
 

 

Abstract— Maintenance is an important activity in the 

software life cycle.  No software product can do without 

undergoing the process of maintenance.  Estimating a 

software’s maintainability effort and cost is not an easy task 

considering the various factors that influence the proposed 

measurement. Hence, Artificial Intelligence (AI) techniques 

have been used extensively to find optimized and more accurate 

maintenance estimations.  In this paper, we propose an 

Evolutionary Neural Network (NN) model to predict software 

maintainability. The proposed model is based on a hybrid 

intelligent technique wherein a neural network is trained for 

prediction and a genetic algorithm (GA) implementation is used 

for evolving the neural network topology until an optimal 

topology is reached. The model was applied on a popular open 

source program, namely, Android. The results are very 

promising, where the correlation between actual and predicted 

points reaches 0.91. 

 
Index Terms— Maintenance Prediction, Genetic Algorithm, 

hyprid AI, Software Maintenance 

 

I. INTRODUCTION 

EURAL network is a computation algorithm 

resembling the brain. It is a schematic graph of a set of 

nodes called input, another set of nodes called output and a 

set of hidden unknown layers connecting both ends. Neural 

networks are ultimately used for training. The strength of 

neural networks lies in its capability to be a function 

approximation. Input and output nodes or neurons are 

connected with different values of weights by adjusting the 

weights. Artificial Neural Networks (ANN) is capable of 

minimizing the error of mapping input to output. Based on 

the number of neurons in each layer and the number of 

hidden layers between the input and the output, neural 

networks are believed to be capable of mapping any function 

theoretically. The purpose of ANN is used for classification 
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based on test data and mapping function learning.  

Evolutionary computing refers to a computer algorithm 

which has the ability to evolve through multiple runs to 

optimize a given problem. Evolution indicates that out of the 

population set, the algorithm can provide a solution space 

where optimized solutions are presented and inadequate 

solutions are removed in the process, to be replaced with 

better ones. Evolutionary computing is based on the 

fundamentals of the theory of evolution, where the survival 

is only for the best. Gradually, different terminologies have 

crept in to the field, such as evolutionary programming, 

genetic algorithms, and genetic programming. Genetic 

algorithms are an extension to the concept of evolutionary 

computing. The genetic algorithm is based on the following 

main steps: 

 Initialization of population based on randomness. 

 Computing the fitness function. 

 Selection of a solution from the solution pool based 

on order of the fitness function. 

 Applying primitive GA operations for updating the 

solutions, and 

 Stopping at a termination criteria. 

Benefits of genetic algorithms include robustness and ease 

of implementation, but suffer from the number of runs to 

produce the final solutions as it may stick into local optimum 

points. 30 different runs are an acceptable minimum [21]. 

Back propagation of neural network is a "typical 

delegate"[9]. Neural Network may suffer from local 

minimum and also from the slowness of convergence. 

Hence, a combination of GA and ANN may overcome these 

issues. ANN can be used for training and to build prediction 

models while GA can be used to speed up the process of 

ANN by tuning up the design parameters of the ANN [9]. It 

must be noted that a good design of the model with tuning 

some parameters can enhance the speed of convergence [2]. 

Combining neural networks and GA in one model has been 

investigated and built by different researchers [22]-[26]. 

The objective of this paper is to build a an artificial 

intelligence model, based on neural networks and 

evolutionary computing in a hybrid fashion, in order to 

obtain high prediction of the software maintenance. 

II. BACKGROUND 

Maintenance is an important phase in the software life 

cycle. Software intrinsically preserves the property of being 

modified, altered, and improved or corrected [10]. It is 

inevitable for any software product to undergo the process of 
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maintenance. It has been reported that a high spike of the 

software project cost lies within the maintenance phase [15] 

[11].   Hence, there has been a tremendous effort by many 

researchers to provide means in the form of some measures 

to predict the maintainability of the software [10], [12], [13] 

[16], [17]. That is, researchers have been investigating the 

factors that classify software as maintainable and easily 

modified. To formalize our discussion of the software 

maintainability and set a common ground of the concept, the 

following definitions are presented [13]: 

“Maintenance: The process of modifying a software 

system or component after delivery to correct faults, 

improve performance or other attributes, or adapt to a 

changed environment”. 

 “Maintainability:  The ease with which a software system 

or component can be modified to correct faults, improve 

performance or other attributes, or adapt to a changed 

environment”. 

There are different aspects of maintenance that must be 

dealt separately to ensure an overall measurement of the 

process: 

“Corrective Maintenance: Maintenance performed to 

correct faults in hardware or software”. 

 “Adaptive Maintenance: Software maintenance 

performed to make a computer program usable in a changed 

environment”. 

“Perfective Maintenance: Software maintenance 

performed to improve the performance, maintainability, or 

other attributes of a computer program”. 

Another aspect of maintainability that has been proposed 

in the past few years is prevention. Preventive software 

maintenance [18] “refers to all activities that are prepared 

and decided upon regularly, for example annually, in co-

operation between the client and the maintainer 

organizations, and are based on the joint analyses of the 

present condition as well as the forecasted needs of the 

software”. 

III. PREVIOUS WORK: 

To provide a coherent overview of the previous work in 

predicting maintainability, we are going to present previous 

effort in measuring and predicting maintainability followed 

by papers that utilize AI techniques for prediction. 

A. Maintainability Measurementand  Prediction: 

Estimating software’s maintainability effort and cost is not 

an easy task due to the various factors that influence the 

proposed measurement. It is clear from the above definitions 

that maintenance is a wide concept that covers many aspects 

in a heterogeneous manner. That is, the optimality of one 

maintenance aspect is not orthogonally correlated to other 

aspects. Nguyen and Boehm [16] assessed the maintenance 

effort on different aspects of maintenance. The study was 

directed to answer two hypotheses relating to relationship 

between maintenance types and effort. The first hypothesis 

assumes that for different types of maintenance, the 

productivity required is almost similar.  The second 

hypothesis is related to the effort conjecturing that 

performing any of maintenance type will demand an even 

division of effort. The result of the study negates both 

hypotheses and shows different proportions of effort and 

productivity to maintenance aspect. This may give a glimpse 

of the complexity involved in estimating the maintainability 

effort and cost.  

Another reason behind the difficulty of predicting 

maintainability effort is the time where maintenance activity 

occurs in the software development life cycle. Maintenance 

is performed in the last phase of software life cycle and its 

duration and effort is dynamically affected by the effort and 

duration of previous phases.  Oman and Hagemeister [17] 

provided a framework to include all of these factors and 

classified them into different categories. These categories 

are:  

 The procedures and management approaches which 

have been employed during the course of the 

software project. 

 Environmental factors associated with the hardware 

and software available in the intended system. 

 The intended system itself which is the main concern 

in this paper.  

One of the most popular maintainability metrics is called 

Maintainability Index (MI) [19]. It was proposed by 

Software Engineering Institute (SEI) in Carnegie Mellon 

University. MI is a maintainability metric that predicts the 

cost of maintainability based on the source code. This is an 

interesting feature that allows the project team to be able to 

predict the maintenance effort while developing the code 

and adjusting the costs accordingly.  MI is calculated based 

on polynomial formula that can be simply calculated based 

on the code lines, comments and complexity of the code as 

illustrated below [19]: 

 

171 5.2 * ln( ) 0.23 * ( ') 16.2 * ln( )

50 * sin( (2.4 * ))

aveV aveV g aveLOC

sqrt perCM

  



 
  

 (1)   

The terms are defined as follows: 

aveV = average Halstead Volume V per module  

aveV(g’) = average extended cyclomatic complexity per 

module (aveLOC = the average count of lines of code (LOC) 

per module;) 

perCM = average percent of lines of comments per 

module (optional). 

In [16] a controlled experiment on the relationship 

between predicting the effort for maintenance and the 

maintenance tasks (enhancement, modification or 

correction). The authors asked subjects to perform different 

strategies with various maintenance tasks. The experiment 

was based on a source code for a painter program written in 

java. The result shows that the estimation effort is not 

consistent for different kinds of maintenance.  

Maintainability can be measured and predicted based on 

the quality metrics since fewer bugs is an indicator of high 

quality [20]. The linkage to maintenance is obvious and 

interlinked. Fewer bugs lead to a reduced number of 

maintenance effort and then higher quality software. Though 

maintainability is not constrained to size and number of 

bugs, the size of bugs detected can indicate the level of 

maintainability of the software. 

The effort spent on writing code is correlated with 
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maintainability [4]. Hayes and Zhao [4] built a prediction 

model named (MainPredMo). The model takes three metrics 

into consideration requirement collection effort, designing 

effort and coding effort. The experiment was conducted and 

coding effort correlation with maintainability is realized. 

 Though software development share common process 

activities and life cycle phases, they differ in the underlying 

paradigm on which they are going to be built. Many of the 

maintainability metrics in the literature are targeting 

functional or structural programming models where 

extending these metrics to include object oriented software 

may not be applicable. An effort to study different 

maintainability metrics and apply it on an object oriented 

paradigm was presented in [12]. In this study four groups of 

metrics were assessed to conclude their direct influence on 

maintainability.  Size, cohesion, coupling and inheritance 

metric groups were empirically analyzed to understand their 

relationship with maintainability based on one software 

written in java acquired by the authors. The result shows that 

size of the code and the coupling metrics are strong 

candidate to provide an accurate prediction of the 

maintainability measurement. 

B. AI for Maintainability Prediction:  

The choice of an AI technique model for maintainability 

is not solely and necessarily depending on the strength of the 

model but on the ease of finding prediction and building 

accurate models [3]. There have been many attempts to build 

solutions based on GA but unfortunately they can’t be 

applied in practical environments due to the assumption of 

infinity time or resources.  Moreover, some authors justify 

the applicability of GA to their problems based on seemingly 

fruitful results without considering the reasons, limits or 

implicit assumptions in the target problem. 

Different attempts have been made to relate GA solutions 

mechanism to the domain of SE problems [1] [5] [6]. In [1] 

many software engineering problems have been presented 

such as scheduling of software projects, testing and 

verification and risk optimization. Garcia et al. [5] 

acknowledged the importance of genetic algorithm in 

assisting software engineering researchers in conducting 

their experiments. In [6] the author argued that most of GA 

solutions presented in the SE literature are solely based on 

experimental data. The need of a solid theoretical proof to 

support the hypothesis of the applicability of GA is crucial, 

however, it was left out in most of the papers [1]. 

In [10] the authors presented a review of the papers that 

use source code metrics as successful predictors of 

maintainability index and maintainability predictor based on 

the size of the code which are very popular for measuring 

maintainability. In [7] a maintainability predictor based on 

TreeNet was proposed. TreeNet is commonly known as 

multiple additive regressions Tree (MART).  They have run 

their experiment on two popular datasets in the 

maintainability domain known as UIMS and QUES. UIMS 

is a dataset of classes designed for a user interface system in 

which there are around 39 classes while QUES dataset 

contains 71 classes [7]. The paper provides competitive 

results to other prediction approaches such as Multivariate 

adaptive regression splines MARS [3], Multiple Linear 

Regression (MLR), Support Vector Regression (SVR), 

Artificial Neural Network (ANN) and Regression Tree (RT). 

In [14] Sharawat applied neural network solution to predict 

maintainability of OO Program using the common metric: 

Maintainability Index (MI). 

Other researchers use neural Network to predict the 

quality of software by measuring change effort [8]. Quah 

and Thwin [8] presented some OO metrics that evidently 

have a direct impact on the maintainability. These metrics 

are:  

Depth of Inheritance Tree (DIT): 

Specifies the level at which the class is built in Inheritance 

hierarchy [27]. 

Response for a class (RFC):  

Measures the degree at which the class responds to a 

message [27] 

Weighted Method per Class (WMC):  

This gives the complexity of a class by measuring the 

number of methods and properties it has [27]. 

Message Passing Coupling (MPC): 

The numbers of messages are exchanged between objects of 

a class [8]. 

Lack of Cohesion in methods (LCOM) 

The difference between pairs of methods that don’t share 

any property and pair of methods that have properties in 

common [27]. 

Data Abstraction Coupling (DAC) 

NOM (Number of Local Methods) 

Size1 (Lines of Codes) 

Size2 (Number of properties and methods). 

IV. RESEARCH METHODOLOGY 

The objective of this paper is to build a an artificial 

intelligence model, based on neural networks and 

evolutionary computing in a hybrid fashion, in order to 

obtain high prediction of the software maintenance. 

In this paper we propose a new evolutionary neural 

network model to predict the maintainability of the software. 

The proposed model is based on hybrid intelligent technique 

where neural network is used for prediction and genetic 

algorithm is used for evolving the NN topology until the 

optimized topology is achieved. The model is based on 

Object-Oriented dataset and Maintainability index is used to 

measure maintainability. Since the dataset contains object-

oriented programs, couples of object oriented metrics have 

been chosen carefully as predictors as explained in the next 

section.  

V. EXPERIMENT SETUP  

Building a prediction model requires identifying the 

predictors, target output and good choice of a model.  We 

selected an open source project namely Android as a dataset. 

To extract different object-oriented metrics from each class 

in this dataset, Metamata tool was used for that purpose. 

Another tool called JHawk was also utilized for calculating 

the Maintainability Index.  After that, these data were fed to 

another tool called DTREG to build the predictive model 

based on AI techniques. In order for the data to be processed 

by DTREG, it must be preprocessed beforehand and saved 
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in CSV format. After that, four object-oriented predictors 

were chosen namely: LOC (Line of Codes), NOA (Number 

of Attributes), NLM (Number of Local Methods) and WMC 

(Weighted Methods per Class). 

For this experiment, we selected 78 classes from Android 

version 2.3.1. Before feeding these data to our predictive 

model, several preprocessing steps are required: 

A. Extracting Metrics: 

All the Android classes have been stripped out from their 

respective folders and were placed together inside one folder 

to facilitate the calculation of metrics. Using Metamata 2.0 

tool, we were able to obtain values of different object-

oriented metrics for each Android Class. Some of these 

Metrics are not relevant to our model, so we only select 4 

metrics as predictors as we described in the previous section. 

B. Calculating Maintainability Index: 

Maintainability Index is calculated based on the source 

code of the project. As explained above, the maintainability 

index is calculated based on the same classes that have been 

chosen for metrics extraction. In order to do that, a java tool 

called JHawk has been utilized to calculate MI. 

Unfortunately, due to the limitation of this tool; it could only 

produce results for three classes in one run. Considering that 

Android Version has 78 classes that means at least 26 runs 

must be performed. In addition, these three classes must be 

supplied to the tool manually and the experimenter must be 

careful not to duplicate any classes, omit some or choose 

different classes. Obviously, this is time consuming, not 

practical and error-prone. To speed up the process, we have 

created a small programming file that extracts the intended 

classes from Android projects in chunks of size 3. Then, the 

program will place these chunks in different files to be 

submitted to JHawk serially. All MI values calculated by 

JHawk are stored and organized in Excel sheet. It must be 

noted that JHawk provides indication of the level of 

maintainability by coloring the value as shown below: 

 MI < 65      Bad 

 65 < = MI < 85   Good 

 85 >= MI     Excellent 

C. Data Format: 

After getting all the data, we must save them in a CSV 

format to be readable by DTREG Program. 

VI. RESULTS 

We ran our experiment several times with different 

configurations and different parameters to ensure obtaining 

the best possible result. Table I shows the last configuration 

of our model while table II shows the obtained result. 
 

VII. CONCLUSION AND FUTURE WORK 

The result above shows that maintainability index can be 

predicted with the above specified predictors with high 

accuracy. It is evident that if we give the experiment more 

time to evolve the neural network, the result is getting more 

and more accurate. It would be interesting to see the effect 

of our model on other types of software programs. In 

addition, the model is not transparent now and only expert 

users are able to understand the different parameters. Hence, 

it would be highly interesting to apply a transparent 

approach of the model and transform it into a user-friendly 

tool that can be used easily by ordinary users. 
 

TABLE I 

 EXPERIMENT CONFIGURATION 

Model Multilayer Perceptron 

Node in hidden layer 1 7 

Nodes in hidden layer 2 10 

Hidden layer activation function Logistic 

Output layer activation function linear 

 

Model Genetic Algorithms 

Max Generation 100 

Generations with no 

improvement 
50 

Mutation Scale Factor 0.75 

Crossover probability 0.6 
 

TABLE II 

RESULTS 

Factor Value 

Normalized mean square error 0.276 

Correlation between actual and 

predicted 

0.912 

 

We are aiming to extend our work to include other various 

open source programs such as Eclipse and Net beans. An 

interesting improvement would be in the transparency of the 

approach. A new tool with a user-friendly interface should 

be built to facilitate the maintenance prediction for the users. 

Other significant enhancements should be in the 

evolutionary algorithm. It would be better if we can evolve 

the network for a few hundred generations, so an optimized 

topology of the network could be obtained. 

VIII. THREATS TO VALIDITY 

There are two main threats that may have impact on the 

results of this study. The first threat is that we used the data 

of one system, however, we plan to use the data of more 

systems in future studies.  

Another threat is in data collection process. The process 

of collecting and analysing the data was semi-automated. 

This may impact the results as human error may occur. 
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