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Abstract—In this paper, a fuzzy delay predator-prey (FDPP)
system is proposed by adopting fuzzy parameter in a delay
predator-prey (DPP) system. The steady state and linear stabil-
ity of FDPP system are determined and analyzed. Here, we show
that the trivial steady state is unstable for all value of delays.
Mean while the semi trivial steady state is locally asymptotically
stable for all values of delays under certain conditions. We prove
that the steady state are fuzzy numbers. Several examples are
considered to show the results.

Index Terms—Delay predator-prey (DPP), Steady states,
Stability, Fuzzy delay predator-prey(FDPP).

I. INTRODUCTION

IN real world, the study of population dynamics including
(stable, unstable, and oscillatory behavior) has become

very important since Volterra and Lotka proposed the sem-
inal models of predator-prey models in 1920. Predator-prey
models represent the basis of many models used today
in the analysis of population dynamics and is one of the
most popular in mathematical ecology. And the dynamics
properties of the predator-prey models which have significant
biological background has been paid a great attention. Some
studies in the area of predator-prey interaction, that treat
population can be extended by including time delay. The time
delay is included into population dynamics when the rate of
changes of population is not only a function of the present
population but also depends on the pervious population.

In 2012, Changjin and Peiluan [1] explained the stability,
the local Hopf bifurcation for the delay predator-prey model
with two delays. In 2008, Toaha et.al [2] showed a determin-
istic and continuous model for predator-prey with time delay
and constant rates of harvesting and studied the combined
effects of harvesting and time delay on the dynamics of
predator-prey model.

Although, the concepts of the steady states refer to the
absence of changes in a system, In some cases, studying the
stability of the steady state solutions become an important
subject since, by examining what happens in a steady state,
we can better understand the behavior of a system.

Forde et.al [3] had studied the stability analysis of
the steady states of delay predator-prey interaction. They
also considered the possibility of existence of the periodic
solutions.

In our real life, we have learned to accept that we are
actually dealed with uncertainty. Scientists also accepted the
fact that uncertainty is very important study in most applica-
tions. Modeling the real life problems in such cases, usually
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involves vagueness or uncertainty in some of the parameters.
The concept of fuzzy set and system was introduced by
Zadeh [6] and its development has been growing rapidly
to various situation of theory and application including the
theory of differential equations with uncertainty. The later
is known as fuzzy differential equation. It has been used to
model a dynamical systems under possibility uncertainty [5].

In this paper the fuzzy approach is used to model an uncer-
tainty in dynamical system which then can be represented as
fuzzy delay differential equations. Specifically, the discussion
on the theory and analysis of delay predator-prey differential
equations with uncertainty parameters is considered.

The organization of this paper is as follows. In Section
2, the basic definitions regarding the fuzzy number, steady
states and characteristic equation are briefly presented. In
Section 3 delay predator-prey system is introduced, followed
by the formulation of fuzzy delay predator-prey (FDPP)
system. The analysis, of the steady state and linear stability
are also given. And Section 4 presents some numerical
examples, finally the conclusion of the finding is given in
Section 5.

II. PRELIMINARIES

Definition 1 [6] A fuzzy number is a function such as u :
R → [0, 1] satisfying the following properties:

1) u is normal, i.e ∃ x0 ∈ R with u(x0) = 1.
2) u is a convex fuzzy set i.e u(λx + (1 − λ)y) ≥

min{u(x), u(y)}∀x, y ∈ R, λ ∈ [0, 1].
3) u is upper semi-continuous on R.
4) {x ∈ R : u(x) > 0} is compact where Ā denotes the

closure of A.

Definition 2 [5]
An α− cut, uα, is a crisp set which contains all the

elements of the universal set X that have a membership
function at least to the degree of α and can be expressed
as uα = {x ∈ X : µu(x) ≥ α}

Definition 3 [4]
A fuzzy number u is completely determined by any pair

u = (u, u) of functions u(α), u(α) : [0, 1] → R satisfying
the three conditions:

1) u(α), u(α) is a bounded, monotonic, (nondecreas-
ing,nonincreasing) left- continuous function for all
α ∈ (0, 1] and right-continuous for α = 0.

2) For all α ∈ (0, 1] we have: u(α) ≤ u(α) .
For every u = (u, u), v = (v, v) and k > 0,
(u+ v)(α) = u(α) + v(α)
(u+ v)(α) = u(α) + v(α)
(ku)(α) = ku(α), (ku)(α)) = ku(α)
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Fuzzy sets is a mapping from a universal set into [0, 1].
Conversely, every function µ : X −→ [0, 1] can be
represented as a fuzzy set ( [6]). We can define a set
F1 = {x ∈ ℜx, is about a2} with triangular membership
function as below

Definition 4 [6]

µF1(x) =


x−a1

a2−a1
, x ∈ [a1, a2)

1 x = a2
−x+a3

a3−a2
x ∈ (a2, a3]

0 otherwise

So the Fuzzy set F can be written as any ordinary function
F = {(x, µF (x)) : x ∈ X}.

Consider the linear fuzzy delay system as follows:

ẋα(t) =Aαxα(t) + Bαxα(t− τ)

ẋα(t) =Aαxα(t) + Bαxα(t− τ) 0 ≤ α ≤ 1

xα(t) =xα0 t ∈ [t0 − τ, t0]

xα(t) =xα0

(1)

Suppose (aij)α = [(aij)
−
α , (aij)

+
α ], Aα = [A−

α ,A+
α ] where

A−
α = [(aij)

−
α ]n×n A+

α = [(aij)
+
α ]n×n and (bij)α =

[(bij)
−
α , (bij)

+
α ], Bα = [B−

α ,B+
α ] where B−

α = [(bij)
−
α ]n×n,

B+
α = [(bij)

+
α ]n×n . Then we introduce the following

definition :

Definition 5 Let A(µ, α) = [aij(µ, α)]n×n = (1−µ)Aα
−+

µAα
+, B(µ, α) = [bij(µ, α)]n×n = (1 − µ)Bα

− + µBα
+,

for µ ∈ [0, 1]. The solution of (1) is (xα(t), xα(t)), if
(xα(t), xα(t)) is also a solution of the problem below:

ẋα(t) =
1∪

µ=0

C(µ, α)xα(t) +
1∪

µ=0

D(µ, α)xα(t− τ),

ẋα(t) =
1∪

µ=0

C(µ, α)xα(t) +
1∪

µ=0

D(µ, α)xα(t− τ)

xα(t) = xα0 t ∈ [t0 − τ, t0], 0 ≤ α ≤ 1

xα(t) = xα0

(2)

The elements of the matrices C and D are determined from
of A(µ, α) and B(µ, α) as follws:

cij =

{
eaij(µ, α), aij ≥ 0
gaij(µ, α), aij < 0

and

dij =

{
ebij(µ, α), bij ≥ 0
gbij(µ, α), bij < 0

where e is the identity operation and g corresponds to
negative value in ℜ and ∀z, w ∈ ℜ,
e : (z, w) → (z, w),
g : (z, w) → (w, z).

Consider the delay predator-prey system (DPP) of equa-
tions as follows:

dx(t)

dt
= x(1− x)− yp(x)

dy(t)

dt
= be−djτy(t− τ)p(x(t− τ))− dy

(3)

where x is prey population, y is a predator population, d is a
death rate of predator, p(x) is a predator functional response
to prey and τ is time necessary to change prey biomass into
predator biomass.

A. Fuzzy Delay Predator-Prey System

We propose a new model of system (3) by, first let p(x) =
cx which is the standard mass action or linear response. Then
we fuzzify the linear part of the system (3) by symmetric
triangular fuzzy number and let x(t), y(t) are non negative
fuzzy functions.

Let
1̃ = (1− (1− α)σ1, 1 + (1− α)σ1)
d̃ = (d− (1−α)σ2, d+(1−α)σ2) where 0 ≤ α ≤ 1.
By using Definition 5 system (3) can be written as follows:


ẋα(t)
ẋα(t)
ẏ
α
(t)

ẏα(t)

 =


a1 0 0 0
0 a1 0 0
0 0 0 −a2
0 0 −a2 0




xα

xα

y
α

yα

+


−x2

α(t)− cxα(t)yα(t)

−x2
α(t)− cxα(t)yα(t)

cbe−djτxα(t− τ)y
α
(t− τ)

cbe−djτxα(t− τ)yα(t− τ)

 , (4)

where

a1 = (1− µ)(1− (1− α)σ1) + µ(1 + (1− α)σ1),

a2 = (1− µ)(d− (1− α)σ2) + µ(d+ (1− α)σ2),

0 ≤ µ ≤ 1.

Then (4) is known as fuzzy delay predator-prey (FDPP)
system.

B. Steady States

To find the steady states of the system (4), we assume
that the constant (x∗, x∗, y∗, y∗)α, is a solution and we will
determine the values of these constant. The equations for
determining steady states are

xα(a1 − xα − cy
α
) = 0

xα(a1 − xα − cyα) = 0

− a2yα + cbe−djτxαyα = 0

− a2yα + cbe−djτxαyα = 0.

(5)

If xα = 0 and xα = 0, then the first and the second
equations of (5) are satisfied, from third and the fourth
equations we obtain (0, 0, 0, 0)α as trivial steady state.

If we consider y
α
= yα = 0, then the third and fourth

equations of (5) are satisfied, and the first and second
equations gives xα = a1 and xα = a1, where
a1 = (1− (1− α)σ1) and a1 = (1 + (1− α)σ1).
If y

α
and yα are not equal zero then the steady state

equations are:
a1 − xα − cy

α
= 0

a1 − xα − cyα = 0.
(6)

So, if the equation (6) are satisfied, then the system (4)
has a nontrivial steady state(x∗, x∗, y∗, y∗)α. Thus, the
system (4) has three steady state solutions such that ;
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(0, 0, 0, 0)α, (a1, a1, 0, 0)α and the nontrivial steady state
(x∗, x∗, y∗, y∗)α.

Theorem 1 Consider the DPP system ( 3), if the coefficients
of linear part of x and y are symmetric triangular fuzzy
numbers then the trivial steady state (0, 0, 0, 0)α is a fuzzy
number and the semi trivial steady state (a1, a1, 0, 0)α ∀α ∈
[0, 1], is also fuzzy number.

Proof: The proof of Theorem 1 is trivial.

Now, we test the stability of the steady states.

C. Linear Stability

The linearization of the fuzzy system (4) about the trivial
steady state (0, 0, 0, 0)α is


ẋα(t)
ẋα(t)
ẏ
α
(t)

ẏα(t)

 =


a1 0 0 0
0 a1 0 0
0 0 0 −a2
0 0 −a2 0




xα

xα

y
α

yα

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




xαt

xαt

y
αt

yαt

 . (7)

Where xtα = xα(t− τ) and similarly for y from linearized
model we obtain the characteristic equation

(a1 − λ)2(λ2 − a22) = 0. (8)

Clearly the linear system has eigenvalues a1 and ±a2 which
are two positive and one negative fuzzy numbers. Hence, the
trivial steady state is unstable for all values of τ .

We can conclude the following proposition:

Proposition 1 A trivial steady state (0, 0, 0, 0)α with char-
acteristic equation (8) is unstable for all values of delay.

Similarly, for the semi trivial steady state (a1, a1, 0, 0) where
ẋα(t)
ẋα(t)
ẏ
α
(t)

ẏα(t)

 =


a1 − 2a1 0 −ca1 0

0 a1 − 2a1 0 −ca1
0 0 0 −a2
0 0 −a2 0




xα

xα

y
α

yα

+


0 0 0 0
0 0 0 0
0 0 cbe−djτa1 0
0 0 0 cbe−djτa1




xαt

xαt

y
αt

yαt

 . (9)

The characteristic equation for (9) is

λ4 +Aλ3 +Bλ2 + Cλ+D+

e−(dj+λ)τ (Eλ3 + Fλ2 +Gλ)+

e−2(dj+λ)τ (Hλ2 + Iλ+ J) = 0,

(10)

where
A =− 2a1 + 4, B = a21 − 4a1 + 4(1− (1− α)2σ2

1),

C =a22, D = 2a22(1 + (1− α)σ1)− a22a1,

E =− 2cb, F = 4a1cb− 8cb,

G =− 2a21cb+ 8a1cb− 8cb(1− (1− α)2σ2
1),

H =c2b2(1− (1− α)2σ2
1),

I =− 2a1c
2b2(1− (1− α)2σ2

1)+

4c2b2(1− (1− α)2σ2
1),

J =a21c
2b2(1− (1− α)2σ2

1)−
4a1c

2b2(1− (1− α)2σ2
1)+

4c2b2(1− (1− α)2σ2
1)

2.
(11)

The steady state is stable in the absence of delay if the roots
of λ4+(A+E)λ3+(B+F+H)λ2+(C+G+I)λ+(D+J) =
0 have negative real parts. This occurs if and only if

(A+ E) > 0, (C +G+ I) > 0, (D + J) > 0

and (A+ E)(B + F +H)(C +G+ I) >

(C +G+ I)2 + (A+ E)2(D + J).

(12)

Hence, in the absence of time delay, the steady state
(a1, a1, 0, 0) is stable if and only if (12) are satisfied.

Now for increasing τ , τ ̸= 0, we first assume that the root
of the characteristic equation (10) is λ = iµ and µ > 0.
Substitute λ = iµ in (10), we obtain,
µ4 − Aiµ3 − Bµ2 + Ciµ + D + e−djτ

(
cos(µτ) −

isin(µτ)
)(

− iEµ3 − Fµ2 + iGµ
)
+ e−2djτ

(
cos(2µτ) −

isin(2µτ)
)(

−Hµ2 + iIµ+ J
)
= 0.

Separating the real and imaginary parts, we get

µ4 −Bµ2 +D = e−djτ
(
cos(µτ)(Fµ2)

+ sin(µτ)(Eµ3 −Gµ)
)

− e−2djτ
(
cos(2µτ)(−Hµ2 + J)+

sin(2µτ)(Iµ)
)
,

−Aµ3 + Cµ = e−djτ
(
cos(µτ)(Eµ3 −Gµ)+

sin(µτ)(−Fµ2)
)
+ e−2djτ

(
cos(2µτ)(−Iµ)+

sin(2µτ)(−Hµ2 + J)
)
.

Squaring and adding both sides gives the polynomial of
degree eight as follows:

(µ4 −Bµ2 +D)2 + (−Aµ3 + Cµ)2 =(
e−djτ (cos(µτ)(Fµ2) + sin(µτ)(Eµ3 +Gµ))

− e−2djτ (cos(2µτ)(−Hµ2 + J) + sin(2µτ)(Iµ))
)2

+
(
e−djτ (cos(µτ)(Eµ3 −Gµ) + sin(µτ)(−Fµ2))

− e−2djτ (cos(2µτ)(Iµ) + sin(2µτ)(−Hµ2 + J))
)2

.

(13)
As τ → ∞, the right hand side of (13)→ 0 and let γ = µ2

the equation (13) can be written in terms of γ as follows:

S(γ) = γ4 + (A2 − 2B)γ3 + (B2 + 2D − 2AC)γ2

+ (C2 − 2BD)γ +D2 = 0.
(14)
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This can be simplified by substituting the known values of
A,B,C and D. For the γ3 coefficient, we have

A2 − 2B = 4a21 − 16a1 + 16− 2(a21 − 4a1

+4(1− (1− α)2σ2
1))

= 2(a1 − 2)2 + 8(1− α)2σ2
1

which is always positive.
Further, for the γ2 and γ coefficients, we have

B2 + 2D − 2AC =
(
a21 + 4(1− (1− α)2σ2

1)
)2

+(
(a1 − 2)− 2(1− α)σ1

)(
2a22 − 8a1((a1 − 2)

+ 2(1− α)σ1)
)
,

(15)

C2 − 2BD = a42 + 2a22

(
(a1 − 2)− 2(1− α)σ1

)2

(
(a1 − 2) + 2(1− α)σ1

) (16)

respectively. (15) and (16) are positive coefficient if the right
hand side of (15) and (16) are greater than zero for certain
value of α. Finally, the constant term D2 is always positive.

Therefore all the coefficients of the polynomial (14) are
positive and it has no positive real roots. In other words
iµ is not a root of the characteristic equation (10) for
increasing delay. Hence, the system (4) cannot lead to a
bifurcation. It means that the semi trivial steady state is
locally asymptotically stable for all values of delay [7]. We
conclude the following proposition:

Proposition 2 A semi trivial steady state (a1, a1, 0, 0) with
characteristic equation (10) is locally asymptotically stable
for all values of delay if and only if

• (A + E) > 0 , (C + G + I) > 0 , (D + J) > 0 and
(A+E)(B + F +H)(C +G+ I) > (C +G+ I)2 +
(A+ E)2(D + J). A,B,C and D are given by (11).

•
(
(a21+4(1−(1−α)2σ2

1))
2+((a1−2)−2(1−α)σ1)(2a

2
2−

8a1((a1 − 2) + 2(1− α)σ1))
)
> 0 for certain value of

α.
•

(
a42 + 2a22((a1 − 2) − 2(1 − α)σ1)

2((a1 − 2) + 2(1 −

α)σ1)
)
> 0 for certain value of α.

III. NUMERICAL EXAMPLES

To show the behavior and properties of our analysis of
the steady states, two examples will be given in this section.
Example 1

Consider the model (4) with parameters b = 0.2, c = 0.5,
d = 1.2, dj = 1, σ1 = 1.4, σ2 = 0.1, σ4 = 0.2, σ5 = 0.5,
µ = 1 with three initial conditions (xα, xα) = (m1 − (1 −
α)σ4,m1+(1−α)σ5) and (y

α
, yα) = (m2−(1−α)σ4,m2+

(1− α)σ5) where m1 = 1, 3, 2 and m2 = 2, 2, 2. For α = 1
and τ = 0, the semi trivial steady state of the model is
(1, 1, 0, 0) and it is stable. Hence, we conclude that for τ ≥ 0,
it is locally asymptotically stable. The results is shown in
Figures 1 and 2.
Example 2

Consider the same conditions of Example 1 but for α =
0.8, the semi trivial steady state (0.63, 1.63, 0, 0) is locally
asymptotically stable for all values of τ . It means that the
conditions of Proposition 2 are satisfied and it is shown in
Figure 3.
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Fig. 1. The Steady State Converges to (1, 0) for Different Initial Conditions
and α = 1, τ = 0
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Fig. 2. The Steady State for α = 1 and τ = 2
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Fig. 3. The Steady State for α = 0.8 and τ = 2

IV. CONCLUSION

In this paper, we proposed a system of fuzzy delay
predator-prey equations by using symmetric triangular fuzzy
number. The crisp delay predator-prey of (2 × 2) system is
extended to a FDPP of (4 × 4) system by using parametric
form of α− cut. The FDPP system has trivial, semi trivial
and nontrivial steady states. In this case the characteristic
equation is of degree 4. The fuzzy system proposed leads
to the difficulty of locating the roots of the characteristic
equation since the system becomes larger compare with the
crisp system. Generally, the situation is more complex to
arrive at general conditions on the coefficients of character-
istic equation such that it describes a locally asymptotically
stable for semi trivial steady state for all values of delay, and
the trivial steady state is always unstable. We conclude the
results as in Propositions 1 and 2. We provide two examples
to demonstrate the results.
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