

Abstract— Maintenance is an important activity in the

software life cycle. No software product can do without

undergoing the process of maintenance. Estimating a

software’s maintainability effort and cost is not an easy task

considering the various factors that influence the proposed

measurement. Hence, Artificial Intelligence (AI) techniques

have been used extensively to find optimized and more accurate

maintenance estimations. In this paper, we propose an

Evolutionary Neural Network (NN) model to predict software

maintainability. The proposed model is based on a hybrid

intelligent technique wherein a neural network is trained for

prediction and a genetic algorithm (GA) implementation is used

for evolving the neural network topology until an optimal

topology is reached. The model was applied on a popular open

source program, namely, Android. The results are very

promising, where the correlation between actual and predicted

points reaches 0.91.

Index Terms— Maintenance Prediction, Genetic Algorithm,

hyprid AI, Software Maintenance

I. INTRODUCTION

EURAL network is a computation algorithm

resembling the brain. It is a schematic graph of a set of

nodes called input, another set of nodes called output and a

set of hidden unknown layers connecting both ends. Neural

networks are ultimately used for training. The strength of

neural networks lies in its capability to be a function

approximation. Input and output nodes or neurons are

connected with different values of weights by adjusting the

weights. Artificial Neural Networks (ANN) is capable of

minimizing the error of mapping input to output. Based on

the number of neurons in each layer and the number of

hidden layers between the input and the output, neural

networks are believed to be capable of mapping any function

theoretically. The purpose of ANN is used for classification

Manuscript received March 18, 2031; revised April 3, 2013. This work

was supported the Deanship of Scientific Research (DSR) at King Fahd

University of Petroleum & Minerals (KFUPM).

Abdulrahman Ahmed Bobakr Baqais is a PhD at the Department of

Information and Computer Science, King Fahd University of Petroleum

and Minerals, Dhahran, 31261, Saudi Arabia (corresponding author to

provide e-mail: baqais@kfupm.edu.sa).

Moahammad Alshayeb is with the Department of Information and

Computer Science, King Fahd University of Petroleum and Minerals,

Dhahran, 31261, Saudi Arabia (e-mail: alshayeb@kfupm.edu.sa).

Zubair A. Baig is with the Department of Computer Engineering, King

Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi

Arabia (e-mail: zbaig@kfupm.edu.sa).

based on test data and mapping function learning.

Evolutionary computing refers to a computer algorithm

which has the ability to evolve through multiple runs to

optimize a given problem. Evolution indicates that out of the

population set, the algorithm can provide a solution space

where optimized solutions are presented and inadequate

solutions are removed in the process, to be replaced with

better ones. Evolutionary computing is based on the

fundamentals of the theory of evolution, where the survival

is only for the best. Gradually, different terminologies have

crept in to the field, such as evolutionary programming,

genetic algorithms, and genetic programming. Genetic

algorithms are an extension to the concept of evolutionary

computing. The genetic algorithm is based on the following

main steps:

 Initialization of population based on randomness.

 Computing the fitness function.

 Selection of a solution from the solution pool based

on order of the fitness function.

 Applying primitive GA operations for updating the

solutions, and

 Stopping at a termination criteria.

Benefits of genetic algorithms include robustness and ease

of implementation, but suffer from the number of runs to

produce the final solutions as it may stick into local optimum

points. 30 different runs are an acceptable minimum [21].

Back propagation of neural network is a "typical

delegate"[9]. Neural Network may suffer from local

minimum and also from the slowness of convergence.

Hence, a combination of GA and ANN may overcome these

issues. ANN can be used for training and to build prediction

models while GA can be used to speed up the process of

ANN by tuning up the design parameters of the ANN [9]. It

must be noted that a good design of the model with tuning

some parameters can enhance the speed of convergence [2].

Combining neural networks and GA in one model has been

investigated and built by different researchers [22]-[26].

The objective of this paper is to build a an artificial

intelligence model, based on neural networks and

evolutionary computing in a hybrid fashion, in order to

obtain high prediction of the software maintenance.

II. BACKGROUND

Maintenance is an important phase in the software life

cycle. Software intrinsically preserves the property of being

modified, altered, and improved or corrected [10]. It is

inevitable for any software product to undergo the process of

Hybrid Intelligent Model for Software

Maintenance Prediction

Abdulrahman Ahmed Bobakr Baqais, Mohammad Alshayeb, and Zubair A. Baig

N

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

maintenance. It has been reported that a high spike of the

software project cost lies within the maintenance phase [15]

[11]. Hence, there has been a tremendous effort by many

researchers to provide means in the form of some measures

to predict the maintainability of the software [10], [12], [13]

[16], [17]. That is, researchers have been investigating the

factors that classify software as maintainable and easily

modified. To formalize our discussion of the software

maintainability and set a common ground of the concept, the

following definitions are presented [13]:

“Maintenance: The process of modifying a software

system or component after delivery to correct faults,

improve performance or other attributes, or adapt to a

changed environment”.

 “Maintainability: The ease with which a software system

or component can be modified to correct faults, improve

performance or other attributes, or adapt to a changed

environment”.

There are different aspects of maintenance that must be

dealt separately to ensure an overall measurement of the

process:

“Corrective Maintenance: Maintenance performed to

correct faults in hardware or software”.

 “Adaptive Maintenance: Software maintenance

performed to make a computer program usable in a changed

environment”.

“Perfective Maintenance: Software maintenance

performed to improve the performance, maintainability, or

other attributes of a computer program”.

Another aspect of maintainability that has been proposed

in the past few years is prevention. Preventive software

maintenance [18] “refers to all activities that are prepared

and decided upon regularly, for example annually, in co-

operation between the client and the maintainer

organizations, and are based on the joint analyses of the

present condition as well as the forecasted needs of the

software”.

III. PREVIOUS WORK:

To provide a coherent overview of the previous work in

predicting maintainability, we are going to present previous

effort in measuring and predicting maintainability followed

by papers that utilize AI techniques for prediction.

A. Maintainability Measurementand Prediction:

Estimating software’s maintainability effort and cost is not

an easy task due to the various factors that influence the

proposed measurement. It is clear from the above definitions

that maintenance is a wide concept that covers many aspects

in a heterogeneous manner. That is, the optimality of one

maintenance aspect is not orthogonally correlated to other

aspects. Nguyen and Boehm [16] assessed the maintenance

effort on different aspects of maintenance. The study was

directed to answer two hypotheses relating to relationship

between maintenance types and effort. The first hypothesis

assumes that for different types of maintenance, the

productivity required is almost similar. The second

hypothesis is related to the effort conjecturing that

performing any of maintenance type will demand an even

division of effort. The result of the study negates both

hypotheses and shows different proportions of effort and

productivity to maintenance aspect. This may give a glimpse

of the complexity involved in estimating the maintainability

effort and cost.

Another reason behind the difficulty of predicting

maintainability effort is the time where maintenance activity

occurs in the software development life cycle. Maintenance

is performed in the last phase of software life cycle and its

duration and effort is dynamically affected by the effort and

duration of previous phases. Oman and Hagemeister [17]

provided a framework to include all of these factors and

classified them into different categories. These categories

are:

 The procedures and management approaches which

have been employed during the course of the

software project.

 Environmental factors associated with the hardware

and software available in the intended system.

 The intended system itself which is the main concern

in this paper.

One of the most popular maintainability metrics is called

Maintainability Index (MI) [19]. It was proposed by

Software Engineering Institute (SEI) in Carnegie Mellon

University. MI is a maintainability metric that predicts the

cost of maintainability based on the source code. This is an

interesting feature that allows the project team to be able to

predict the maintenance effort while developing the code

and adjusting the costs accordingly. MI is calculated based

on polynomial formula that can be simply calculated based

on the code lines, comments and complexity of the code as

illustrated below [19]:

171 5.2 * ln() 0.23 * (') 16.2 * ln()

50 * sin((2.4 *))

aveV aveV g aveLOC

sqrt perCM

 (1)

The terms are defined as follows:

aveV = average Halstead Volume V per module

aveV(g’) = average extended cyclomatic complexity per

module (aveLOC = the average count of lines of code (LOC)

per module;)

perCM = average percent of lines of comments per

module (optional).

In [16] a controlled experiment on the relationship

between predicting the effort for maintenance and the

maintenance tasks (enhancement, modification or

correction). The authors asked subjects to perform different

strategies with various maintenance tasks. The experiment

was based on a source code for a painter program written in

java. The result shows that the estimation effort is not

consistent for different kinds of maintenance.

Maintainability can be measured and predicted based on

the quality metrics since fewer bugs is an indicator of high

quality [20]. The linkage to maintenance is obvious and

interlinked. Fewer bugs lead to a reduced number of

maintenance effort and then higher quality software. Though

maintainability is not constrained to size and number of

bugs, the size of bugs detected can indicate the level of

maintainability of the software.

The effort spent on writing code is correlated with

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

maintainability [4]. Hayes and Zhao [4] built a prediction

model named (MainPredMo). The model takes three metrics

into consideration requirement collection effort, designing

effort and coding effort. The experiment was conducted and

coding effort correlation with maintainability is realized.

 Though software development share common process

activities and life cycle phases, they differ in the underlying

paradigm on which they are going to be built. Many of the

maintainability metrics in the literature are targeting

functional or structural programming models where

extending these metrics to include object oriented software

may not be applicable. An effort to study different

maintainability metrics and apply it on an object oriented

paradigm was presented in [12]. In this study four groups of

metrics were assessed to conclude their direct influence on

maintainability. Size, cohesion, coupling and inheritance

metric groups were empirically analyzed to understand their

relationship with maintainability based on one software

written in java acquired by the authors. The result shows that

size of the code and the coupling metrics are strong

candidate to provide an accurate prediction of the

maintainability measurement.

B. AI for Maintainability Prediction:

The choice of an AI technique model for maintainability

is not solely and necessarily depending on the strength of the

model but on the ease of finding prediction and building

accurate models [3]. There have been many attempts to build

solutions based on GA but unfortunately they can’t be

applied in practical environments due to the assumption of

infinity time or resources. Moreover, some authors justify

the applicability of GA to their problems based on seemingly

fruitful results without considering the reasons, limits or

implicit assumptions in the target problem.

Different attempts have been made to relate GA solutions

mechanism to the domain of SE problems [1] [5] [6]. In [1]

many software engineering problems have been presented

such as scheduling of software projects, testing and

verification and risk optimization. Garcia et al. [5]

acknowledged the importance of genetic algorithm in

assisting software engineering researchers in conducting

their experiments. In [6] the author argued that most of GA

solutions presented in the SE literature are solely based on

experimental data. The need of a solid theoretical proof to

support the hypothesis of the applicability of GA is crucial,

however, it was left out in most of the papers [1].

In [10] the authors presented a review of the papers that

use source code metrics as successful predictors of

maintainability index and maintainability predictor based on

the size of the code which are very popular for measuring

maintainability. In [7] a maintainability predictor based on

TreeNet was proposed. TreeNet is commonly known as

multiple additive regressions Tree (MART). They have run

their experiment on two popular datasets in the

maintainability domain known as UIMS and QUES. UIMS

is a dataset of classes designed for a user interface system in

which there are around 39 classes while QUES dataset

contains 71 classes [7]. The paper provides competitive

results to other prediction approaches such as Multivariate

adaptive regression splines MARS [3], Multiple Linear

Regression (MLR), Support Vector Regression (SVR),

Artificial Neural Network (ANN) and Regression Tree (RT).

In [14] Sharawat applied neural network solution to predict

maintainability of OO Program using the common metric:

Maintainability Index (MI).

Other researchers use neural Network to predict the

quality of software by measuring change effort [8]. Quah

and Thwin [8] presented some OO metrics that evidently

have a direct impact on the maintainability. These metrics

are:

Depth of Inheritance Tree (DIT):

Specifies the level at which the class is built in Inheritance

hierarchy [27].

Response for a class (RFC):

Measures the degree at which the class responds to a

message [27]

Weighted Method per Class (WMC):

This gives the complexity of a class by measuring the

number of methods and properties it has [27].

Message Passing Coupling (MPC):

The numbers of messages are exchanged between objects of

a class [8].

Lack of Cohesion in methods (LCOM)

The difference between pairs of methods that don’t share

any property and pair of methods that have properties in

common [27].

Data Abstraction Coupling (DAC)

NOM (Number of Local Methods)

Size1 (Lines of Codes)

Size2 (Number of properties and methods).

IV. RESEARCH METHODOLOGY

The objective of this paper is to build a an artificial

intelligence model, based on neural networks and

evolutionary computing in a hybrid fashion, in order to

obtain high prediction of the software maintenance.

In this paper we propose a new evolutionary neural

network model to predict the maintainability of the software.

The proposed model is based on hybrid intelligent technique

where neural network is used for prediction and genetic

algorithm is used for evolving the NN topology until the

optimized topology is achieved. The model is based on

Object-Oriented dataset and Maintainability index is used to

measure maintainability. Since the dataset contains object-

oriented programs, couples of object oriented metrics have

been chosen carefully as predictors as explained in the next

section.

V. EXPERIMENT SETUP

Building a prediction model requires identifying the

predictors, target output and good choice of a model. We

selected an open source project namely Android as a dataset.

To extract different object-oriented metrics from each class

in this dataset, Metamata tool was used for that purpose.

Another tool called JHawk was also utilized for calculating

the Maintainability Index. After that, these data were fed to

another tool called DTREG to build the predictive model

based on AI techniques. In order for the data to be processed

by DTREG, it must be preprocessed beforehand and saved

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

in CSV format. After that, four object-oriented predictors

were chosen namely: LOC (Line of Codes), NOA (Number

of Attributes), NLM (Number of Local Methods) and WMC

(Weighted Methods per Class).

For this experiment, we selected 78 classes from Android

version 2.3.1. Before feeding these data to our predictive

model, several preprocessing steps are required:

A. Extracting Metrics:

All the Android classes have been stripped out from their

respective folders and were placed together inside one folder

to facilitate the calculation of metrics. Using Metamata 2.0

tool, we were able to obtain values of different object-

oriented metrics for each Android Class. Some of these

Metrics are not relevant to our model, so we only select 4

metrics as predictors as we described in the previous section.

B. Calculating Maintainability Index:

Maintainability Index is calculated based on the source

code of the project. As explained above, the maintainability

index is calculated based on the same classes that have been

chosen for metrics extraction. In order to do that, a java tool

called JHawk has been utilized to calculate MI.

Unfortunately, due to the limitation of this tool; it could only

produce results for three classes in one run. Considering that

Android Version has 78 classes that means at least 26 runs

must be performed. In addition, these three classes must be

supplied to the tool manually and the experimenter must be

careful not to duplicate any classes, omit some or choose

different classes. Obviously, this is time consuming, not

practical and error-prone. To speed up the process, we have

created a small programming file that extracts the intended

classes from Android projects in chunks of size 3. Then, the

program will place these chunks in different files to be

submitted to JHawk serially. All MI values calculated by

JHawk are stored and organized in Excel sheet. It must be

noted that JHawk provides indication of the level of

maintainability by coloring the value as shown below:

 MI < 65 Bad

 65 < = MI < 85 Good

 85 >= MI Excellent

C. Data Format:

After getting all the data, we must save them in a CSV

format to be readable by DTREG Program.

VI. RESULTS

We ran our experiment several times with different

configurations and different parameters to ensure obtaining

the best possible result. Table I shows the last configuration

of our model while table II shows the obtained result.

VII. CONCLUSION AND FUTURE WORK

The result above shows that maintainability index can be

predicted with the above specified predictors with high

accuracy. It is evident that if we give the experiment more

time to evolve the neural network, the result is getting more

and more accurate. It would be interesting to see the effect

of our model on other types of software programs. In

addition, the model is not transparent now and only expert

users are able to understand the different parameters. Hence,

it would be highly interesting to apply a transparent

approach of the model and transform it into a user-friendly

tool that can be used easily by ordinary users.

TABLE I

 EXPERIMENT CONFIGURATION

Model Multilayer Perceptron

Node in hidden layer 1 7

Nodes in hidden layer 2 10

Hidden layer activation function Logistic

Output layer activation function linear

Model Genetic Algorithms

Max Generation 100

Generations with no

improvement
50

Mutation Scale Factor 0.75

Crossover probability 0.6

TABLE II

RESULTS

Factor Value

Normalized mean square error 0.276

Correlation between actual and

predicted

0.912

We are aiming to extend our work to include other various

open source programs such as Eclipse and Net beans. An

interesting improvement would be in the transparency of the

approach. A new tool with a user-friendly interface should

be built to facilitate the maintenance prediction for the users.

Other significant enhancements should be in the

evolutionary algorithm. It would be better if we can evolve

the network for a few hundred generations, so an optimized

topology of the network could be obtained.

VIII. THREATS TO VALIDITY

There are two main threats that may have impact on the

results of this study. The first threat is that we used the data

of one system, however, we plan to use the data of more

systems in future studies.

Another threat is in data collection process. The process

of collecting and analysing the data was semi-automated.

This may impact the results as human error may occur.

REFERENCES

[1] H. Jiang, C. K. Chang, D. Zhu, and S. Cheng, “A foundational study

on the applicability of genetic algorithm to software engineering

problems,” in Evolutionary Computation, 2007. CEC 2007. IEEE

Congress on, 2007, pp. 2210 –2219.

[2] A. Shukla, R. Tiwari, and R. Kala, Real Life Applications of Soft

Computing, 1st ed. CRC Press, 2010.

[3] Y. Zhou and H. Leung, “Predicting object-oriented software

maintainability using multivariate adaptive regression splines,”

Journal of Systems and Software, vol. 80, no. 8, pp. 1349–1361, Aug.

2007.

[4] J. H. Hayes and L. Zhao, “Maintainability prediction: a regression

analysis of measures of evolving systems,” in Software Maintenance,

2005. ICSM’05. Proceedings of the 21st IEEE International

Conference on, 2005, pp. 601 – 604.

[5] R. E. Garcia, M. C. F. de Oliveira, and J. C. Maldonado, “Genetic

algorithms to support software engineering experimentation,” in

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

Empirical Software Engineering, 2005. 2005 International

Symposium on, 2005, p. 10 pp.

[6] H. Jiang, “Can the Genetic Algorithm Be a Good Tool for Software

Engineering Searching Problems?,” in Computer Software and

Applications Conference, 2006. COMPSAC ’06. 30th Annual

International, 2006, vol. 2, pp. 362 –366.

[7] M. O. Elish and K. O. Elish, “Application of TreeNet in Predicting

Object-Oriented Software Maintainability: A Comparative Study,” in

Software Maintenance and Reengineering, 2009. CSMR ’09. 13th

European Conference on, 2009, pp. 69 –78.

[8] T.-S. Quah and M. M. T. Thwin, “Application of neural networks for

software quality prediction using object-oriented metrics,” in

Software Maintenance, 2003. ICSM 2003. Proceedings. International

Conference on, 2003, pp. 116 – 125.

[9] T. Yan, “An Improved Genetic Algorithm and Its Blending

Application with Neural Network,” in Intelligent Systems and

Applications (ISA), 2010 2nd International Workshop on, 2010, pp. 1

–4.

[10] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of

software maintainability prediction and metrics,” in Proceedings of

the 2009 3rd International Symposium on Empirical Software

Engineering and Measurement, Washington, DC, USA, 2009, pp.

367–377.

[11] K. Nishizono, S. Morisaki, R. Vivanco, and K. Matsumoto, “Source

code comprehension strategies and metrics to predict comprehension

effort in software maintenance and evolution tasks - an empirical

study with industry practitioners,” in Software Maintenance (ICSM),

2011 27th IEEE International Conference on, 2011, pp. 473 –481.

[12] M. Dagpinar and J. H. Jahnke, “Predicting Maintainability with

Object-Oriented Metrics - An Empirical Comparison,” in

Proceedings of the 10th Working Conference on Reverse

Engineering, Washington, DC, USA, 2003, p. 155–.

[13] T. Pearse and P. Oman, “Maintainability measurements on industrial

source code maintenance activities,” in Software Maintenance, 1995.

Proceedings., International Conference on, 1995, pp. 295 –303.

[14] S.Sharawat, Software Maintainability prediction using Neural

Networks,International Journal of Engineering Research and

Applications (IJERA), v2, issue 2, pp 750-755, 2012.

[15] Z. Rana, M. Khan, and S. Shamail, “A comparative study of spatial

complexity metrics and their impact on maintenance effort,” in

Emerging Technologies, 2006. ICET ’06. International Conference

on, 2006, pp. 714–718.

[16] V. Nguyen, B. Boehm, and P. Danphitsanuphan, “Assessing and

Estimating Corrective, Enhancive, and Reductive Maintenance

Tasks: A Controlled Experiment,” in Software Engineering

Conference, 2009. APSEC ’09. Asia-Pacific, 2009, pp. 381 –388.

[17] P. Oman and J. Hagemeister, “Metrics for assessing a software

system’s maintainability,” in Software Maintenance, 1992.

Proceerdings., Conference on, 1992, pp. 337 –344

[18] R. Vehvilainen, “What is preventive software maintenance?,” in

Software Maintenance, 2000. Proceedings. International Conference

on, 2000, pp. 18 –19.

[19] C4 Software Technology Reference Guide – A Prototype. Software

Engineering Institute (SEI), Carnegie Mellon University, 1997.

Accessed online via

http://www.sei.cmu.edu/library/abstracts/reports/97hb001.cfm

[20] P.Sandhu, S.Khullar, S.Singh, S.Bains, M.Kaur andG.Singh. A study

on Early Prediction of Fault Proneness in Software Modules using

Genetic Algorithm. World Academy of Science, Engineering and

Technology, 2010.

[21] R.Curry, Toward Efficient Training on Large Datasets for Genetic

Programming, Master Thesis,Dalhousie University, 2004.

[22] HE Fangguo, Qi Huan. Back propagation neural network based

onmodified genetic algorithm and its application. Journal of

Huazhong Normal University, 2007

[23] Li Ying, Xu Tao, Xing Wei. Optimization for Neural Network Based

on Evolved Genetic Algorithm. Journal of Changchun University of

Technology, 2006

[24] Deng Zheng-Hong, Hu Qing, Zhen Yu-Shan.Two-time Training

Algorithm of Neural Network Based on Genetic Algorithm.

Microelectronics and Computer, 2005

[25] Dam M, Saraf D N. Design of neural networks using genetic

algorithm for online property estimation of crude fractionator

products.Computers and Chemical Engineering, 2006

[26] Mu A-Hua, Zhou Shao-Lei, Liu Qing-Zhi, Xu Jin. Using Genetic

Algorithm to Improve BP Training algorithm. Computer emulation ,

2005

[27] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object

Oriented Design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–

493, Jun. 1994.

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

