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Abstract—During the machining of free-form surfaces by 3-
axis milling, the choice of machining parameters such as feed
direction is sensitive. The object of this study is to minimize the
machining time ensuring roughness criterium. The optimal feed
direction has a direct influence on the effective radius and then
on the machining time. This direction depends on the topology
of the surface, indeed the optimal feed direction for one point of
a path can be very far from the optimal feed direction for an-
other point on the same part. The relation between the effective
radius and step-over distance is established. The more the step-
over distance increases, the more the effective radius increases
generating a decrease of the machining time. Therefore the
effective radius is chosen as optimization parameter instead
of time. To get an optimal feed direction at any point, this
study concerns the machining with zones. Clarke and Wright’s
algorithm is used to solve this problem. A concrete example is
illustrated.

Index Terms—Clarke and Wright’s algorithm, Effective ra-
dius, Free-form surface, Machining zones, 3-axis milling.

I. INTRODUCTION

The work presented in this paper concerns the machining
of free-form surfaces. These complex surfaces are used in
various fields of activity, such as aeronautic, automotive
industry or capital goods and they combine at the same
time aesthetic and/or functionality. These surfaces require
a high level of quality and reduced shape defects. Their
machining is long, not optimized and costly. One of the fac-
tors influencing the global cost production is the machining
time, it is the optimization parameter and the constraint is
the roughness criterium. These complex parts are modeled
using the software computer-assisted design. Mathematical
models associated are parametric surfaces with pole, as type
NURBS, B-Spline, Bézier curves, etc. [1].

The parts are obtained by material removal on Numerically
Controlled machine tools, using movements of one or several
hemispheric or torique shape tools [2]. The machining strat-
egy includes the choice of tools, paths and cutting conditions
in order to obtain the final part. The object of this paper is
to minimize the total length of tool’s movement, respecting
the roughness quality imposed by the engineering consulting
firm. Many machining strategies exist and the most common
are: parallel planes milling [3], guide surfaces [4], and iso-
parametric milling [5]. These strategies are obtained directly
from 3-axis machining researches.
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Notation
S(u,v) Parametric surfaces.
Rs(O,Xs, Ys, Zs) Global frame of the surface.
Rt(Cl,Xs, Y s, Zs) Frame of the tool.
Cc The point of contact between the tool and the workpiece.
Cl Tool center point.
nCc The normal to the tool at Cc.
P (◦) The slope angle of the workpiece at a given point.
α (◦) Angle of the feed motion direction.
ϕCc (◦) Angle of direction of steepest slope at Cc.
D Direction of steepest.
R (mm) Cutter radius of the tool.
r (mm) Torus radius of the tool.
Reff(j) (mm) Effective radius of the point j on the surface.
SReff (mm) Sum of effective radius in the points on the whole surface.
SReff(i) (mm) Sum of the effective radius of the points of the mesh i.
SReff(Zi) (mm) Sum of the effective radius of the points of the zones i.
SReff(Zi,j) (mm) Sum of the effective radius of the combination of the

zone i and the zone j.
ρ (mm) Curvature radius of the workpiece.
~V The feed rate of the tool.
Pt (mm) Step-over distance.
Gi,j(mm) Combination saving between the mesh i and the mesh j.
n Total number of meshes in the workpiece.
bnm Number of meshes in the zones to be combined.
k Parameter due to the withdrawal of the tool outside

material.

Advantages of parallel planes milling are:

• To not generate an overlapping tool path, resulting in a
considerable saving time.

• To avoid the appearance of non-machined areas during
the planning path.

This strategy is not optimal. Indeed, during the surfaces’
machining with large variation of the normal direction, the
successive path becomes nearer to respect scallop height,
thus increasing manufacturing time. When a tool moves on
the surface, it sweeps a volume by leaving an imprint on
this surface, it’s a sweep surface [6]. Between two adjacent
paths, intersection of the sweep surfaces produces a scallop.
Usually, a scallop height value must not exceed a given value.

Minimizing machining time for the free-form surfaces on
3-axis machining is equivalent by hypothesis to minimize the
tool total length path crossed, respecting a scallop height. A
considerable number of works have been devoted to reduce
machining time[7][8].

In this paper, the machining time optimization of free-form
surfaces by global optimization methods is studied. For this,
the milling process in 3-axis machining with a strategy of
parallel planes of type zigzag are used. Our optimization
concerns the machining of a workpiece by zones following
different directions.

The article is organized as follows: in section 2 the
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context of our study and the parameters of optimization are
presented. The section 3 is dedicated to the approach of the
resolution of our problem. The section 4, presents the Clarke
and Wright’s algorithm used. In the section 5, an example of
application of our method on a free-form surface is presented.
The last section is devoted to a conclusion and perspectives.

II. CONTEXT

The object of this study is to propose a global optimization
method to minimize the machining time of free-form surfaces
in 3-axis milling. A toric end mill with cutter radius R and
torus radius r is used, with a strategy of parallel planes of
type zigzag. Free-form surfaces present a set of curved zones,
i.e. concave and convex zones. The geometry is obtained
by serial paths of a tool to approach the theoretical shape.
During machining, tool moves tangentially to the workpiece
at the point Cc. At this point the tool can move in any
direction α. This parameter α is called feed motion direction.
For example, on an inclined plane (30◦ slope), the (fig.1)
presents two cases of movements of a toric end mill cutter
(R=5 and r=2). The tool is partially presented by a quarter
of torus. The Zs is the axis of tool. The bold line curve
represents the trace left by the tool at Cc (see section A).

Fig. 1. Trace left by the tool according to the feed motion direction.

In case 1 on fig.1 with feed motion direction (α = 0◦)
the direction of steepest slope, the trace left by the tool at
Cc results in a curve with an important radius curvature at
Cc. Moving perpendicularly to the direction of steepest slope
(α = 90◦) at Cc, the trace left by the tool is equal to r. The
quantity of material removed during the tool path (α = 0◦)
is much more important than in (α = 90◦). Then the number
of paths required to machining the surface with (α = 0◦) is
inferior than the number of paths with (α = 90◦). Therefore
the time required to machine the surface in case 1 (α = 0◦)
is less than the machining time for the same surface in case
2 (α = 90◦).

The conclusion is that the choice of feed direction has
an influence on the trace left by the tool on the surface.
The more the radius of this trace is important and the more
the time of machining decreases. The radius of curvature of
the trace left by the tool on Cc is called effective radius
Reff . Our object is to use optimization method enabling us
to choose the optimal feed direction in different zones on the
surface to minimize machining time.

A. The trace left by the cutter

The trace left by the cutter on the surface is the swept
curve. Effective radius corresponds to the radius of curvature
on Cc of the swept curve projected in a plane normal to the
feed direction along a direction parallel to the feed direction.
The toric end mill enables to keep a large effective radius
while avoiding unsightly marks. [9] demonstrates that, in the
point of contact Cc, the effective radius is equal to the ellipse
radius -resulting from the projection along the feed direction
in a plane normal to the feed direction of center-torus circle-
increased by an exterior offset with a value equal to the torus
radius of tool r. This gives us the analytical equation of the
effective radius:

Reff =
(R− r)cos(α− ϕCc)2

sin(P )(1− sin(α− ϕCc)2sin(P )2)
+ r (1)

Fig. 2. Different angles of the Reff .

This analytical expression is easy to handle. It depends on
the feed direction’s angle α between the feed rate −→V and the
axis of the surface Xs.

B. Step-over distance calculation

Step-over distance corresponds to the distance between
two successive and parallel tool paths while respecting the
maximal scallop height hc (fig). 3. Since hc is small (in the
order of 0.01mm) the following hypothesis are made:

• The tool makes a circular trace of radius Reff in the
neighborhood of Cc.

• The radius of curvature ρ of the surface is assumed to
be locally constant in a plane perpendicular to the feed
motion direction.

• hc is small compared to Reff and ρ.

To calculate the step-over distance, in a plane perpendicular
to the feed rate ~V , eq.2. is obtained:

Pt =

√
8 ∗ hc ∗Reff ∗ (Reff + ρ)

ρ
(2)

The effective radius, due to the feed direction choice, has a
direct influence on minimization of machining time. Indeed,
when the effective radius increases the step-over distance
increases. The number of paths required to machine the
surface decreases significantly and reduces the machining
time.
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Fig. 3. Step-over distance.

C. Influence of the feed direction on the effective radius

According to eq. 1, the effective radius is in direct relation
to the feed direction α. In this section the impacts of this
direction on the variation of Reff is studied. Let (R=5 and
r=2) be torus end mill cutter, for an inclined plane (30◦

slope), the feed direction is varied in an angular interval
of [−90◦, 90◦]. The interest of moving the tool along the
steepest slope direction (α = ϕCc) to maximize the effective
radius is noted on fig. 4. For the whole surface, it’s not
possible to do this because the steepest slope direction varies
at any point, and in parallel planes strategy a constant
machining direction is imposed.

Fig. 4. Variation of the effective radius of the torus end milling cutter.

III. APPROACH

The machining time is directly related to the feed direction
of the tool. The analytical expression of this time is not
known and by hypothesis it’s proportional to the length of the
paths crossed by the cutter. To calculate the machining time,
it’s necessary, from a first path, to define all successive paths

resulting to the minimal step-over distance from previous
path. It’s a long computation which cannot be repeated if a
quick answer is wanted. Minimizing the time of machining
is equivalent to minimize the overall length of the path
crossed by the tool. This is similar to maximize the step-over
distance i.e. maximize the effective radius. So in our study
the effective radius is taken as a parameter instead of time.
Let S(u,v) be a parametric complex surface. At any point of
this surface, there is an optimal feed direction corresponding
to the steepest slope direction. Machining the surface with a
single feed direction cannot guaranty the maximum effective
radius at any point, because of the variation of the normal
direction on the surface. Indeed, an optimal feed direction
for one point of a path can be very far from an optimal
feed direction for another point of the same path. It induces
contraction of parallel planes distance and decreases the
average value of the effective radius.

For this, the surface is mapped with a parametric meshing
following (u,v). Each mesh presents a simple quadrilateral
surface, with a low variation of the normal and an optimal
feed direction.

The computation of an optimal feed direction on a mesh
is as follows:

• Select a set of points on the mesh i: nbpi. This selec-
tion is done uniformly over the rows and columns of
the mesh i by respecting distance fixed between two
adjacent points, on fig.6 an example with nbpi=16 is
presented.

• Calculate for each point j: slope P and steepest slope
direction ϕCc.

• Calculate the optimal feed direction α for all points of a
mesh i maximizing the function: Max

∑nbpi
j=1 Reff(j) =

Max

nbpi∑
j=0

(
(R− r)cos(α− ϕCc)2

sin(P )(1− sin(α− ϕCc)2sin(P )2)
+ r)

(3)
Each mesh is characterized by an optimal feed direction for
which the sum of effective radius is maximized. A zone is a
composition of a set of associated meshes. Two meshes can
be associated if they are contiguous, meaning that they have
at least one side in common. If the cross time of the tool
from zone A to zone B, is negligible, the optimal solution to
machine a mapped surface is to machine each mesh indepen-
dently following its optimal direction, maximizing thereby
the sum of effective radius of the surface. But since this
approximation is not acceptable therefore the meshes of the
surface are combined in zones. In order to have a sum of the
effective radius of each zone superior to the sum of effective
radius of each meshes composed the zone multiplied by a
penalty: Pk(bnm) = ((SReff(i) + SReff(j)) ∗ Pk(bnm)) <
SReff(Zij). The object is to maximize the sum of effective
radius of each zone. The penalty reflects the loss time due to
the movement of tool from a mesh to another. To solve the
problem a global optimization method is applied to constitute
the zones:

• The number of zones should not be too large to avoid
the loss unproductive time of the tool.

• The number of zones should not be too few to have a
maximum sum of effective radius on each zone.

To summarize:
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• Let M = {m,m2, ...mn} be a set of meshes covering
the whole surface.

• Let Z={z1, z2, ...zl} be a set of zone covering a set of
continguous meshes, with zi = {mi.......mp} ⊂ Z, such
as the effective radius of zi is lower than the sum of
effective radius of all meshes {mi.......mp} multiplied
by the penalty owed to the displacement of the tool.

• The set Z must cover all meshes of the set M:∑l
i=i card(zi) = card(M).

The problem to maximize the sum of effective radius is
compared to the multi-Vehicle Routing Problem (mVRP).
mVRP is a class of operational research and combinatorial
optimization. A series of routes starting from a single depot
are determined, based on a list of cities with a fleet of ho-
mogeneous vehicles, in order to minimize the total distance
traveled by the vehicles. Usually, a constraint limiting the
total duration of the route [10] is added. The object is to
visit all cities by minimizing one or several criteria related
to the cost of delivery demands. It’s a classical extension
of Travelling salesman problem and it belongs to the NP-
difficult problem’s category [11][12][13].

The commonalities between the mVRP and the machining
problem are:

• In mVRP a vehicle visites a set of defined cities. In
machining problem a tool machined a set of defined
meshes.

• In mVRP the necessary number of vehicles to visit all
cities is found. In machining problem the number of
required zones to cover all meshes is found.

• In mVRP one city is visited only once. In machining
problem one mesh is machined only once.

In this study, the order of the machining of zones is not
considered contrary to the mVRP.

IV. OPTIMIZATION

To solve machining problem, Clarke and Wright’s opti-
mization algorithm [14] used for solving mVRP is adapted.

Clarke Wright’s algorithm (CW): developed by Clarke
and Wright (1964), is one of the known heuristic for
solving constraints vehicle routing problem [14]. CW is
based on the notion of saving. Initially, a feasible so-
lution consists of N back and forth routes between the
depot and a customer. At any given iteration, two routes
(v0, ...vi, v0) and (v0, vj , .., v0) are merged into a single route
(v0, ..., vi, vj ...., v0) whenever this feasible, thus generating
a saving: Gi,j = C0i+C0j −Cij , C0i cost moving between
the depot 0 and city i.

Its concept is to link the routes determined by the savings
list in which values are sorted from largest to smallest.

There are two versions of CW: sequential and parallel.
Sequential version, a single route is expanded until no more
routes can be linked to it. In the parallel version, several
routes can be constructed in parallel. In the parallel version
of the algorithm, the combinaiton of routes with the largest
saving is always implemented, whereas the sequential version
keeps expanding the same route until this is no longer
feasible. In the practice the parallel version is much better
[15].

The parallel version of CW algorithm is used in this study.
The initial solution is to machine each mesh individually with

the optimal feed direction and maximum sum of effective
radius. To calculate the optimal feed direction the eq.3 is used
according to the number of points selected in each mesh. The
sum effective radius of mesh i, SReff(i), is equal to the sum
of effective radius of the selected points in this mesh for an
optimal feed direction calculated.

Gi,j = SReff(Zij) − ((SReff(i) + SReff(j)) ∗ Pk(bnm))
(4)

With:
• Pk(bnm) penalty of tool’s movement between mesh i

to the mesh j.
• Zij : zone composed with meshes i and j.
The penalty Pk(bnm) is a linear function depending on the

number of meshes in zones to be combined. The combination
of meshes is performed if and only if Gi,j > 0.

Pk(bnm) = k +
(1− k)
(n− 1)

∗ (bnm − 1), k ∈ [0.9, 1] (5)

There are three constraints: connecting meshes in the zone,
belonging mesh to a single zone and zones covering the
whole surface.

V. APPLICATION TO AN EXAMPLE

Let S(u, v) be a parametric free-form surface defined by
(Fig. 5), this surface is symmetrical in relation to the plane
X=20, and a torus end milling cutter (R=5 and r=2).

S(u,v)=

 40u

80v

20u+10uv2−20u2−10u2v2+10v+10v2



Fig. 5. Free-form surface S (u,v).

This surface has large variations in steepest slope direction,
going from 14◦ to 166◦. Machining the surface with a single
feed direction may induce areas with effective radius equal
to torus radius r.

CW algorithm is not an exact optimization method. To
approximate the solution of our problem to the optimal
solution, the surface S(u,v) is mapped with parametric grid
3*3 following (u,v), i.e. surface is covered by grid composed
of nine meshes. In each mesh 16 points are selected. In order
to verify the convergence of the CW algorithm to the optimal
solution, in the first time, all possible combinations of these
nine meshes are calculated and this SReff(i) is evaluated.
One combination corresponds to a set of zones covering
all surface’s mesh. The number of combinations obtained
is 656. Global optimal solution Solopt with maximal sum
of effective radius by taking into account the penalty due to
the moving of the tool from one zone to another is equal to
1368.422 mm, Solopt is the combination of the three zones
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{0, 1, 2},{3, 4, 5} et {6, 7, 8} (see fig.6. to the numbering of
the meshes).

In the second time, the CW algorithm is applied. The
initial solution is to machine each mesh i individually
with αopt(i). So the global effective radius of surface is
equal to the sum of the effective radius SReff(i) of the 9
meshes multiply by the penalty: SReff =

∑8
i=0 SReff(i) =

1215.90mm. The disadvantage is the loss of time generated
during the tool’s movement from a mesh to another one.

Fig. 6. The mapping of surface S(u,v).

The adjacency matrix of the meshes is given as follows:

M(u,v)=



0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0 1

0 0 0 0 0 1 0 1 0


The order between two adjacent meshes is not important.

For example, the combination of mesh i and mesh j is the
same than the combination of mesh j and mesh i.

The example below explains the calculating of sum of
effective radius SReff(0) for mesh 0 in the surface S(u,v).
Let (0,0), (0, 0.33), (0.33,0) et (0.33,0.33) be the (u,v)
coordinates of mesh 0. The table presents four selected of
the 16 existing points in the mesh 0.

TABLE I
THE CALCULATION OF THE Pj(

◦) AND ϕCcj (
◦).

Point j Coordinates of point j Pj(
◦) ϕCcj (

◦)

0 (0.041,0.041) 25.22 16.05

1 (0.041,0.125) 25.80 18.34

2 (0.041,0.208)) 26.36 20.63

3 (0.041,0.291) 26.94 20.63

Optimal feed direction is calculated by eq.3.: αopt=29.80◦.
Sum of effective radius of mesh 0 is:
SReff(0) =

∑16
j=1(

(R−r)cos(αopt−ϕCcj)
2

sin(Pj)(1−sin(αopt−ϕCcj)2sin(Pj)2)
+

r) = 169.918mm.

Table 1 presents the saving Gi,j of the all combinations of
adjacent meshes in pairs according to the adjacently matrix
M(u,v). Gi,j = ((SReff(i) + SReff(j)) ∗ P0.98(bnm)) −
SReffZ(i,j).

Calculation example of G0,1 of the S(u,v) with 16 points:

• SReff(0) = 169.918 and SReff(1) = 146.788.
• k=0.98.
• Total number of meshes of surface is n=9.

TABLE II
SAVING Gi,j .

{i, j} Gi,j {i, j} Gi,j {i, j} Gi,j

{0, 1} 4.402 {3, 6} -62.023 {2, 5} -24.142

{0, 3} -62.023 {4, 5} 5.851 {6, 7} 4.402

{1, 2} 4.659 {4, 7} -36.624 {3, 4} 7.331

{1, 4} -36.624 {5, 8} -24.142 {7, 8} 4.659

• The combination is made between two meshes 0 and 1:
bnm = 2.

• Then Pk(bnm) = 0.98 + (1−0.98)
(9−1) ∗ (2− 1) = 0.982.

• To calculate the effective radius of a combination of
mesh 0 and 1, on all points of the two meshes: 32 points
(16 for each mesh) SReff(Z0,1) = 315.567mm.

• Saving G0,1 = 315.567 − ((169.918 + 146.788) ∗
0.982) = 4.402mm.

In table 1, negative saving means that the combination of
mesh engenders a time loss. The positive saving is selected
in ascending order.

• The first combination with a maximum saving Gi,j is:
the mesh 3 and 4, forming zone Z0=>(SReff(Z0) =
418.956, α0 = 90). To respect the constraint of unique-
ness of belonging a mesh in a zone, all combinations
containing mesh 3 or 4 are eliminated , i.e.: {0, 3} {1, 4}
{3, 6}{4, 5} {4, 7}.

TABLE III
SAVING Gi,j AFTER THE CREATING Z0

{i, j} Gi,j {i, j} Gi,j {i, j} Gi,j

{0, 1} 4.402 {3, 6} eliminate {2, 5} -24.142

{0, 3} eliminate {4, 5} eliminate {6, 7} 4.402

{1, 2} 4.659 {4, 7} eliminate {3, 4} Z0

{1, 4} eliminate {5, 8} -24.142 {7, 8} 4.659

• Among remaining combinations, the maximum saving
is G1,2, Z1=>(SReff(Z1) = 274.195, α1 = 39.72).

• Last combination with positive saving is G7,8, Z2 =>
(Reff(Z2) = 274.195,α2= 140.28).

The formation of these three zones Z0, Z1, Z2 is done
in parallel and three meshes remains uncombined 0, 5, 6.
The process is reiterated until all savings are negative. After
several iterations of the program, the following results are
obtained:

• Zone Z0, consisting in meshes 3, 4 and 5 =>
(SReff(Z0) = 569.837, α0 = 90).

• Zone Z1, consisting in meshes 0, 1 and 2 =>
(SReff(Z1) = 442.044, α1 = 35.68).

• Zone Z2 consisting in meshes 6, 7 and 8 =>
(SReff(Z2) = 442.044, α2 = 144.32).

• Sum effective radius of surface is∑2
j=0(SReff(Zj)) = 1368.422mm (with penalty of

moving tool).
The solution obtained by CW algorithm is equal to the

global optimal solution in taking into account the penalty,
Solopt=1368.422mm. The application of the CW algorithm’s
on the mapped surface S(u,v) with parametric grid 3*3
converge to an optimal global solution.

To see the effectiveness of this division, the comparison
between the results of the classic machining method by
parallel planes with a single feed direction is used.
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Fig. 7. Machining of S(u,v) with three zones.

TABLE IV
MACHINING OF S(U,V) WITH SINGLE ZONE.

αopti(
◦) SReff

90 1034.962

TABLE V
MACHINING OF S(U,V) WITH THREE ZONES.

Zone Zi αopt(i) (◦) SReff(i)

Z0 90 569.837

Z1 35.68 442.044

Z2 144.32 442.044

SReff=1368.422

According to the two tables, during the machining of the
surface on three zones a saving of 24.36% on sum of effective
radius on overall surface is found compared to machine
surface with single optimal feed direction. Indeed, during
machining with single optimal feed direction, there are zones
with important effective radius superior to R and other with
low effective radius penalizing sum effective radius. This
variation is due to the large variation in the slope of the
surface, [14◦, 166◦]. Slope is a fixed parameter that cannot
be manipulated. It depends on the structure of the workpiece.

When the surface is machined into three zones, an optimal
feed direction is chosen according to the variation of slope
in the zone. The sum of effective radius is maximal and
homogeneous in each zone. It contributes to maximizing the
distances between paths i.e. minimize machining time.

Machining time is not a linear function according to
the effective radius because of the technical considerations
taken into account such as positioning of the workpiece on
the machine and machine’s dynamic. Time saving obtained
by machining in three zones is 32.48 % compared to the
machining in one zone with same technical constraints.

VI. CONCLUSION

In this paper, the optimization of 3-axis milling time
of free-form surface is studied. For this, a toric end mill
and strategy by parallel planes of type zigzag are used.
The effective radius is calculated by analytical equation
and the relation between this effective radius and step-over
distance is established. When the step-over distance increase
the effective radius increase generates a decreasing of the
machining time. Our object is to minimize the machining

time, but the analytical expression of the time is not known,
then the sum of effective radius is taken as a parameter
instead of time. One of the parameters influencing the sum of
effective radius is the feed motion direction. Machining the
free-form surface with a single direction cannot guaranty the
maximum effective radius in any point because of the large
slope variation on the surface. That gives the zones with low
effective radius penalizing the sum of effective radius on the
whole surface. To get an optimal feed direction at any point
this study is interested in machining with zones. The analysis
of complex surface as a set of simple sub-surfaces simplifies
the global problem. This enables to calculate the optimal
feed motion direction for each sub-surface then minimizing
the machining time taking account the increase of cross time
between zones by penalty coefficient. After decomposition of
the surface in meshes, the Clarke and Wright’s algorithm is
used to combine meshes in zones and reduce the movements’
cost of time. The results obtained on the presented workpiece
show a significant reduction of machining time.

The future works aspire to study minimization of the
machining time of the free-form surfaces by zones using
optimization methods taking into account kinematic and
dynamic behavior of the machine.
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