
FACT: A Formative Assessment Criteria Tool for
the Assessment of Students' Programming Tasks

Abstract—In this study we present our developed formative

assessment tool for homework assignments in computer science
and its use. The tool enables instructors to define a list of criteria
by which the students' assignments are evaluated. Each
assignment may include many problems, each is assigned with
specific weights for each criteria. The instructors feed the
assessments into the tool adding literal comments and
justifications. The tool then generates automatic report to each
student including summative report on the current assignment
referring to their achievements in each criterion in each
problem, the student's relative score and her progress across the
criteria along the course timeline. The tool generates
automatically charts to present the above information. The tool
was examined on a pilot group of college students that study a
course in Object-oriented programming. Preliminary results
reveal that most of the students were satisfied with the
assessment process and the reports produced by the tool. They
particularly praised its contribution to their ability to provide
solutions that are not only correct but also modular, readable
and tested.

Index terms—Computer-based formative assessment tool,
computer science education

I. INTRODUCTION

ROGRAMMING is an essential skill for computer
science graduates. They acquire their programming skills

through a series of courses in which they learn basic and
advanced programming concepts. In order to shape their
programming skills the students are often required to submit
many programming assignment that need to be assessed by
the teaching staff. An international study of computer science
academics conducted by Carter et al [4] reveals that 74% of
respondents assess programming assignments submitted by
their students merely for their correctness.

 Most educators examine and grade the students'
assignment manually, but many prefer automatic tools to ease
the efforts required for this task in large courses. The most

Manuscript received February 28, 2012; revised April 15, 2013.

R. Rashkovits. The Academic College Of Emek Yezreel, Israel (phone: 972-
4-6423519; fax: 972-4-6423517; e-mail: ramir@yvc.ac.il).

I. Lavy. The Academic College Of Emek Yezreel, Israel (phone: 972-4-
6423520; fax: 972-4-6423517; e-mail: ilanal@yvc.ac.il).

common technique to test the correctness of the provided
solution is to execute it on predefined data and inspect the
output compared with the expected results. There are many
such automatic tools in use (e.g., Online Judge [5],
CourseMarker [8], BOSS [10], Assyst [11], HoGG [14],).

Ala-Mutka [1] describes the methods and techniques used
by automated assessment tools and shows how they are
generally used. In addition to correctness, some assessment
tools analyze program efficiency, coding style and the
existence of inline documentation. The use of automatic
testing process forces students to be very accurate in order to
gain maximal score. However, automatic tools cannot
examine whether a variable name is meaningful or if a class
inheritance was properly designed. It focuses mainly on the
correctness of the solutions and neglects other important
properties such as program design (e.g., modularity) and
clarity. Moreover, the students conclude that the only factor
that counts is the correctness, and hence focus their attention
achieving this goal at the expense of other properties. Howles
[9] discovered from a student survey that only 5% of the
responding students invest time and efforts to design their
work before coding and only 39% test their code statically.
Majority of the students tested their code dynamically (e.g.,
unit testing) only sometimes or never. A possible explanation
for these results may be that when students' work is assessed
by an automated tool, they invest more efforts in design and
unit testing, but most students do not devote efforts on these
activities as the assessment process do not considered them to
be importance.

Formative assessment can contribute significantly to the
student learning process with or without the use of automatic
assessment. It helps students become more aware of any gaps
that exist between their desired and their current knowledge
and encourages them to close these gaps during the semester
before the final exam takes place. However, the feedback that
the students receive on each submission is usually personal
and isolated from other feedbacks. For instance, the students
cannot learn about their relative score comparing to the rest of
the class, or follow their progress across the various
assessment criteria from one submission to the next. The
feedbacks are usually in the form of one grade and few
comments.

In this paper we suggest a novice assessment tool that can
serve as a scaffold for the various stages of the assessment

Rami Rashkovits, Ilana Lavy

P

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

process including designing the list of tasks for the students;
setting criteria set for each task and receiving summative
reports regarding the class progress along the course timeline.
The students can benefit from the suggested tool by receiving
the criteria a priory; receiving detailed assessment of their
learning progress; explore their relative achievements; and
track their progress across the various assessment criteria. To
address both the teachers' need for a constructive assessment
tool and students' need for meaningful feedback on their
assignments, the aim of this study is to examine both the
teacher's and the students' impressions of the suggested
assessment tool. For that matter, the tool is tested nowadays
on a pilot group of education college students studying
'object-oriented programming' course in which they are
required to hand programming assignments. In the scope of
this paper, we focus only on the students' impressions of the
feedbacks received by tool and present preliminary
accumulated results.

II. THEORETICAL BACKGROUND

In this section we present a brief theoretical background
regarding formative assessment and the various criteria by
which programming tasks should be assessed.

A. Formative Assessment
Formative assessment (FA) is considers to be one of the

effective assessment techniques since it helps students become
more aware of any gaps that exist between their desired and
their current knowledge. FA refers to various assessment
procedures used by educators during the learning process,
aiming at modifying learning activities to improve learners'
performance [6]. FA involves the setting of learning goals and
the assessment of students' fulfillment of these goals.
Effective feedback on students' assignments provides specific
comments about errors and specific suggestions for
improvement and encourages students to focus their attention
thoughtfully on the task rather than on simply getting the right
answer [2].

Being aware to the advantages of FA, we developed a
computer-based tool to support the assessment process to both
teachers and students. Teachers will be able to plan the
assignments and criteria according to which their students'
assignments will be assessed. They also will be able to feed in
their assessments in a standard way and relate to each
assessment criterion explicitly. Students will be notified in
advance on the criteria their assignments will be examined
and receive accumulated feedback represented visually and
literally of all the assignments they handed along the course.

B. Assessment of Programming tasks
The solution of programming task usually contains source

code developed by the student accompanied with
documentation. The provided source code should solve the
problem described in the task, and its assessment is based

mainly on its success to provide the expected results. In order
to evaluate to what extent the provided solution is accurate
one has to test the program with various input data and
compare the actual results with the expected ones. Although
an inspection of the source code can add more insights on the
correctness of the solution, many teachers test the provided
solutions automatically by running them using predefined
input and assign them scores based on their success to output
the exact expected results [7].

Although the correctness of the solution is obviously of
high importance there are others factors that makes a source
code good one [3]. Computer programs tend to be changed
often due to maintenance operations such as bug corrections,
adapting to new business and technology requirements and
improving performance. The source code should allow these
maintenance operations to be done easily by programmers
other than those who developed the original source code and
hence should be clear, modular and include unit tests that
cover a lot of code fragments. The clarity of the codes is
expressed in its readability (e.g., using spaces and
indentations) and its understandability (i.e., using meaningful
names to define user-defined constructs such as classes,
functions and variables). Modularity refers to the use of
separate program constructs (i.e., classes, functions, libraries)
to implement different concepts. Modularity is important
since it enable programmers to easily track a code fragment
that requires modification and isolate the changes done from
the rest of the modules. The coverage of the solutions with
testing code improves the quality of the source code by
reducing the number of software error residing in it, and that
might be revealed by the testing code. Moreover, when the
source code is changed during maintenance operation the
programmer can use the testing code to verify that the
modifications did not harmed other parts of the program (i.e.,
regression tests). Other criteria that may be used to evaluate
the quality of the source code are the efficiency of the code
(e.g., efficient use of resources such as space and time), the
extent to which the student reuse previously developed code,
and many other factors.

Students who learn how to program should develop good
programming skills from the first computer program they
write, and therefore it is desired that other factors in addition
to the correctness will be used to assess the programming
tasks. FA can contribute significantly to the assimilation of
these factors and as a result students will become better
programmers. The teacher can assign different weights to the
assessment criteria along different problems and task to reflect
the focus of the course on various aspects. The student can use
the feedbacks to improve and become a good programmer at
the end of the course.

III. THE STUDY

In this section we provide a detailed description of our
suggested assessment tool and its use followed by a
description of the pilot study done to evaluate the tool.

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

A. The Assessment Tool

The architecture of the suggested tool is based on Microsoft
Excel, where its entire logic is developed, using Visual Basic
for Application (VBA) to provide all its functionality. This
environment was chosen since it is part of the Microsoft office
suit and is available everywhere with no special installation
needed. The tool was designed and constructed based on our
educational perceptions. We believe that assessment process
should meet several conditions: (1) the students should be
notified on the criteria list by which their assignments will be
evaluated in advance. This way they can adjust their learning
accordingly [13]; (2) the evaluation process should reflect the
students' progress across each assessment criterion along the
course timeline, so that they can focus their efforts in issues
they encounter difficulties; (3) the evaluation process should
demonstrate the student's relative position with comparison to
the whole class achievements. This information might help the
student to better grasp his learning situation; (4) evaluation via
the tool encourage the teaching staff to assess the students'
assignments systematically and efficiently. The standard
format of the assessment process avoids differences between
the provided assessments especially when more than one
assessor is involved; (5) the provided assessment should be
clear and concise. Therefore, the tool should provide both
textual and visual feedback of each assessment criterion.

Figure 1 presents the menu of the assessment tool that
enables the teacher to select the desired operation.

In what follows we present a sequence of steps
demonstrating the tool's operations.

Step 1: Setting the course details including the course staff
(Title, teacher_name, e-mail address) and the students' details
(student_no., student_name, e-mail address). Figure 2 presents
an example of the course sheet.

Step 2: Setting the tasks details. The teaching staff has to
enter the list of the tasks planned for this course and their
relative weight, and the number of problem in each task.
Figure 3 presents the tasks planned for the pilot group.

Step 3: Setting criteria list to be used for the assessment of
the various tasks. It should be noted that not all the criteria
have to be used in each task. Figure 4 presents the criteria
according to which the tasks of the pilot group were assessed.

Id Last name First name Email
111 Lovelace Ada (Byron) ada@gmail.com

222 Babbage Charles charles@gmail.com

Title Last name First name Email
Dr. Jackyll Henry henry@gmail.com
Mr. Hyde Edward edward@gmail.com
Miss Piggy Lee piggy@gmail.com

Students

Course Staff

Task no. Task desc
No. of
Problems

Task
weight(%)

1 intro to Java program, basic program syntax 3 10

2 algorithmics, conditions, loops 4 10

3 first class & object, simple meethods 4 10

4 constructors, advanced methods 5 15

5 class inheritance, polymorphism 4 20

6 abstract methods & classes, interface classes 4 20

7 Exceptions, files 3 15

total 100

Criteria Description

Modularity

Code should be effectively organized into classes and classes
are organized into class hierarchies addressing problem
specifications. Each class represents a single concept and
has all the necessary attributes and methods.

Method design
Each method should be relatively short and perform a single
task or a small number of highly related tasks.

Code Readability
Code should include meaningfull names for classes, variables
and methods. Layout should include indentation and wrapping
of long lines. Inline documentation should be added.

Correct solution
The program does what it is expected to do according to the
problem specifications. It runs smoothly without failures.

Code coverage
Test program should be associated including high percentage
of code coverage

Fig. 3. Planned tasks

Fig. 4. Criteria set

Fig. 1. Menu

Fig. 2. Course details

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

Step 4: Setting the task/criteria matrix. The teacher assigns
relative weights to criteria for each problem in each task.
Figure 5 presents the criteria and relative weights of the first
task given to the pilot group.

Step 5: Task assessment according to criteria – after
examination of the students' tasks by the teaching staff, the
scores are entered to the suitable sheet and justifications to
each score is provided. Figure 6 presents a partial assessment
of one of the problems in a task given to the pilot group.

Step 6: Processing task data and generating reports for the
students – after all scores and justifications for the problems
of the current task are entered, the data are automatically
processed and the students receive a report of their
achievements by email. The report includes detailed
assessment of the current task, literal and graphical
description. Figures 7 and 8 present the literal and the
graphical assessment reports of one student from the pilot
group. In addition, the report includes charts presenting the
student's progress across the various tasks in each criterion
and the student' relative position in class in each task. Figures
9 and 10 present the progress and the relative position of one
student from the pilot group.

B. The Pilot

The suggested tool is currently under examination and the
results that are presented herein are preliminary. The pilot
group includes 45 college students studying towards B.A.
degree in management information systems. We used the tool
in the course 'Object-oriented programming' which is studied
immediately after the course 'introduction to programming'
where students learn the basics of programming. The students
learn the principles and constituents of object oriented,
namely classes, methods, class inheritance, polymorphism,
method override, abstract methods, abstract classes, interface
class, exception mechanism and graphical user interfaces.
The main focus of the course was on using these principles to
provide modular, clear and qualitative software solutions to

Task 1
Problem
no.

Modularity
Method
design

Code
readability

Correct
solution

Code
coverage Total

1 10 20 10 50 100
2 25 15 10 50 100
3 15 15 15 45 10 100

Task 2
Problem
no.

Modularity
Method
design

Code
readability

Correct
solution

Code
coverage Total

1 30 10 10 30 10 100
2 25 10 20 40 5 100
3 25 15 10 40 10 100
4 10 90 100

Modularity Comments

21
Class Dog should be extracted from
class Animal.

Method
design Comments

12
Constructor of Anumal is too long. It
should call set methods instead of
initializing the attribute itself

Code
readability Comments

7
methods' parameters are not
documneted. Methods' names must
not start with a capital letter.

Correct
solution Comments

40 very good!

Code
coverage Comments

8 A test with a Cat is missing

Task 3 Modularity
Method
design

Code
Readabilit
y

Correct
solution

Code
coverage

Comments

Problem 1 80 40 80 55 85

Modularity : Class Dog should implement

Carnivore interface ; Method design: Animal.eat()

is too long, Dog.eat() does not call super.eat();

Code Readability: quite good, but classes should

start with a capital letter. Code coverage: tests for

Cat and Dog are missing]

Fig. 8. Student's graphical report on a task

Fig. 5. Relative weights to criteria

Fig. 6. Assessment example

0
10
20
30
40
50
60
70
80
90
100

1 2 3 4 5 6 7 8 9 10 11 12 13

G

r

a

d

e

Student no.

Class Task Grades ‐ Task 3

Plesae note: the Red grade is yours!

Fig. 10. Student's assessment summary

Fig. 9. Student's progress along selected criteria

Fig. 7. Student's literal report on a problem

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

given problems. The course instructor and his teaching
assistant planned seven homework assignments each aimed to
practice different issues. The instructor defined five criteria by
which the students' work will be assessed and assign weights
to these criteria for each problem in each task. These criteria
and their assigned weights were published to the students in
advance. In addition, when new concept (e.g., class
inheritance, abstract class) was presented to the students, its
contribution to the quality of the code (e.g., modularity,
clarity) was emphasized. The teaching assistant used the tool
to feed in scores and feedbacks and generated the reports
which were distributed automatically to the students via email.
Until the time of writing this paper the students received
seven reports, one on each assignment. Each report included
feedback on each criterion for each problem, including
justifications for score reductions and praises for good
solutions. The students could compare their achievements to
the rest of the students and track their progress from the first
assignment until the current one.

IV. RESULTS AND DISCUSSION

As was previously mentioned, this study presents
preliminary results. Analysis of the students' responses to the
question "describe your experience with the assessment tool",
revealed the following issues: reference to the tool's
constituents and reference to the assessment process.

A. The Tool's Constituents
Many of the students made statements similar to the

following:

David: "This is the first time that the feedback refers to all
criteria explicitly for each problem! Each score reduction is
justified. I feel that my work was reviewed thoroughly and
with full attention".

Noga: "I usually forget the grades I receive in my
homework assignments, and forget easily the reasons for
loosing score. But this time I could easily remember all the
scores and all the reductions, since they were included in each
report".

Tal: "The combination of literal and visual feedback is
perfect for me. I watch the graphs to examine my scores and
read the comments to understand the score reductions".

Evgeny: "The graph that presents the relative score
compared to the rest of the class is most useful to me. I'm very
curious about my relative achievements and find it more
important than the absolute grade. The higher my relative
scores the higher my satisfaction regardless its absolute
value".

Eli: "The graphs that present the progress along the course
tasks provided me a great way to track my achievement and to
identify my weaknesses. I immediately saw it on the graphs
and could focus my efforts to get better on these issues".

Most of the students referred to the graphical presentation
of the feedback assessment according to the categories saying

that it helped them to monitor their efforts to the categories in
which they encountered difficulties. Moreover, they pointed
out the advantage of receiving all the grades accumulated
along the course timeline so that they could track their
learning situation.

In the traditional assessment process usually the feedback
students receive on their homework includes summative grade
for all the included problems and few justifications to explain
the grade reductions. In such assessment process it is difficult
for the students to figure out what are the specific issues in
which they have difficulties. The suggested tool enables the
student to follow each criterion in each problem within a
certain task along the various homework assignments during
the course timeline. The different forms in which the students'
progress is presented, helps them realize their accurate
learning situation in each of the assessed criteria. The
assessment tool also provides the students with the
information regarding their relative position in class which
can serve as a learning catalyst and motivation for better
success. Students tend to appreciate rich and meaningful
feedback attached to the scoring of their homework
assignments, and feel disappointed otherwise [12].

B. The Assessment Process
Many of the students made statements similar to the

following:

Dana: "Knowing the assessment criteria in advance helped
me to improve my answers in all aspects. For instance, I made
several passes on the code before submitting; added
comments to the code changed variables' names and even
broke down long and complex methods into several simple
ones just to make sure that I'm not going to lose points for
sloppy submission. It surely improved the quality of my
solution".

Ben: "When I had to provide a source code that solves a
certain problem, I saw that the criteria list includes various
aspects regarding the quality of the source code such as
modularity, readability and good coverage. This list helped
me to assimilate these important factors and properly apply it
in my solutions"

Gabi: "I was quite surprised when I saw the heavy weights
the instructor assigned to the readability modularity and
coverage criteria. I'm not saying that these criteria are not
important, but in the first programming course correctness
was the only issue. I had to adapt my coding style to the new
requirements".

Joseph: "The teacher explained at the beginning of the
course that good solution refers to more aspects than its
correctness. At first I didn't understand the importance of it
but according to the criteria I invested some thinking to create
modular and readable code. Now, at the end of the course I
can say that I understand much better why these attributes are
significant".

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

In their previous programming course the students'
assignments were graded mainly for their correctness, and as a
result they did not pay much attention to readability,
modularity and coverage. According to the requirements
reflected by the weights assigned by the instructor they had to
change their perception on these criteria and indeed provided
better solutions. The students understood the importance of
the factors that affect the quality of their solutions according
to Boehm [3], and assimilated the significance of code clarity
and modularity to the future maintenance of the software.
They also learned that writing unit test to cover as many lines
of code as possible improves the quality of the code and
reduce the number of software errors.

Notifying in advance the students about the criteria list by
which they are going to be assessed has the following
benefits: (1) the teacher conveys a clear message regarding his
expectations from students. For example, if the task includes
source code, through the criteria list the teacher can convey
the students the message that there are another important
aspects relating to source code in addition to its correctness;
(2) Acknowledging students with the criteria list according to
which their work will be assessed can help them better
monitor their learning. Via these criteria and relative weights
they receive a clear message concerning the relative
importance of a certain criterion and the amount of efforts
they should invest in it.

V. CONCLUDING REMARKS

The preliminary presented results show that the students
have positive experience with the assessment tool. This
experience is a results of several factors stated above. The
main factor refers to the fact that the tool enables prior
notification of the criteria set to the students so that they could
adjust their learning efforts. They found the assessments they
received to be fair and useful in a way that helped them to
focus their efforts in issues they encounter difficulties. Hence,
we may say that via the assessment tool the students'
knowledge can be shaped. We plan to test the assessment tool
on more programming courses such as 'introduction to
programming' and 'data structures and algorithms' in which
other criteria should be considered. We also plan to extend the

tool in the following directions: (1) add summative reports for
the teachers; (2) add assessment scale according to which
teachers reduce points on faulty or inaccurate answers; (3) add
statistics measures to compare the achievements of different
groups (e.g., across semesters, across lectures).

REFERENCES
 [1] Ala-Mutka K. M. (2005). A Survey of Automated Assessment

Approaches for Programming Assignments. Computer Science
Education, 15:2, 83-102

[2] Bangert-Drowns, R.L., Kulick, J.A., and Morgan, M.T. (1991). The
instructional effect of feedback in test-like events. Review of
Educational Research, 61 (2): 213-238.

[3] Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative
evaluation of software quality. In Proceedings of the International
Conference on Software Engineering, pages 592-605. IEEE Computer
Society Press, October. Los. Alamitos, CA.

[4] Carter, J., English, J., Ala-Mutka, K., Dick, M., Fone, W., Fuller, &
Sheard, J. (2003). How shall we assess this? ACM SIGCSE Bulletin,
35(4), 107 – 123.

[5] Cheang, B., Kurnia, A., Lim, A., & Oon, W.-C. (2003). On automated
grading of Programming Assignments in an academic institution.
Computers & Education [4]

[6] Crooks, T. (2001). The Validity of Formative Assessments. British
Educational Research Association Annual Conference, University of
Leeds.

[7] Douce, C., Livingstone, D. and Orwell, J. (2005). Automatic test-based
assessment of programming: a review. ACM Journal of Educational
Resources in Computing, 5(3):4

[8] Higgins, C. A., Gray, G., Symeonidis, P. and Tsintsifas, A. (2005).
Automated assessment and experiences of teaching programming. ACM
Journal on Educational Resources in Computing, 5(3):5.

[9] Howles, T. (2003). Fostering the growth of a software quality culture.
ACM SIGCSE Bulletin, 35(2), 45 – 47.

[10] Joy, M., Griffiths, N. and Boyatt. R. (2005). The BOSS online
submission and assessment system. ACM Journal of Educational
Resources in Computing, 5(3):2.

[11] Jackson, D., & Usher, M. (1997). Grading Student programs using
ASSYST. Proceedings of the 28th SIGCSE technical symposium on
Computer science education, USA, 335 – 339.

[12] Lavy, I. & Shriki, A. (2012). Engaging prospective teachers in the
assessment of geometrical proofs. In Tso, T.Y. (Ed.). Proceedings of the
36th Conference of the International Group for the Psychology of
Mathematics Education, vol. 3, pp. 35-42. Taipei, Taiwan: PME.

[13] McTighe, J. & O'Connor, K. (2005). Seven practices for effective
learning. Educational Leadership, 63,(3) 10-17

[14] Morris, D. (2003). Automatic Grading of Student’s Programming
Assignments: An Interactive Process and Suite of Programs. Frontiers in
Education. 33rd annual S3F 1-6 Volum 3.

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

