCL and CUDA share many 
similarities: both models have the idea of a host (usually a 
CPU), both require memory to be allocated on the device(s), 
and both require explicit transfers of data to and from the 
device(s). Although these languages share many similarities, 
the CURAND library is not available in OpenCL.  Because 
we did not have an OpenCL implementation of the 
CURAND library, we do not include the random number 
generation times, and use a simple Gaussian generator on 
the host to obtain the random numbers. This is sufficient to 
measure data transfer times from host to device and vice 
versa, and to measure the pricing speeds.  

 

C. Analysis of CUDA vs. OpenCL 

Table II shows that OpenCL is faster at transferring data to 
the GPU, with the difference decreasing slightly with 
increasing amounts of data to transfer. The pricing column 
shows that, as the amount of computation increases, the 
difference in speed between the two versions decreases. 
Overall, the difference between each of the two versions is 
only of the order of 10% at most, and for larger amounts of 
computation, OpenCL is actually faster than CUDA.  It 
should be noted again, however, that these timings do not 
include the generation of random numbers.  This actually 
highlights another practical consideration to be taken into 
account in relying on OpenCL as a portable programming 
platform: the availability of appropriate library 
implementations for the specific architecture being used.  
Although the programming notation may be portable, each 
hardware platform needs its own implementation of the suite 
of commonly used libraries. 

 

VI. CONCLUSIONS 

This paper has explored several issues associated with the 
use of a GPU to accelerate a Monte Carlo-based Basket 
Option pricing engine.  The study has led to several 
conclusions: 
(i) Very large speedups can be obtained (over 250) from a 

single NVidia GTX670 GPU for realistic problem sizes.  
These are significant speedups, and are for a solution to 
the whole problem. 

 
 

 

Table II:  CUDA vs. OpenCL timings and comparison 
(If the final column < 1.0, OpenCL is faster than CUDA) 

 
Assets Total 

Path
s 

Transfer 
time 
(ms) 

Pricing 
time 
(ms) 

Total 
Time 

Open
CL/ 
CUDA 

CUDA 
8 
OpenCL 

 
2ଵହ 

3.9 
 
4.0 

1.1 
 
1.7 

5.0 
 
5.7 

 
1.14 

CUDA 
8 
OpenCL 

 
2ଶ଴ 

80.2 
 
80.1 

24.0 
 
25.0 

104.2 
 
105.0 

 
1.01 

CUDA 
8 
OpenCL 

 
2ଶହ 

2615.5 
 
2559.9 

769.9 
 
735.4 

3385.4 
 
3295.3 

 
0.97 

CUDA 
16 
OpenCL 

 
2ଵହ 

7.4 
 
7.7 

3.1 
 
3.5 

10.5 
 
11.2 

 
1.06 

CUDA 
16 
OpenCL 

 
2ଶ଴ 

178.9 
 
159.9 

78.0 
 
72.0 

256.9 
 
231.9 

 
0.90 

CUDA 
16 
OpenCL 

 
2ଶହ 

5166.4 
 
5140.3 

2475.4 
 
2265.1 

7641.8 
 
7405.4 

 
0.97 

CUDA 
32 
OpenCL 

 
2ଵହ 

 

11.6 
 
10.3 

10.0 
 
9.6 

21.6 
 
19.9 

 
0.92 

CUDA 
32 
OpenCL 

 
2ଶ଴ 

324.3 
 
316.5 

278.3 
 
246.8 

602.6 
 
563.3 

 
0.93 

CUDA 
32 
OpenCL 

 
2ଶହ 

10141.1 
 
10121.3 

8365.1 
 
7858.3 

18506.2 
 
17979.6 

 
0.97 

 
 
 (ii)  The speedup over a standard C implementation reduces 

(by approximately half, to around 130) when we 
quadruple the number of assets (from 8 to 32).  One 
reason for this is the data access patterns to the shared 
correlation matrix, which introduces an overhead of 
order (number of assets)2.  Further optimisations could 
reduce this bottleneck, but would not necessarily be 
portable across different hardware platforms. 

(iii) An OpenCL implementation was developed and 
compared with the CUDA version.  This showed that 
OpenCL for larger problem sizes was actually a little 
faster than the CUDA implementation, though both 
were within 10% of the other.  It is noted that the 
CUDA implementation did not explore some very 
architecture-specific optimisations. 

(iv) A practical consideration when considering the use of 
OpenCL is whether or not key libraries are available in 
OpenCL for the specific architecture in question (e.g. 
for random number generation).  Although the notation 
of OpenCL may be portable, the library 
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implementations are normally not, even if they are 
available. 

 
Ongoing research is investigating the performance of the 
Basket Option pricing engine on a multi-core CPU using the 
SSE vector processing instruction set. 
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